推荐-解析几何专题——圆锥曲线的综合运用专题训练-人教版[整理] 精品

合集下载

2020届高考数学一轮总复习第九单元解析几何第70讲圆锥曲线的综合应用(三)练习理(含解析)新人教

2020届高考数学一轮总复习第九单元解析几何第70讲圆锥曲线的综合应用(三)练习理(含解析)新人教

第70讲圆锥曲线的综合应用(三) (与直线、圆及其他知识的交汇与综合)1.(经典真题)设F1,F2分别是椭圆C:x2a2+错误!=1(a>b〉0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N。

(1)若直线MN的斜率为错误!,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b。

(1)根据c=错误!及题设知M(c,错误!),因为错误!=错误!,所以2b2=3ac,将b2=a2-c2代入2b2=3ac,得2c2+3ac-2a2=0,解得错误!=错误!或错误!=-2(舍去).故C的离心率为错误!.(2)由题意,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2) 是线段MF1的中点,故错误!=4,即b2=4a,①由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y1〈0,则错误!即错误!代入C的方程,得错误!+错误!=1.将①及c=错误!代入②得错误!+错误!=1,解得a=7,b2=4a=28,故a=7,b=2错误!。

2.(2018·天津卷·文)设椭圆错误!+错误!=1(a>b>0)的右顶点为A,上顶点为B,已知椭圆的离心率为错误!,|AB|=错误!.(1)求椭圆的方程.(2)设直线l:y=kx(k<0)与椭圆交于P,Q两点,l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.(1)设椭圆的焦距为2c,由已知有c2a2=错误!,又由a2=b2+c2,可得2a=3b.又|AB|=a2+b2=13,从而a=3,b=2.所以,椭圆的方程为错误!+错误!=1。

(2)设点P的坐标为(x1,y1),点M的坐标为(x2,y2),由题意知,x2>x1〉0,点Q的坐标为(-x1,-y1).由△BPM的面积是△BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2[x1-(-x1)],即x2=5x1.易知直线AB的方程为2x+3y=6,由方程组错误!消去y,可得x2=错误!。

圆锥曲线 综合(3) 高三数学解析几何专项训练(含例题答案) 高三数学解析几何专

圆锥曲线 综合(3) 高三数学解析几何专项训练(含例题答案) 高三数学解析几何专

心尺引州丑巴孔市中潭学校第二章 圆锥曲线 综合练习〔3〕【例题精选】: 例1:求经过两圆xy x y 2230++-=和332022x y x y +++=交点的直线的方程。

分析:对于相交两圆xy D x E y F 221110++++=、x y D x E y F 222220++++=,方程()xy D x E y F x y D x E y F 22111222220+++++++++=λ表示过这两圆交点的曲线方程,当λ=0时为圆x y D x E y F 221110++++=;当λ=-1时,为这两圆的相交弦所在直线方程,当λ取其它值时,通常表示过这两圆交点的圆方程。

解:设经过两圆xy x y 2230++-=和332022x y x y +++=交点的直线方程为:根据所有的直线方程都是关于x y 、的二元一次方程,有xy 22、项的系数要均为零,即:130+=λ解得:λ=-13代入得323130xy x y ---= 即740x y -=为所求直线方程。

例2:求经过两圆xy x 22640++-=和x y y 226280++-=的交点,并且圆心在直线x y --=40上的圆的方程。

解:设所求圆方程为()()xy x x y y 2222646280++-+++-=λ整理,得xy x y 22616142810+++++-++=λλλλλ其圆心为-+-+⎛⎝ ⎫⎭⎪3131λλλ,由有,-+++-=313140λλλ解得:λ=-7代入得--+-+=66642192022x y x y即:xy x y 227320+-+-=为所求圆方程。

例3:圆的方程是x y r 222+=,求经过圆上一点()M x y 00,的切线的方程。

解:设所求过()M x y 00,的圆的切线上任意一点()P x y ,那么有OP OM MP 222=+整理,得220020202x x y y r x y +=++∵()M x y 00,在圆x y r 222+=上,∴ x y r 02022+=∴ 所求切线方程为220022x x y y r r +=+即x xy y r 002+=例4::一个圆的直径端点是()()A x y B x y 1122,,、证明:圆的方程是()()()()x x x x y y y y --+--=12120证明:设所求圆上任意一点为()M x y ,那么有∠AMB = 90∴k k AM BM·=-1故()y y x x y y x x x x x x ----=-≠≠1122121·,因此,所求圆方程为 即()()()()x x x x y y y y --+--=12120当x x =1时,代入有y y =1 当x x =2时,代入有y y =2而点()()x y x y 1122,,,是圆和直径端点,在圆上,即所求方程()()()()x x x x y y y y --+--=12120。

