第22章 二次函数(1) 单元检测题1
第二十二章 二次函数 单元试卷(含答案)人教版数学九年级上册

第二十二章二次函数单元试卷一、选择题1.已知抛物线y=―(x―1)2+4,下列说法错误的是( )A.开口方向向下B.形状与y=x2相同C.顶点(-1,4)D.对称轴是直线x=12.已知二次函数y=(x-1)2+h的图象上有三点A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为( )A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y23.已知一个直角三角形两直角边长的和为10,设其中一条直角边长为x,则直角三角形的面积y与x之间的函数关系式是( )A.y=-12x2+5x B.y=-x2+10x C.y=12x2+5x D.y=x2+10x4.函数y=a x2-1与y=ax(a≠0)在同一直角坐标系中的图象可能是( )A.B.C.D.5.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=―112x2+23x+53,则该运动员此次掷铅球的成绩是( )A.6m B.12m C.8m D.10m6.下表列出了函数y=ax2+bx+c(a≠0)中自变量x与函数y的部分对应值.根据表中数据,判断一元二次方程ax2+bx+c=0(a≠0)的一个解在( )x-2-1012y121-2-7A.1与2之间B.-2与-1之间C.-1与0之间D.0与1之间7.二次函数y=a x2+bx的图象如图所示,若一元二次方程a x2+bx―m=0有实数根,则m的取值范围是( )A.m≤3B.m≥3C.m≤―3D.m≥―38.在平面直角坐标系中,二次函数y=a x2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a―3b+c=0;④4ac―b2>0;⑤a―b≥m(am+b)(m为任意实数).其中错误结论的个数有( )A.1个B.2个C.3个D.4个二、填空题时有最大值6,则a= .9.y关于x的二次函数y=a x2+a2,在―1≤x≤1210.在平面直角坐标系中,二次函数y=a x2+2ax+a―1的图象经过四个象限,则a的取值范围为 .11.如图,抛物线y=ax2+c与直线y=kx+m交于A(﹣3,y1)、B(1,y2)两点,则关于x的不等式ax2+c ≥﹣kx+m的解集是 .12.如图是公园的一座抛物线型拱桥,建立坐标系得到函数y=―14x2,当拱顶到水面的距离为4米时,水面宽AB= 米.13.如图所示是某校一名女生在抛实心球时,实心球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,实心球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=―112x2+23x+53,则实心球推出的水平距离OA的长是 m.三、解答题14.已知二次函数的图象经过点(-1,8),(0,1),(2,1).(1)求该二次函数的表达式.(2)求这个二次函数图象的顶点坐标.15.对于向上抛的物体,当空气阻力忽略不计时,有这样的关系式:h=v0t―12g t2(h是物体离起点的高度,v是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间),一学生以8m/s的初速度把小球向上抛出.(1)球抛出几秒时离起点的高度达到3m.(2)求小球离起点的最大高度.16.山西醋文化距今已有数千年的历史,山西醋以其独特的工艺和风味而著称,其中老陈醋名列山西四大名醋之首.某超市出售某品牌老陈醋,每瓶进价为4元,在销售过程中发现,月销售量y(瓶)与销售单价x (元)之间满足一次函数关系,规定销售单价不少于6元,且不高于12元,其部分对应数据如下表所示:销售单价x(元)…789…月销售量y(瓶)…180016001400…(1)求y与x之间的函数关系式.(2)当该老陈醋销售单价定为多少元时,超市每月出售这种老陈醋所获利润最大?最大月利润为多少元?17.如图,二次函数y=a x2+bx+c的图象交x轴于A(―1,0),B(2,0),交y轴于C(0,-2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内一个动点,求点M运动过程中,四边形ACMB面积的最大值.(3)点P在该二次函数图象的对称轴上,且使|PB―PC|最大,求点P的坐标;18.如图,抛物线y=a x2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A(―1,0),点B(3,0),抛物线与y轴交于点C(0,-3),点D为抛物线顶点,对称轴与x轴交于点E.(1)求抛物线的解析式;(2)点P是BC下方异于点D的抛物线上一动点,若S△PBC=S△EBC,求此时点P的坐标;(3)点Q是抛物线上一动点,是否存在以点B、C、Q为顶点的直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.答案1.C 2.A 3.A 4.B 5.D 6.D 7.D 8.B 9.2或 -610.0<a <111.﹣1≤x ≤312.813.1014.(1)解:设该二次函数的表达式为y =a x 2+bx +c (a ≠0){a ―b +c =8c =14a +2b +c =1解得:{a =73b =―143c =1∴该二次函数的表达式为y =73x 2-143x +1(2)解:y =73x 2-143x +1=73(x 2―2x)+1=73(x ―1)2-43∴顶点坐标为(1,-43)15.(1)解:h =8t ―12×10t 2=-5t 2+8t当h =3时,-5t 2+8t =3解得t 1=1,t 2=0.6答:球抛出0.6秒或1秒时离起点的高度达到3m .(2)解:h =―5t 2+8t=-5(t 2-85t +1625-1625)=-5(t ―45)2+165则h 的最大值为165,答:小球离起点的最大高度为165m .16.(1)解:设y 与x 的函数关系式为y =kx +b{7k +b =18008k +b =1600解得:{k =―200b =3200所以y 与x 的函数关系式为y =―200x +3200(2)解:设每月出售这种老陈醋所获利润w 元.w =(x ―4)(―200x +3200)=-200x 2+4000x ―12800=-200(x ―10)2+7200∵-200<0, 6≤x ≤12∴当x =10时,w 最大为7200答:当该老陈醋销售单价为10元时,超市每月出售这种老陈醋所获利润最大,最大月利润为7200元17.(1)解:将A(―1,0),B(2,0),C(0,-2)代入y =a x 2+bx +c ,∴{a ―b +c =04a +2b +c =0c =―2,解得{a =1b =―1c =―2,∴y =x 2―x ―2(2)解:连接BC ,过点M 作MN ∥y 轴交BC 于点N ,∵B(2,0),C(0,-2),∴直线BC 的解析式为y =x ―2,设M(t ,t 2―t ―2),则N(t ,t ―2),∴MN =t ―2―(t 2―t ―2)=―t 2+2t , ∴S △BCM =12×2×(-t 2+2t)=―t 2+2t ,∵S △ABC =12×3×2=3,∴S 四边形ACMB =3-t 2+2t =―(t ―1)2+4, 当t =1时,四边形ACMB 的面积最大值为4,此时M(1,-2).(3)解:∵y =x 2―x ―2=(x ―12)2-94,∴抛物线的对称轴为直线x =12,作C 点关于对称轴的对称点C ',连接B C '并延长与对称轴交于点P ,∵CP =C 'P ,∴|PB ―PC|=|PB ―P C '|≤B C ',此时|PB ―PC |有最大值,∵C(0,-2),∴C '(1,-2),设直线B C '的解析式为y =kx +m ,∴{k +m =―22k +m =0,解得{k =2m =―4,∴y =2x ―4,∴P(12,-3)18.(1)由题意得:{a ―b +c =0c =―39a +3b +c =0,解得{a =1b =―2c =―3,故抛物线的表达式为y =x 2―2x ―3;(2)在x 轴上取点H ,使BH =BE =2,过点H (5,0)作BC 的平行线交抛物线于点P ,则点P 为所求点,理由:点H、E和直线BC的间隔相同,则到BC的距离相同,故SΔPBC=SΔEBC,设直线BC的表达式为y=mx+n,则{n=―33m+n=0,解得{m=1n=―3,故直线BC的表达式为y=x―3,∵PH//BC,故设PH的表达式为y=x+s,将点H的坐标代入上式并解得s=―5,故直线PH的表达式为y=x―5,联立{y=x2―2x―3y=x―5解得{x=2y=―3(不合题意的值舍去),故点P的坐标为(2,-3);(3)当∠CBQ=90°时,∵直线BC的表达式为y=x―3,设直线BQ的解析式为y=―x+t,∵把B(3,0)代入得―3+t=0,,解得t=3,∴直线BQ的解析式为y=―x+3.联立{y=―x+3y=x2―2x―3,x2―x―6=0解得:x=3(舍去)或x=―2,当x=―2时,y=5,∴Q1(-2,5);当∠BCQ=90°时,设直线CQ的解析式为y=―x+m,把C(0,-3)代入得0+s=―3解得s=―3,∴直线CQ的解析式为y=―x―3.联立{y=―x―3y=x2―2x―3,x2―x=0解得:x=1或x=0(舍去),当x=1时,y=―4,∴Q2(1,-4);当∠BQC=90°时,设Q(n,n2―2n―3)设BQ的解析式为y=k1x+b则{3k1+b=0k1n+b=n2―2n―3解得k=n2―2n―3n―3设CQ的解析式为y=k2x+b则{b=―3k2n+b=n2―2n―3解得k2=n―2∵∠BQC=90°∴k1k2=-1,即n2―2n―3n―3⋅(n―2)=-1化简得n2―n―1=0,解之得n1=1+52,n2=1-52∴Q3(1+52,-5-52),Q4(1-52,-5+52).综上所述,ΔBCQ为直角三角形时,点Q的坐标为:(1,-4)或(2,5)或(1+52,-5-52)或(1-52,-5+52)。
人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
第二十二章-二次函数-单元测试(含答案)

第二十二章二次函数学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知二次函数223y x x =--,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为1d 、2d .设d d d =+,下列结论中:①④231(x 4点B C .52D .535.已知二次函数2y x bx c =++的图象上有三个点()11,y -)、()21,y 、()33,y ,若13y y =,则( ).A .21y c y >>B .12c y y <<C .12c y y >>D .21y c y <<6.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( )78①93的“特征数”为[1,2,3]-.若“特征数”为12,2,2m m m --⎢⎥⎣⎦的二次函数的图象与x 轴只有一个交点,则m的值为( )A .2-或2B .12-C .2-D .210.某同学在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()21349y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则该同学此次掷球的成绩(即OA 的长度)是( )A .4mB .6mC .8mD .9m11.已知函数223y x x =-+,当0x m ≤≤时,有最大值3,最小值2,则m 的取值范围是( )A .1m ≥B .02m ≤≤C .12m ≤≤D .2m ≤12.有一拱桥洞呈抛物线状,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图)放在平面直角坐标系中,则抛物线的表达式为( )A .281255x y x =+B .218255y x x =-+C .251825y x x =--D .25125168y x x +=+ 二、填空题13.已知抛物线22161y x x =-+,则这条抛物线的对称轴是直线 .14.已知抛物线()21433y x =--的部分图象如图所示,则图象再次与x 轴相交时的坐标是 .15.已知抛物线()20y ax bx c a =++≠图象的顶点为()2,3P -,且过()3,0A -,则抛物线的关系式为 .16.已知222b c c a a bk a b c+++===,0a b c ++≠,将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为 .对于平移后的抛物线,当25x ……时,y 的取值范围是 .17.设关于x 的方程()2440x k x k +--=有两个不相等的实数根12,x x ,且1202x x <<<,那么k 的取值范围是 .三、解答题18.己知二次函数y =ax 2+bx +c (a ,b ,c 均为常数且0a ≠).(1)若该函数图象过点(1,0)A -,点(3,0)B 和点(0,3)C ,求二次函数表达式:(2)若21b a =+,2c =,且无论a 取任何实数,该函数的图象恒过定点,求出定点的坐标.(4)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.20.高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?21.珊珊度假村共有客房50间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,度假村住宿每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房收入每天的最大利润是多少?(3)当x为何值时,客房收入每天的利润不低于10350元?22.篮球是一项广受喜爱的运动.学习了二次函数后,小江同学打篮球时发现,篮球投出时在空中的运动可近似看作一条抛物线,于是建立模型,展开如下研究:如图,篮框距离地面3m,某同学身高2m,站在距离篮球架4mL 处,从靠近头部的O点将球正对篮框投出,球经过最高点时恰好进入篮框,球全程在同一水平面内运动,轨迹可看作一条抛物线C.不计篮框和球的大小、篮板厚度等.(1)求抛物线C的表达式;(2)研究发现,当球击在篮框上方0.2m及以内范围的篮板上时,球会打板进框.若该同学正对篮框,改用跳投的方式,出手点O位置升高了0.5m,要能保证进球,求L的取值范围.(计算结果保留小数点后一位)23.