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

届数学二轮复习第二部分专题篇素养提升文理专题五解析几何第3讲圆锥曲线的综合应用学案含解析

届数学二轮复习第二部分专题篇素养提升文理专题五解析几何第3讲圆锥曲线的综合应用学案含解析

第3讲圆锥曲线的综合应用JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷20椭圆的简单性质及方程思想、定点问题12Ⅱ卷19椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程12Ⅲ20椭圆标准方程和求三角形12(文科)Ⅲ卷21椭圆标准方程和求三角形面积问题,椭圆的离心率定义和数形结合求三角形面积,12201 9Ⅰ卷21直线与圆的位置关系,定值问题12Ⅱ卷20椭圆的定义及其几何性质、参数的范围12Ⅲ卷21直线与抛物线的位置关系、定点问题12201 8Ⅰ卷20直线的方程,直线与抛物线的位置关系、证明问题12Ⅱ卷20直线的方程,直线与抛物线的位置关系、圆的方程12Ⅲ卷20直线与椭圆的位置关系、证明问题12KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一圆锥曲线中的最值、范围问题错误!错误!错误!错误!典例1(2020·青海省玉树州高三联考)已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p〉0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.【解析】(1)将l:x-y+1=0与抛物线C:y2=2px联立得:y2-2py+2p=0,∵l与C相切,∴Δ=4p2-8p=0,解得:p=2,∴抛物线C的方程为:y2=4x。

(2)由题意知,直线m斜率不为0,可设直线m方程为:x =ty+1,联立{y2=4x,x=ty+1得:y2-4ty-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4t,∴x1+x2=ty1+1+ty2+1=4t2+2,∴线段AB中点M(2t2+1,2t).设A,B,M到直线l距离分别为d A,d B,d M,则d A+d B=2d M=2·错误!=2错误!错误!=2错误!错误!,∵(t-错误!)2+错误!≥错误!,∴当t=错误!时,错误!min=错误!,∴A,B两点到直线l的距离之和的最小值为:22×错误!=错误!。