如图1,在平面直角坐标系中,是坐标原点,抛物线与轴正半轴交于点,与轴交于点,连接,点分别是的中点.,且始终保持边经过点,边经过点,边与轴交于点,边与轴交于点.(1)填空,的长是 ,的度数是 度(2)如图2,当,连接①求证:四边形是平行四边形;②判断点是否在抛物线的对称轴上,并说明理由;(3)如图3,当边经过点时(此时点与点重合),过点作,交延长线上于点,延长到点,使,过点作,在上取一点,使得(若在直线的同侧),连接,请直接写出的长.24.如图,抛物线239344y x x =-++与x 轴交于点A ,与y 轴交于点B .在线段OA 上有一动点(m,0)E (不与,O A 重合),过点E 作x 轴的垂线交AB 于点N ,交抛物线于点P ,过点P 作PM AB ⊥于点M .(1)求直线AB的函数解析式;(参考答案:题号12345678910答案B D B A D A C D C D 题号1112 答案CB1.B 2.D 3.B 4.A 5.D 6.A 7.C 8.D 9.C 10.D 11.C 12.B 13.4x =14.(7,0)15.23129y x x =---16.22(1)2y x =+-1670x ……17.-2<k <0 18.(1)223y x x =-++(2)()0,2,()2,0-19.(1)221y x =-;(2)17;(3)略;(4)2288y x x =-+.20.(1)y=-110x+30;(2)z=-110x 2+34x-3200;(3)第二年的销售单价应确定在不低于120元且不高于220元的范围内.21.(1)5010x y =-(2)(3)22(2)2312 24。
人教版九上数学第二十二章 二次函数单元检测卷

第二十二章 二次函数单元检测卷一、单选题(共30分,每小题3分) 1.下列函数中,属于二次函数的是( ) A .3y x =-B .22(1)y x x =-+C .(1)1y x x =--D .21y x =2.抛物线y =3(x ﹣1)2+1的顶点坐标是( ) A .(1,1)B .(﹣1,1)C .(﹣1,﹣1)D .(1,﹣1)3.将二次函数2=2+3y x x -配方为()2y x h k =-+的形式为( ) A .()211y x =-+B .()212y x =-+C .()223y x =--D .()221y x =--4.由二次函数2231y x +=(﹣),可知( ) A .其图象的开口向下 B .其图象的对称轴为直线x =﹣3 C .其最小值为1D .当x <3时,y 随x 的增大而增大5.把抛物线2y x =-向左平移1个单位,再向上平移3个单位,平移后的解析式为( ) A .2(1)3y x =--+ B .2(1)3y x =-++ C .2(1)3y x =---D .2(1)3y x =-+-6.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是( ) A .a<0B .0c >C .当<2x -时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小(第6题图) (第7题图)7.二次函数2y x bx c =-++的图象如图所示:若点()11,A x y ,()22,B x y 在此函数图象上,121x x <<,1y 与2y 的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 28.当0ab >时,2y ax =与y ax b =+的图象大致是( )A.B.C.D.9.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,①4ac<b2,①2a+b=0,①a-b+c>2,其中正确的结论的个数是()A.1B.2C.3D.410.如图,在正方形ABCD中,4→→向终点C运动,连接DP,AB=,点P从点A出发沿路径A B C作DP的垂直平分线MN与正方形ABCD的边交于M,N两点,设点P的运动路程为x,PMN的面积为y,则下列图象能大致反映y与x函数关系的是()A .B .C .D .二、填空题(共24分,每小题3分)11.抛物线 23y x =- 向上平移 4 个单位长度,得到抛物线____;再向____平移____个单位长度得到抛物线 231y x =--.12.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.13.已知二次函数22y x x m ++=-的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 _____.(第13题图) (第14题图)14.如图,已知抛物线y =ax 2+bx +c 与直线y =k +m 交于A (﹣3,﹣1)、B (0,3)两点,则关于x 的不等式ax 2+bx +c >kx +m 的解集是______.15.某单位商品的利润y(元)与变化的单价x 之间的关系为:y =-5x 2+10x ,当0.5≤x≤2时,最大利润是_____元.16.如图,以地面为x 轴,一名男生推铅球,铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.(第16题图) (第17题图)17.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当1020x ≤≤时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).18.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.三、解答题(共66分)19.写出下列抛物线的开口方向,对称轴及顶点坐标.(共8分) (1)()21513y x =--; (2)()2421y x =-++.20.如图,已知二次函数2y ax bx c =++的图象过A (2,0),B (0,-1)和C (4,5)三点.(共8分) (1)求二次函数的解析式;(2)设二次函数的图象与轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线1y x =+,并写出当在什么范围内时,一次函数的值大于二次函数的值.21.掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投掷实心球,实心求行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,抛出时起点处高度为5m3,当水平距离为3m时,实心球行进至最高点3m处.(共6分)(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体有考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.22.如图,在①ABC中,①B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向点B以2mm/s 的速度移动,动点Q从点B开始沿边BC向点C以4mm/s的速度移动.如果P,Q两点分别从A,B两点同时出发,请求出①PBQ的面积S与出发时间t的函数解析式及t的取值范围.(共6分)23.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m),设花圃的宽AB为xm,面积为S2m.(共9分)(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为452m的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?(结果保留两位小数)24.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓。