高考数学三轮冲刺 专题16 圆锥曲线中的综合问题专项讲解与训练-人教版高三全册数学试题

高考数学三轮冲刺 专题16 圆锥曲线中的综合问题专项讲解与训练-人教版高三全册数学试题

专题16. 圆锥曲线中的综合问题“参数法”解决定点问题[核心提炼]证明直线过定点的基本思想是使用一个参数表示直线方程,根据方程的成立与参数值无关得出x ,y 的方程组,以方程组的解为坐标的点就是直线所过的定点.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点. (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【解析】 (1)由题意有a 2-b 2a =22,4a 2+2b2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.定值问题涉及面较多,解决此类问题以坐标运算为主,需建立相应的目标函数,然后代入相应的坐标运算结果即可得到. 【对点训练】已知点F 是椭圆x 21+a 2+y 2=1(a >0)的右焦点,M (m ,0)、N (0,n )分别是x 轴、y 轴上的动点,且满足MN →·NF →=0.若点P 满足OM →=2ON →+PO →. (1)求点P 的轨迹方程;(2)设过点F 作任一直线与点P 的轨迹交于A 、B 两点,直线OA 、OB 与直线x =-a 分别交于点S 、T (O 为坐标原点),证明FS →·FT →为定值.所以FS →=⎝ ⎛⎭⎪⎫-2a ,-4a 2y 1,FT →=⎝ ⎛⎭⎪⎫-2a ,-4a 2y 2,则FS →·FT →=4a 2+16a 4y 1y 2.由⎩⎪⎨⎪⎧x =ty +a ,y 2=4ax 得y 2-4aty -4a 2=0, 所以y 1y 2=-4a 2,则FS →·FT →=4a 2+16a 4-4a2=4a 2-4a 2=0.因此,FS →·FT →是定值,且定值为0.“函数(不等式)法”解决取值(X 围)问题[核心提炼]解析几何中的取值(X 围)问题最基本的解法是函数法与不等式法.有时需要使用双参数表达直线方程,解决方法:一是根据直线满足的条件,建立双参数之间的关系,把问题化为单参数问题;二是直接使用双参数表达问题,结合求解目标确定解题方案.(2017·高考某某卷)如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q . (1)求直线AP 斜率的取值X 围; (2)求|PA |·|PQ |的最大值.【解析】 (1)设直线AP 的斜率为k , k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值X 围是(-1,1). (2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1). 因为|PA |= 1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |= 1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减, 因此当k =12时,|PA |·|PQ |取得最大值2716.解决圆锥曲线中的取值X 围问题的五类思维途径(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值X 围;(2)利用已知参数的X 围,求新参数的X 围,解这类问题的核心是建立两个参数之间的等量关系; (3)利用隐含的不等关系建立不等式,从而求出参数的取值X 围;2.(2019·某某质量检测)已知抛物线C :y 2=4x 的焦点为F ,准线为l .若射线y =2(x -1)(x ≤1)与C ,l 分别交于P ,Q 两点,则|PQ ||PF |=( )A. 2 B .2 C. 5 D .5【答案】C.3.(2019·某某模拟)已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________.【答案】:15【解析】因为AP →=(λ-1)OA →,所以OP →=λOA →,即O ,A ,P 三点共线,因为OA →·OP →=72, 所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15, 当且仅当|x |=154时取等号.4.抛物线M 的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,准线与曲线E :x 2+y 2-6x +4y -3=0只有一个公共点,设A 是抛物线M 上一点,若OA →·AF →=-4,则点A 的坐标是________. 答案:(1,2)或(1,-2)解析:设抛物线M 的方程为y 2=2px (p >0),则其准线方程为x =-p2.曲线E 的方程可化为(x -3)2+(y +2)2=16, 则有3+p2=4,解得p =2,所以抛物线M 的方程为y 2=4x ,F (1,0). 设A (y 204,y 0),则OA →=(y 204,y 0),AF →=(1-y 204,-y 0),所以OA →·AF →=y 204(1-y 204)-y 20=-4,解得y 0=±2, 所以x 0=1,所以点A 的坐标为(1,2)或(1,-2).5.设O 为坐标原点,动点M 在圆C :x 2+y 2=2上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=22NM →.(1)求点P 的轨迹方程;(2)过点D (1,0)的直线l 与圆C 交于A 、B 两点.AB 的中垂线交直线x =3于点Q .OA →·AQ →是否为定值,给予说明.【解析】:(1)设P (x ,y ),M (x 1,y 1),由MN ⊥x 轴, 由NP →=22NM →得(x -x 1,y )=22(0,y 1), 所以⎩⎨⎧x =x 1,y 1=2y .又x 21+y 21=2.所以x 2+2y 2=2,即x 22+y 2=1.(2)设A (m ,n ),Q (3,t ).因为OQ ⊥AB ,即AB →·OQ →=0,所以AD →·OQ →=0, 所以(m -1,n )·(3,t )=0. 即tn +3m =3.①又A 在圆C :x 2+y 2=2上, 所以m 2+n 2=2.② 所以OA →·AQ →=(m ,n )·(3-m ,t -n ) =3m -m 2+tn -n 2=(3m +tn )-(m 2+n 2) =3-2=1. 所以OA →·AQ →=1. 