人教版九年级数学上册第22章《二次函数》单元测试题含答案

人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
【初三数学】贵阳市九年级数学上(人教版)第22章二次函数单元测试题(含答案)

人教新版九年级上学期第22章《二次函数》单元测试卷(含答案)(1)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,是反比例函数的是( )A .y =3x -1B .y =0.1xC .y =-13 D.yx =22.反比例函数y =22x的图像在( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 3.若点A(a ,b)在反比例函数y =2x 的图像上,则代数式ab -4的值为( )A .-2B .0C .2D .-6 4.下列函数中,y 随x 的增大而减小的函数是( )A .y =-1xB .y =1xC .y =-1x (x >0)D .y =1x(x <0)5.某学校要种植一块面积为100 m 2的长方形草坪,要求两边长均不小于5 m ,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图像可能是( )6.如图,在平面直角坐标系中,点A 是双曲线y =1x (x >0)上的一个动点,过点A 作x 轴的垂线,交x 轴于点B ,点A 运动过程中△AOB 的面积将会( )A .保持不变B .逐渐变小C .逐渐增大D .先增大后减小7.对于反比例函数y =k 2+1x,下列说法正确的是( )A .y 随x 的增大而减小B .图像是中心对称图形C .图像位于第二、四象限D .当x <0时,y 随x 的增大而增大 8.已知反比例函数y =-9x,当1<x <3时,y 的最大整数值是( )A .-6B .-3C .-4D .-19.一次函数y =ax -a 与反比例函数y =ax (a ≠0)在同一平面直角坐标系中的图像可能是( )10.已知A(-1,y 1),B(2,y 2)两点在双曲线y =3+2mx上,且y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >-32D .m <-3211.一次函数y 1=ax +b 与反比例函数y 2=kx 的图像如图所示,当y 1<y 2时,x 的取值范围是( )A .x <2B .x >5C .2<x <5D .0<x <2或x >512.在平面直角坐标系中,直线y =x +b 与双曲线y =-1x 只有一个公共点,则b 的值是( )A .1B .±1C .±2D .213.如图,已知双曲线y =kx (x >0)经过矩形OABC 的边AB ,BC 的中点F ,E ,且四边形OEBF的面积为2,则k 的值为( )A .2B .4C .3D .114.反比例函数y =mx的图像如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x 的增大而增大;③若点A(-1,h),B(2,k)在图像上,则h <k ;④若点P(x ,y)在图像上,则点P ′(-x ,-y)也在图像上.其中正确结论的个数是( ) A .1 B .2 C .3 D .415.如图,在平面直角坐标系xOy 中,菱形AOBC 的一个顶点O 在坐标原点,一边OB 在x 轴的正半轴上,sin ∠AOB =45,反比例函数y =48x 在第一象限内的图像经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A .30B .40C .60D .8016.定义新运算:a ⊕b =⎩⎪⎨⎪⎧a b (b >0),-ab (b <0).例如:4⊕5=45,4⊕(-5)=45,则函数y =2⊕x(x≠0)的图像大致是( )A B C D二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.如图,矩形ABCD 在第一象限,AB 在x 轴的正半轴上,AB =3,BC =1,直线y =12x -1经过点C 交x 轴于点E ,双曲线y =kx经过点D ,则k 的值为 .18.如图,过点C(2,1)作AC ∥x 轴,BC ∥y 轴,点A ,B 都在直线y =-x +6上.若双曲线y =kx(x >0)与△ABC 总有公共点,则k 的取值范围是 .19.如图,在函数y =8x (x >0)的图像上有点P 1,P 2,P 3,…,P n ,P n +1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1,P 2,P 3,…,P n ,P n +1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1,S 2,S 3,…,S n ,则S 1= ,S n = (用含n 的代数式表示).三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)已知反比例函数的图像过点A(-2,2).(1)求函数的表达式;(2)y 随x 的增大而如何变化?(3)点B(-4,2),点C(3,-43)和点D(22,-2)哪些点在图像上?21.(本小题满分9分)已知反比例函数y =k -1x的图像的两个分支分别位于第一、三象限. (1)求k 的取值范围;(2)若一次函数y =2x +k 的图像与该反比例函数的图像有一个交点的纵坐标是4,试确定一次函数与反比例函数的表达式,并求当x =-6时,反比例函数y 的值.22.(本小题满分9分)如图,一次函数y =kx +b 的图像与坐标轴分别交于A ,B 两点,与反比例函数y =nx 的图像在第一象限的交点为C ,CD ⊥x 轴,垂足为D.若OB =3,OD =6,△AOB的面积为3.(1)求一次函数与反比例函数的表达式; (2)直接写出当x >0时,kx +b -nx<0的解集.解:23.(本小题满分9分)一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB ,BC 为线段,CD 为曲线的一部分).(1)分别求出线段AB 和曲线CD 的函数表达式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?解: 24.(本小题满分10分)如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x >0)的图像经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图像与该反比例函数图像的一个公共点.(1)直接写出D 点的坐标,并求反比例函数的表达式;(2)连接人教版九年级上册第二十二章二次函数单元检测(含答案)(5)一.选择题(30分)1.已知二次函数2y x bx c =++的图象上有38-(,)和58--(,)两点,则此抛物线的对称轴是( )A .