即OA →·AQ →为定值1.6.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【解析】:由题知F ⎝ ⎛⎭⎪⎫12,0.设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2 . 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 设AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2. 所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a ||x 1-12|, S △PQF =|a -b |2. 由题设可得2×12|b -a ||x 1-12|=|a -b |2,所以x 1=0(舍去),x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE 可得 2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.此时E 点坐标为(1,0),满足方程y 2=x -1. 所以所求轨迹方程为y 2=x -1.7.已知抛物线C 的顶点为O (0,0),焦点为F (0,1).(1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点, 求MN 的最小值.【解析】:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y .(2)易知直线AB 的斜率存在.设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2. 所以|MN |=2|x M -x N |=2|84-x 1-84-x 2| =82|x 1-x 2x 1x 2-4(x 1+x 2)+16|=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2225t 2+6t+1>2 2.当t <0时,|MN |=22(5t +35)2+1625≥852. 综上所述,当t =-253,即k =-43时,MN 的最小值是852.8.(2019·某某适应性考试)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (1,22)在椭圆E 上,直线l 过椭圆的右焦点F 且与椭圆相交于A ,B 两点.(1)求椭圆E 的方程;(2)在x 轴上是否存在定点M ,使得MA →·MB →为定值?若存在,求出定点M 的坐标;若不存在,请说明理由.【解析】:(1)由题意,知c a =22,1a 2+12b 2=1,又a 2=b 2+c 2,解得a =2,b =1,故椭圆E 的方程为x 22+y 2=1.(2)由直线AB 过椭圆的右焦点F (1,0),当直线AB 不与x 轴重合时,可设直线AB :x =my +1, 代入椭圆方程,并整理得(2+m 2)y 2+2my -1=0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2m 2+m 2,y 1y 2=-12+m2. 设M (t ,0),若MA →·MB →=(x 1-t )(x 2-t )+y 1y 2=(my 1+1-t )(my 2+1-t )+y 1y 2=(1+m 2)y 1y 2+m (1-t )·(y 1+y 2)+(1-t )2=-1+m 22+m 2-2m 2(1-t )2+m 2+(1-t )2=(2t 2-4t +1)+(t 2-2)m 22+m2为定值, 则2t 2-4t +1=2(t 2-2),解得t =54.故存在定点M (54,0),使得MA →·MB →为定值-716,经检验,当直线AB 与x 轴重合时也成立, 所以在x 轴上存在一个定点M (54,0),使得MA →·MB →为定值.[能力提升]1.(2019·某某质量预测(二))已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.【解析】:(1)由题意得,点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物线的定义知圆心M 的轨迹是以点(0,1)为焦点,直线y =-1为准线的抛物线, 则p2=1,p =2. 所以圆心M 的轨迹方程为x 2=4y .(2)证明:设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2),则C (-x 2,y 2)联立得⎩⎪⎨⎪⎧x 2=4y y =kx -2⇒x 2-4kx +8=0,所以⎩⎪⎨⎪⎧x 1+x 2=4k x 1x 2=8.k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24,直线AC 的方程为y -y 1=x 1-x 24(x -x 1).即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1(x 1-x 2)4+x 214=x 1-x 24x +x 1x 24,因为x 1x 2=8, 所以y =x 1-x 24x +x 1x 24=x 1-x 24x +2,即直线AC 恒过点(0,2).2.(2018·东北四市联考)已知椭圆C :x 2a2+y 2=1(a >1),B 1,B 2分别是其上、下顶点,椭圆C 的左焦点F 1在以B 1B 2为直径的圆上. (1)求椭圆C 的方程;(2)过点F 1且不与坐标轴垂直的直线l 交椭圆C 于A ,B 两点,线段AB 的垂直平分线与x 轴交于点N ,点N 的横坐标的取值X 围是(-14,0),求线段AB 的取值X 围.【解析】:(1)由题知b =c =1, 所以a =b 2+c 2=2, 所以椭圆的方程为x 22+y 2=1.设AB 的中点为Q ,则Q (-2k 22k 2+1,k 2k 2+1), 所以直线QN 的方程为y -k 2k 2+1=-1k (x +2k 22k 2+1)=-1k x -2k 2k 2+1, 所以N (-k 22k 2+1,0),已知条件得-14<-k 22k 2+1<0, 即0<2k 2<1.又|AB |=1+k2(-4k 22k 2+1)2-4×2k 2-22k 2+1=2(1+12k 2+1). 因为0<2k 2<1,所以12<12k 2+1<1, 所以|AB |∈(322,22),32 2,22).所以线段AB的取值X围为(。

(江苏专用)高考数学总复习 专题10.4 圆锥曲线的综合应用试题(含解析)-人教版高三全册数学试题

(江苏专用)高考数学总复习 专题10.4 圆锥曲线的综合应用试题(含解析)-人教版高三全册数学试题

专题10.4 圆锥曲线的综合应用【三年高考】1. 【2015某某高考,18】(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b+=>>的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于 点P ,C ,若PC =2AB ,求直线AB 的方程.【答案】(1)2212x y +=(2)1y x =-或1y x =-+.【解析】试题解析:(1)由题意,得2c a =且23a c c +=,解得2a =1c =,则1b =,所以椭圆的标准方程为2212x y +=.(2)当x AB ⊥轴时,AB =C 3P =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B , 将AB 的方程代入椭圆方程,得()()2222124210kxk x k +-+-=,则1,2x=,C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭,且)22112k k+AB ===+.若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而0k ≠,故直线C P 的方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭, 则P 点的坐标为()22522,12k k k ⎛⎫+ ⎪- ⎪+⎝⎭,从而(()22231C 12k k k +P =+. 因为C 2P=AB ,所以(())222223111212k k k k k++=++,解得1k =±.此时直线AB 方程为1y x =-或1y x =-+. 【考点定位】椭圆方程,直线与椭圆位置关系2.【2014某某,理17】如图在平面直角坐标系xoy 中,12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1F C .(1)若点C的坐标为41(,)33,且2BF =,求椭圆的方程; (2)若1F C AB ⊥,求椭圆离心率的值.【答案】(1)2212x y +=;(2)12. 【解析】试题分析:(1)求椭圆标准方程,一般要找到关系,,a b c 的两个等量关系,本题中椭圆过点41(,)33C ,可把点的坐标代入标准方程,得到一个关于,,a b c 的方程,另外2222BF OB OF a =+=2=(2)要求离心率,就是要列出关于,,a b c 的一个等式,题设条件是1F C AB ⊥,即11F C AB k k ⋅=-,2AB F B bk k c==-,要求1F C k ,必须求得C 的坐标,由已知写出2BF 方程,与椭圆方程联立可解得A 点坐标11(,)x y ,则11(,)C x y -,由此1F C k 可得,代入11F C AB k k ⋅=-可得关于,,a b c 的等式,再由222,cb ac e a=-=可得的方程,可求得. 试题解析:(1)由题意,2(,0)F c ,(0,)B b ,2222BF b c a =+==41(,)33C ,∴22241()()3312b +=,解得1b =.∴椭圆方程为2212x y +=.(2)直线2BF 方程为1x yc b +=,与椭圆方程22221x y a b +=联立方程组,解得A 点坐标为2322222(,)a c b a c a c -++,则C 点坐标为2322222(,)a c b a c a c++,133222232223F C b b a c k a c a c cc a c +==+++,又ABb k c=-,由1F C AB ⊥得323()13b b a c c c ⋅-=-+,即42243b a c c =+,∴222224()3a c a c c -=+,化简得55c e a ==. 3. 【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

高考数学(精讲精练精析)专题10.4 圆锥曲线的综合应用试题 文(含解析)-人教版高三全册数学试题

高考数学(精讲精练精析)专题10.4 圆锥曲线的综合应用试题 文(含解析)-人教版高三全册数学试题

专题10.4 圆锥曲线的综合应用试题 文【三年高考】1. 【2016高考四川文科】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题:①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. ②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③线分别为2222(,)0y x f x y x y -=++与2222(,)0y xf x y x y--=++的图象关于y 轴对称,所以②正确;③令单位圆上点的坐标为(cos ,sin )P x x 其伴随点为(sin ,cos )P x x '-仍在单位圆上,故③正确;对于④,直线y kx b =+上取点后得其伴随点2222(,)y xx y x y -++消参后轨迹是圆,故④错误.所以正确的为序号为②③.2.【2016高考山东文数】已知椭圆C :(a >b >0)的长轴长为4,焦距为2.(I )求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B . (i)设直线PM 、QM 的斜率分别为k 、k',证明为定值. (ii)求直线AB 的斜率的最小值.(Ⅱ)(i)设()()0000,0,0P x y x y >>,由()0,M m ,可得()()00,2,,2.P x m Q x m - 所以 直线PM 的斜率002m m m k x x -== ,直线QM 的斜率0023'm m m k x x --==-.此时'3k k =-,所以'k k为定值3-. (ii)设()()1122,,,A x y B x y ,直线PA 的方程为y kx m =+,直线QB 的方程为3y kx m =-+.联立22142y kx m x y =+⎧⎪⎨+=⎪⎩ ,整理得()222214240k x mkx m +++-=.由20122421m x x k -=+可得()()21202221m x k x -=+ ,所以()()21122221k m y kx m m k x -=+=++,同理()()()()2222222262,181181m k m x y m k x k x---==+++.所以()()()()()()()222221222222223221812118121m m k m x x k x k x k k x -----=-=++++,()()()()()()()()2222212222622286121812118121k m m k k m y y m m k x k x k k x----+--=+--=++++ ,所以2212161116.44ABy y k k k x x k k -+⎛⎫===+ ⎪-⎝⎭由00,0m x >>,可知0k >,所以1626k k +≥,等号当且仅当6k =时取得.26648m=-,即147m =,符号题意.所以直线AB 63.【2016高考四川文科】已知椭圆E :22221(0)x y a b a b+=>>的一个焦点与短轴的两个端点是正三角形的三个顶点,点1(3,)2P 在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12 的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:MA MB MC MD ⋅=⋅.(II )设直线l 的方程为1(0)2y x m m =+≠,1122(,),(,)A x y B x y ,由方程组221,41,2x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩ 得222220x mx m ++-=,① 方程①的判别式为24(2)m ∆=-,由∆>0,即220m ->,解得22m -<.由①得212122,22x x m x x m +=-=-.所以M 点坐标为(,)2mm -,直线OM 方程为12y x=-,由方程组221,41,2x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩得22(2,),2,22C D --.所以2555(2)(2)(2)224MC MD m m m ⋅=-⋅=-.又222212121212115[()()][()4]4416MA MB AB x x y y x x x x ⋅==-+-=+-22255[44(22)](2)164m m m =--=-.所以=MA MB MC MD ⋅⋅. 4.【2016高考上海文科】有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。