直线4x =B .直线3x =C .1x =-D .x =-2.已知二次函数2y ax bx c =++的图象如图所示,则abc ,24b ac -, 2a b +,a b c ++这四个式子中,值为正数的有(A .4个B .3个C .2个D .1个3.以知二次函数()20y ax c a =+≠,当x 取1212x x x x ≠,()时,函数值相等,则当x 取12x x +时,函数值为( )A .a c +B .a c -C .c -D .c 4.函数2y ax bx c =-+,的图象经过10-(,)则a b cb c c a a b+++++ 的值是( ) A .3- B .3 C .12 D .12- 5.把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( ) A .(-5,1) B .(1,-5) C .(-1,1) D .(-1,3) 6.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是直线( )A .ab x -= B .x =1 C .x =2 D .x =37.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <48.二次函数y =a(x +k)2+k ,当k 取不同的实数值时,图象顶点所在的直线是( )A .y =xB .x 轴C .y =-xD .y 轴9.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;21>a ③;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④10.下列命题中,正确的是( ) ①若a +b +c =0,则b 2-4ac <0;②若b =2a +3c ,则一元二次方程ax 2+bx +c =0有两个不相等的实数根; ③若b 2-4ac >0,则二次函数y =ax 2+bx +c 的图象与坐标轴的公 共点的个数是2或3;④若b >a +c ,则一元二次方程ax 2+bx +c =0有两个不相等的实数根.A .②④B .①③C .②③D .③④二.填空题11.抛物线y =-x 2+15有最______点,其坐标是______.12.若抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,则过A ,B 两点的直线的解析式为____________.13.若抛物线y =ax 2+bx +c(a≠0)的图象与抛物线y =x 2-4x +3的图象关于y 轴对称,则函数y =ax 2+bx +c 的解析式为______.14.若抛物线y =x 2+bx +c 与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,S △ABC=3,则b =______.15.二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______. 16.二次函数22212--=x x y 的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为___________. 17.抛物线22y x x m =--+,若其顶点在x 轴上,则m=___________.18.顶点为25-(-,)且过点114(,-)的抛物线的解析式为 ___________. 三.解答题 19.把二次函数43212+-=x x y 配方成y =a(x+m)2+k 的形式,并求出它的图象的顶点坐标.对称轴方程,y <0时x 的取值范围,并画出图象.20.已知二次函数y =ax 2+bx +c(a≠0)的图象经过一次函数323+-=x y 的图象与x 轴.y 轴的交点,并也经过(1,1)点.求这个二次函数解析式,并求x 为何值时,有最大(最小)值,这个值是什么?21.已知二次函数223y ax ax =-+的图象与x 轴交于点A ,点B ,与y 轴交于点C ,其顶点为D ,直线DC 的函数关系式为3y kx =+,又45CBO ∠=︒(1)求二次函数的解析式和直线DC 的函数关系式 (2)求的面积22.已知抛物线y =-x 2+bx +c 与x 轴的两个交点分别为A (m ,0),B (n ,0),且4=+n m ,⋅=31n m 人教版九年级上册第二十二章二次函数单元检测(含答案)(5)一.选择题(30分)1.已知二次函数2y x bx c =++的图象上有38-(,)和58--(,)两点,则此抛物线的对称轴是( )A .直线4x =B .直线3x =C .1x =-D .x =-2.已知二次函数2y ax bx c =++的图象如图所示,则abc ,24b ac -, 2a b +,a b c ++这四个式子中,值为正数的有(A .4个B .3个C .2个D .1个4.以知二次函数()20y ax c a =+≠,当x 取1212x x x x ≠,()时,函数值相等,则当x 取12x x +时,函数值为( )A .a c +B .a c -C .c -D .c 4.函数2y ax bx c =-+,的图象经过10-(,)则a b cb c c a a b+++++ 的值是( ) A .3- B .3 C .12 D .12- A B C △5.把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( ) A .(-5,1) B .(1,-5) C .(-1,1) D .(-1,3) 6.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是直线( )A .ab x -= B .x =1 C .x =2 D .x =37.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <48.二次函数y =a(x +k)2+k ,当k 取不同的实数值时,图象顶点所在的直线是( )A .y =xB .x 轴C .y =-xD .y 轴9.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;21>a ③;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④ 10.下列命题中,正确的是( ) ①若a +b +c =0,则b 2-4ac <0;②若b =2a +3c ,则一元二次方程ax 2+bx +c =0有两个不相等的实数根; ③若b 2-4ac >0,则二次函数y =ax 2+bx +c 的图象与坐标轴的公 共点的个数是2或3;④若b >a +c ,则一元二次方程ax 2+bx +c =0有两个不相等的实数根.A .②④B .①③C .②③D .③④二.填空题11.抛物线y =-x 2+15有最______点,其坐标是______.12.若抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,则过A ,B 两点的直线的解析式为____________.13.若抛物线y =ax 2+bx +c(a≠0)的图象与抛物线y =x 2-4x +3的图象关于y 轴对称,则函数y =ax 2+bx +c 的解析式为______.14.