解析几何《圆锥曲线的综合应用》

解析几何《圆锥曲线的综合应用》

解析几何【8】圆锥曲线的综合应用1、定值、最值、取值范围问题(1)在圆锥曲线中,还有一类曲线方程,对其变量取不同值时,曲线本身的性质不变;或形态发生某些变化,但其某些固有的共同性质始终保持着,这就是定值问题.(2)当变量取不同值时,相关几何量达到最大或最小,这就是最值问题.通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题,曲线遵循某种条件时,变量有相应的允许取值范围,即取值范围问题.求解时有两种方法:①代数法:引入新的变量,通过圆锥曲线的性质、韦达定理、方程思想等,用新的变量表示(计算)最值、范围问题,再用函数思想、不等式方法得到最值、范围.②几何法:若问题的条件和结论能明显地体现曲线几何特征,则利用图形性质来解决最值与取值范围问题.2、对称、存在性问题、圆锥曲线有关的证明问题涉及线段相等,角相等,直线平行、垂直的证明方法,及定点、定值问题的判断方法等.3、实际应用解决的关键是建立坐标系,合理选择曲线模型,然后转化为相应的数学问题,作出定量或定性分析与判断,解题的一般思想是【温馨点睛】1、圆锥曲线经常和函数、三角函数、平面向量、不等式等结合,还有解析思想的应用,这些问题有较高的能力要求,这是每年高考必考的一道解答题,平时加强训练,认真审题,挖掘题目的隐含条件作为解题的突破口.2、利用函数思想,讨论有关最值时,特别要注意圆锥曲线自身范围的限定条件.3、涉及弦长的问题时,在熟练地利用根与系数的关系,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.4、圆锥曲线综合问题要四重视;①定义;②平面几何知识;③根与系数的关系;④曲线的几何特征与方程的代数特征.【例1】设1F 、2F 是椭圆22:12x C y 的左、右焦点,P 为椭圆C 上任意一点.(1)求12PF PF 的取值范围;(2)设过点1F 且不与坐标轴垂直的直线交椭圆C 于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.设点1F C 上任意一点,且12PF PF (1)(2)满足AD BD ,【例2】如图,已知抛物线2:4C x y ,过点 0,2M 任作一直线与C 相交于A 、B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y 相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221MN MN 为定值,并求此定值.(1)(2)C 、D 两点(A 、【例3】已知抛物线2y x 上的动点 00,M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t 于A 、B 两点.(1)若点M ,求M 与焦点的距离;(2)若1t , 1,1P , 1,1Q ,求证:A B y y 为常数;(3)是否存在t ,使得1A B y y 且P Q y y 为常数?若存在,求t 的所有可能值;若不存在,请说明理由.x .(1)(2)(3)使得PM PN 为【例4】为了考察冰川的融化状况,一支科考队在某冰川上相距8km 的A 、B 两点各建一个考察基地.视冰川面为平面形,以过A 、B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系(如图).在直线2x 的右侧,考察范围为到点B 的距离不超过5km 的区域;在直线2x 的左侧,考察范围为到A 、B两点的距离之和不超过km 的区域.(1)求考察区域边界曲线的方程;(2)如图,设线段12PP 、23P P 是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km ,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.【同类变式】某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s号线线路示意图如图,已知M、N是东西方向主干道边两个景点,P、Q是南北方向主干道边两个景点,四个景点距离城市中心O均为km,线路AB段上的任意一点到景点N的距离比到景点M的距离都多10km,线路BC段上的任意一点到O的距离都相等,线路CD段上的任意一点到景点Q的距离比到景点P的距离都多10km,以O为原点建立平面直角坐标系xOy.(1)求轨道交通s号线线路示意图所在曲线的方程;(2)规划中的线路AB段上需建一站点G到景点Q的距离最近,问如何设置站点G的位置?【真题自测】1.设A 、B 是椭圆22:13x y C m长轴的两个端点,若C 上存在点M 满足120AMB ,则m 的取值范围是().A 0,19, ;.B 9, ;.C 0,14, ;.D 4, .2.① ②P .A 13.②若 111,P x y 、 222,P x y 为曲线C 上任意两点,则有12120x x .下列判断正确的是().A ①和②均为真命题;.B ①和②均为假命题;.C ①为真命题,②为假命题;.D ①为假命题,②为真命题.4.设圆C 位于抛物线22y x 与直线3x 所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为.5.114c ,则c6.Q 使得AP AQ 07.如图,已知椭圆2221x y ,过原点的两条直线1l 和2l 分别与椭圆交于点A 、B 和C 、D ,记AOC 的面积为S .(1)设 11,A x y , 22,C x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明122112S x y x y ;(2)设1:l y kx ,若,33C ,13S ,求k 的值.(3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 和2l 如何变动,面积S 保持不变.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何专题——圆锥曲线的综合运用专题训练生化 班 姓名 学号 一、选择题(在四个选项中有且只有一个是正确的,共10题,50分)1、斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为 ( )A.2B.554 C.5104 D.51082、抛物线y =ax 2与直线y =kx +b (k ≠0)交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有 ( ) A.x 3=x 1+x 2 B.x 1x 2=x 1x 3+x 2x 3 C.x 1+x 2+x 3=0 D.x 1x 2+x 2x 3+x 3x 1=03、过点(3,0)的直线l 与双曲线4x 2-9y 2=36只有一个公共点,则直线l 共有 ( )(A)1条 (B)2条 (C)3条 (D)4条4、设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是 ( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4] 5、若动点(x ,y )在曲线14222=+by x (b >0)上变化,则x 2y 的最大值为 ( ) (A) ⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b b ; (B) ⎪⎩⎪⎨⎧≥<<+)2(2)20(442b bb b ; (C) 442+b ;(D) 2b 。

6、已知双曲线2212yx-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )(A )43 (B )53 (C(D7、已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( )A .324+B .13-C .213+ D .13+ 8、已知双曲线22a x -22by =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为 ( )A .30ºB .45ºC .60ºD .90º9、从集合{1,2,3…,11}中任选两个元素作为椭圆方程12222=+ny m x 中的m 和n,则能组成落在矩形区域B={(x ,y)| |x |<11且|y|<9}内的椭圆个数为 ( )A .43B . 72C . 86D . 9010、设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B ,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( ) (A )1 (B )2 (C )3 (D )4二、填空题(只要求直接写出结果,不必写出计算过程或推证过程,共6题,30分) 11、直角坐标平面xoy 中,若定点A(1,2)与动点P(x,y)满足OA OP ⋅=4。

则点P 的轨迹方程是 . 12、如果过两点)0,(a A 和),0(a B 的直线与抛物线322--=x x y 没有交点,那么实数a 的取值范围是__________________.13、在抛物线y 2=16x 内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________. 14、正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.15、过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_______. 16、已知两点M (1,45)、N (-4,-45),给出下列曲线方程:①4x +2y -1=0,②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________. 三、解答题(包括计算题、证明题、应用题等,应写出文字说明、演算步骤、推证过程,共5题,70分)17、已知抛物线y 2=2px (p >0),过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p . (1)求a 的取值范围.(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值.18、已知中心在原点,顶点A 1、A 2在x 轴上,离心率e =321的双曲线过点P (6,6). (1)求双曲线方程.(2)动直线l 经过△A 1P A 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.19、已知双曲线C 的两条渐近线都过原点,且都以点A (2,0)为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称. (1)求双曲线C 的方程. (2)设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.20、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。