若抛物线y =x 2+bx +c 与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,S △ABC=3,则b =______.15.二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______. 16.二次函数22212--=x x y 的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为___________. 17.抛物线22y x x m =--+,若其顶点在x 轴上,则m=___________.18.顶点为25-(-,)且过点114(,-)的抛物线的解析式为 ___________. 三.解答题19.把二次函数43212+-=x x y 配方成y =a(x+m)2+k 的形式,并求出它的图象的顶点坐标.对称轴方程,y <0时x 的取值范围,并画出图象.20.已知二次函数y =ax 2+bx +c(a≠0)的图象经过一次函数323+-=x y 的图象与x 轴.y 轴的交点,并也经过(1,1)点.求这个二次函数解析式,并求x 为何值时,有最大(最小)值,这个值是什么?21.已知二次函数223y ax ax =-+的图象与x 轴交于点A ,点B ,与y 轴交于点C ,其顶点为D ,直线DC 的函数关系式为3y kx =+,又45CBO ∠=︒(1)求二次函数的解析式和直线DC 的函数关系式 (2)求的面积22.已知抛物线y =-x 2+bx +c 与x 轴的两个交点分别为A (m ,0),B (n ,0),且4=+n m ,A B C△⋅=31n m 人教版九年级上册第二十二章二次函数单元检测(含答案)(1)一、单选题1.下列函数中,属于二次函数的是( )A .y =2x ﹣1B .y =x 2+1xC .y =x 2(x +3)D .y =x (x +1) 2.若关于x 的函数y=(3-a )x 2-x 是二次函数,则a 的取值范围( )A .a≠0B .a≠3C .a <3D .a >3 3.若函数()22122my m x x -=--+是关于x 的二次函数,且抛物线的开口向上,则m 的值为( )A .-2B .1C .2D .-14.已知点()()123,y 1,y --,()32,y 在函数2y 2x 3=-+图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y << 5.对于抛物线()2y 2x 13=--+,下列结论:①抛物线的开口向下;②对称轴为直线y 1=;③顶点坐标为()1,3-;x 1>④时 ,y 随x 的增大而减小.其中正确结论的个数为( ) A .1 B .2 C .3 D .46.对于函数y =﹣2(x ﹣m )2的图象,下列说法不正确的是( )A .开口向下B .对称轴是x =mC .最大值为0D .与y 轴不相交 7.二次函数2y ax c =+的图象与22y x =的图象形状相同,开口方向相反,且经过点()1,1,则该二次函数的解析式为( )A .221y x =-B .223y x =+C .221y x =--D .223y x =-+ 8.函数2y 2x 4x 5=+-中,当3x 2-≤<时,则y 值的取值范围是( )A .3y 1-≤≤B .7y 1-≤≤C .7y 11-≤≤D .7y 11-≤< 9.将二次函数21y x 2=的图象向左移1个单位,再向下移2个单位后所得函数的关系式为( ) A .21y (x 1)22=+- B .21y (x 1)22=--C .21y (x 1)22=++D .21y (x 1)22=-+ 10.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠3 11.羽毛球的运动路线可以看作是抛物线y =-14x 2+34x +1的一部分,如图所示(单位:m ),则下列说法不正确的是( )A .出球点A 离地面点O 的距离是1mB .该羽毛球横向飞出的最远距离是3mC .此次羽毛球最高可达到2516m D .当羽毛球横向飞出32m 时,可达到最高点 12.如图是二次函数y =ax 2+bx+c 的图象,对于下列说法:①ac >0,②2a+b >0,③4ac<b 2,④a+b+c <0,⑤当x >0时,y 随x 的增大而减小,其中正确的是( )A .①②③B .①②④C .②③④D .③④⑤二、填空题 13.若函数()2a 4a 3y a 5x --=-是二次函数,则a = ______ .14.已知二次函数223y x x =--+,当3m x m ≤≤+时,y 的取值范围是04y ≤≤,则m的值为______.15.若关于x 的函数y =kx 2+2x ﹣1与x 轴仅有一个公共点,则实数k 的值为_______. 16.某游乐园要建一个圆形喷水池,在喷水池的中心安装一个大的喷水头,高度为 m ,喷出的水柱沿抛物线轨迹运动(如图),在离中心水平距离4m 处达到最高,高度为6m ,之后落在水池边缘,那么这个喷水池的直径AB 为____m .三、解答题17.一个二次函数y=(k ﹣1)x 234kk -++2x ﹣1. (1)求k 值.(2)求当x=0.5时y 的值?18.已知二次函数的图象经过点()A 1,0-,()B 3,0,()C 0,3(1)求二次函数解析式;(2)若点()E 1,m 在此函数图象上,求m 的值.19.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,-3)(2)已知二次函数的图象过点(-1,0),(3,0),(0,-3)20.已知抛物线y =x 2-(2k -1)x +k 2,其中k 是常数.(1)若该抛物线与x 轴有交点,求k 的取值范围;(2)若此抛物线与x 轴其中一个交点的坐标为(-1,0),试确定k 的值.21.对于二次函数243y x x =-+和一次函数1y x =-+,我们把2(43)(1)(1)y t x x t x =-++--+称为这两个函数的“再生二次函数”,其中t 是不为零的实数,其图象记作抛物线E.现有点A(1,0)和抛物线E 上的点B(2,n),请完成下列任务: (尝试)(1)当t=2时,抛物线2(43)(1)(1)y t x x t x =-++--+的顶点坐标为 .(2)判断点A 是否在抛物线E 上;(3)人教版九年级上册第二十二章二次函数单元检测(含答案)(1)一、单选题1.下列函数中,属于二次函数的是( )A .y =2x ﹣1B .y =x 2+1xC .y =x 2(x +3)D .y =x (x +1) 2.若关于x 的函数y=(3-a )x 2-x 是二次函数,则a 的取值范围( )A .a≠0B .a≠3C .a <3D .a >3 3.若函数()22122my m x x -=--+是关于x 的二次函数,且抛物线的开口向上,则m 的值为( )A .-2B .1C .2D .-14.已知点()()123,y 1,y --,()32,y 在函数2y 2x 3=-+图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y << 5.对于抛物线()2y 2x 13=--+,下列结论:①抛物线的开口向下;②对称轴为直线y 1=;③顶点坐标为()1,3-;x 1>④时 ,y 随x 的增大而减小.其中正确结论的个数为( ) A .1 B .2 C .3 D .46.对于函数y =﹣2(x ﹣m )2的图象,下列说法不正确的是( )A .