21、已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF(Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2 的正切值;若不存在,请说明理由.〖2018年高考二轮复习专题讲义之针对训练〗解析几何专题——解析几何的综合运用同步训练答案一、选择题:C B C C A CD D B B 二、填空题:11、x+2y-4=0 12、 13、y =8x -15. 14、18或50 15、2 16、 三、解答题17、解:(1)设直线l 的方程为:y =x -a ,代入抛物线方程得(x -a )2=2px ,即x 2-2(a +p )x +a 2=0∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2 又∵p >0,∴a ≤-4p . (2)设A (x 1,y 1)、B (x 2,y 2),AB 的中点 C (x ,y ), 由(1)知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p . ∴线段AB 的垂直平分线的方程为y -p =-(x -a -p ),从而N 点坐标为(a +2p ,0点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅ 当a 有最大值-4p时,S 有最大值为2p 2.18、解:(1)如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1. (2)P 、A 1、A 2的坐标依次为(6,6)、(3,0)、(-3,0), ∴其重心G 的坐标为(2,2)假设存在直线l ,使G (2,2)平分线段MN ,设M (x 1,y 1),N (x 2,y 2).则有 34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34 ∴l 的方程为y =34(x -2)+2,由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0. ∵Δ=16-4×28<0, ∴所求直线l 不存在.19、解:(1)设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为(0,2). ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.(2)设直线l :y =k (x -2)(0<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2. 设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2.②把l ′代入双曲线方程得(k 2-1)x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4(k 2-1)(m 2-2)=0.可得m 2+2k 2=2 ③②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk,y =10.故B (22,10).20、 [解](1)由已知可得点A(-6,0),F(0,4)设点P(x ,y ),则AP ={x +6, y },FP ={x -4, y },由已知可得22213620(6)(4)0x y x x y ⎧+=⎪⎨⎪+-+=⎩则22x +9x -18=0, x =23或x =-6.由于y >0,只能x =23,于是y =235.∴点P 的坐标是(23,235)(2) 直线AP 的方程是x -3y +6=0.设点M(m ,0),则M 到直线AP 的距离是26+m .于是26+m =6+m ,又-6≤m ≤6,解得m =2.椭圆上的点(x ,y )到点M 的距离d 有 222222549(2)4420()15992d x yx x x x =-+=-++-=-+, 由于-6≤m ≤6, ∴当x =29时,d 取得最小值1521、(Ⅰ)证法一:设点P 的坐标为).,(y x由P ),(y x 在椭圆上,得.)()()(||222222221x aca xa b b c x y c x P F +=-++=++=由0,>+-≥+≥a c x a c a a x 知,所以 .||1x aca P F +=………………………3分 证法二:设点P 的坐标为).,(y x 记,||,||2211r F r F ==则.)(,)(222221y c x r y c x r ++=++=由.||,4,211222121x a ca r P F cx r r a r r +===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+x aca由椭圆第二定义得a c ca x F =+||||21,即.||||||21x a c a c a x a c F +=+=由0,>+-≥+-≥a c x a c a a x 知,所以.||1x aca F +=…………………………3分(Ⅱ)解法一:设点T 的坐标为).,(y x当0||=时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF 且时,由0||||2=⋅TF ,得2TF ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点.在△QF 1F 2中,a Q F OT ==||21||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.222a y x =+…………………………7分 解法二:设点T 的坐标为).,(y x 当0||=时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF 且时,由02=⋅TF ,得2TF ⊥. 又||||2PF =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x 因此⎩⎨⎧='-='.2,2y y c x x ①由a F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+……………………7分(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20cb y ≤所以,当cb a 2≥时,存在点M ,使S=2b ;当cb a 2<时,不存在满足条件的点M.………………………11分当cb a 2≥时,),(),,(002001y x c MF y x c MF --=---=,由2222022021b c a y c x MF MF =-=+-=⋅,212121cos ||||MF F MF MF MF MF ∠⋅=⋅,22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F 解法二:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由④得.||20c b y ≤ 上式代入③得.0))((2224220≥+-=-=c b a c b a cb a x于是,当cb a 2≥时,存在点M ,使S=2b ;③ ④ ③④当cb a 2<时,不存在满足条件的点M.………………………11分当c b a 2≥时,记cx y k k c x y k k M F M F -==+==00200121,,由,2||21a F F <知︒<∠9021MF F ,所以.2|1|tan 212121=+-=∠k k k k MF F …………14分。

相关文档
最新文档