开口向下B .对称轴是x =mC .最大值为0D .与y 轴不相交 7.二次函数2y ax c =+的图象与22y x =的图象形状相同,开口方向相反,且经过点()1,1,则该二次函数的解析式为( )A .221y x =-B .223y x =+C .221y x =--D .223y x =-+ 8.函数2y 2x 4x 5=+-中,当3x 2-≤<时,则y 值的取值范围是( )A .3y 1-≤≤B .7y 1-≤≤C .7y 11-≤≤D .7y 11-≤< 9.将二次函数21y x 2=的图象向左移1个单位,再向下移2个单位后所得函数的关系式为( ) A .21y (x 1)22=+- B .21y (x 1)22=--C .21y (x 1)22=++D .21y (x 1)22=-+ 10.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3 D .k≤4且k≠3 11.羽毛球的运动路线可以看作是抛物线y =-14x 2+34x +1的一部分,如图所示(单位:m ),则下列说法不正确的是( )A .出球点A 离地面点O 的距离是1mB .该羽毛球横向飞出的最远距离是3mC .此次羽毛球最高可达到2516m D .当羽毛球横向飞出32m 时,可达到最高点 12.如图是二次函数y =ax 2+bx+c 的图象,对于下列说法:①ac >0,②2a+b >0,③4ac<b 2,④a+b+c <0,⑤当x >0时,y 随x 的增大而减小,其中正确的是( )A .①②③B .①②④C .②③④D .③④⑤二、填空题 13.若函数()2a 4a 3y a 5x --=-是二次函数,则a = ______ .14.已知二次函数223y x x =--+,当3m x m ≤≤+时,y 的取值范围是04y ≤≤,则m的值为______.15.若关于x 的函数y =kx 2+2x ﹣1与x 轴仅有一个公共点,则实数k 的值为_______. 16.某游乐园要建一个圆形喷水池,在喷水池的中心安装一个大的喷水头,高度为 m ,喷出的水柱沿抛物线轨迹运动(如图),在离中心水平距离4m 处达到最高,高度为6m ,之后落在水池边缘,那么这个喷水池的直径AB 为____m .三、解答题17.一个二次函数y=(k ﹣1)x 234kk -++2x ﹣1. (1)求k 值.(2)求当x=0.5时y 的值?18.已知二次函数的图象经过点()A 1,0-,()B 3,0,()C 0,3(1)求二次函数解析式;(2)若点()E 1,m 在此函数图象上,求m 的值.19.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,-3)(2)已知二次函数的图象过点(-1,0),(3,0),(0,-3)20.已知抛物线y =x 2-(2k -1)x +k 2,其中k 是常数.(1)若该抛物线与x 轴有交点,求k 的取值范围;(2)若此抛物线与x 轴其中一个交点的坐标为(-1,0),试确定k 的值.21.对于二次函数243y x x =-+和一次函数1y x =-+,我们把2(43)(1)(1)y t x x t x =-++--+称为这两个函数的“再生二次函数”,其中t 是不为零的实数,其图象记作抛物线E.现有点A(1,0)和抛物线E 上的点B(2,n),请完成下列任务: (尝试)(1)当t=2时,抛物线2(43)(1)(1)y t x x t x =-++--+的顶点坐标为 .(2)判断点A是否在抛物线E上;(3)。
第22章 二次函数 初中数学人教版九年级上册单元检测(含答案)
检测内容:第二十二章二次函数得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列函数关系中,y是x的二次函数的是( C )A.y=ax2+bx+c B.y=1 x2C.y=50+x2D.y=(x+2)(2x-3)-2x22.将二次函数y=x2-2x-2化成y=a(x-h)2+k的形式为( B )A.y=(x-2)2-2 B.y=(x-1)2-3C.y=(x-1)2-2 D.y=(x-2)2-33.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( D )A.-3 B.-1 C.2 D.34.将抛物线y=2x2-1向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是( D )A.y=2x2+8x+9 B.y=2x2-8x+9C.y=2x2+8x+8 D.y=2x2-8x+85.对于二次函数y=x2-6x+11的图象,下列叙述正确的是( B )A.开口向下B.对称轴为直线x=3C.顶点坐标为(-3,2) D.当x≥3时,y随x增大而减小6.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.8,y1),B(1.1,y2),C( 2 ,y3),则有( C )A.y3>y2>y1B.y1>y2>y3C.y3>y1>y2D.y1>y3>y27.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x-h)2的图象不可能是( C )A B C D8.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,点C距灯柱AB的水平距离为1.6 m,点C距水平地面的距离为2.5 m,灯罩D距灯柱AB的水平距离为3.2 m,灯柱AB=1.5 m,则灯罩D到水平地面的距离为( A )A.1.5 m B.1 m C.1.2 m D.1.4 m第8题图第9题图第10题图9.如图①,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图②所示,则边BC的长是( A )A .33B .30C .35D . 610.(遂宁中考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b 2<4ac ;③2c <3b ;④a +b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c|=1有四个根,则这四个根的和为2.其中正确的结论有( A )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.如果抛物线y =(a -3)x 2-2有最低点,则a 的取值范围为____a >3____.12.(兰州中考)点A(-4,3),B(0,k)在二次函数y =-(x +2)2+h 的图象上,则k =__3__.13.已知二次函数y =-14(x -2)2+5,y 随x 的增大而减小,则x 的取值范围__x ≥2__. 14.如图,过点(0,1)且平行于x 轴的直线与二次函数y =ax 2+bx +c(a >0)图象的交点坐标为(1,1),(3,1),则不等式ax 2+bx +c -1>0的解集为__x <1或x >3__.第14题图 第15题图 第16题图15.(沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长度为900 m (篱笆的厚度忽略不计),当AB =__150__m 时,矩形土地ABCD 的面积最大.16.(黔东南州中考)如图,抛物线L 1:y =ax 2+bx +c(a ≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为__2__.三、解答题(共72分)17.(6分)用配方法把二次函数y =12x 2-4x +5化为y =a(x +m)2+k 的形式,并指出该函数的开口方向、对称轴和顶点坐标.解:y =12 x 2-4x +5=12(x -4)2-3,∴抛物线开口向上,对称轴是直线x =4,顶点坐标是(4,-3)18.(8分)(宁波中考)如图,已知二次函数y =x 2+ax +3的图象经过点P(-2,3).(1)求a 的值和图象的顶点坐标;(2)若点Q(m ,n)在该二次函数的图象上,则:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴顶点坐标为(-1,2)(2)①当m =2时,n =11;②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <1119.(9分)已知二次函数y =x 2-2mx +2m -1.(1)求证:二次函数的图象与x 轴总有交点;(2)若二次函数的图象与x 轴的一个交点为原点,求方程x 2-2mx +2m -1=0的解. 解:(1)证明:∵Δ=4m 2-4(2m -1)=4m 2-8m +4=4(m -1)2≥0,∴二次函数的图象与x 轴总有交点(2)把(0,0)代入y =x 2-2mx +2m -1得2m -1=0,解得m =12,方程化为x 2-x =0,解得x 1=0,x 2=1,即方程x 2-2mx +2m -1=0的解为x 1=0,x 2=120.(10分)如图,四边形ABCD 是菱形,点D 的坐标是(0, 3 ),以点C 为顶点的抛物线 y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1) 求A ,B ,C 三点的坐标;(2) 求经过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过点D ,求平移后抛物线的解析式,并指出平移了多少个单位长度.解:(1)A ,B ,C 三点的坐标分别为(1,0),(3,0),(2, 3 )(2)设抛物线的解析式为y =a(x -2)2+ 3 ,代入点A 的坐标(1,0),得a =- 3 ,∴抛物线的解析式为y =- 3 (x -2)2+ 3(3)设平移后的抛物线的解析式为y =- 3 (x -2)2+k ,代入点D 的坐标(0, 3 ),得k =5 3 ,∴平移后的抛物线的解析式为y =- 3 (x -2)2+5 3 ,∴平移了5 3 - 3 =4 3 个单位长度21.(12分)(营口中考)某超市销售一款免洗洗手液,这款免洗洗手液的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款免洗洗手液每天的销售利润最大,最大利润为多少元?解:(1)由题意,得y =80+20×20-x 0.5,∴y =-40x +880(x >16) (2)设每天的销售利润为w 元,则w =(-40x +880)(x -16)=-40(x -19)2+360,∵a =-40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款免洗洗手液每天的销售利润最大,最大利润为360元22.(12分)(衢州中考)如图①是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24 m ,在距离点D6 m 的E 处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为y1=a1x2.将F(6,-1.5)代入y1=a1x2有-1.5=36a1,解得a1=-124,∴y1=-124x2,当x=12时,y1=-124×122=-6,∴桥拱顶部O离水面高度为6 m(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x-6)2+1,将H(0,4)代入其表达式有4=a2(0-6)2+1,解得a2=112,∴右边钢缆所在抛物线表达式为y2=112(x-6)2+1,同理可得左边钢缆所在抛物线表达式为y3=112(x+6)2+1;②设彩带的长度为L m,则L=y2-y1=112(x-6)2+1-(-124x2)=18x2-x+4=18(x-4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2 m23.(15分)(眉山中考)如图①,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的解析式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图②,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.解:(1)y=-x2+2x+3(2)∵点B(3,0),点C(0,3),∴直线BC解析式为y=-x+3,如图,过点P作PH⊥x 轴于点H,交BC于点G,设点P(m ,-m 2+2m +3),则点G(m ,-m +3),∴PG =(-m 2+2m +3)-(-m +3)=-m 2+3m ,∵S △PBC =12 ×OB ×PG =12 ×3×(-m 2+3m)=-32 (m -32 )2+278.∵0<m<3,∴当m =32 时,S △PBC 有最大值,此时点P(32 ,154) (3)存在N 满足条件,理由如下:∵抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,∴点A(-1,0).∵y =-x 2+2x +3=-(x -1)2+4,∴顶点M 为(1,4).∵点M 为(1,4),点C(0,3),∴直线MC 的解析式为y =x +3.如图,设直线MC 与x 轴交于点E ,过点N 作NQ ⊥MC 于点Q, ∴点E(-3,0),∴DE =4=MD ,∴∠NMQ =45°.∵NQ ⊥MC ,∴∠NMQ =∠MNQ =45°,∴MQ =NQ =22MN.设点N(1,n),∵点N 到直线MC 的距离等于点N 到点A 的距离,∴NQ =AN ,∴NQ 2=AN 2,∴(22 MN)2=AN 2,∴(22|4-n|)2=4+n 2,∴n 2+8n -8=0,∴n =-4±2 6 ,∴存在点N 满足要求,点N 的坐标为(1,-4+2 6 )或(1,-4-2 6 )。
人教新版九年级上册数学第22章 《二次函数》单元测试卷【含答案】
人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>a>c7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣79.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为.12.如果函数是关于x的二次函数,那么k的值是.13.当m=时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m=.15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a=.16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.17.已知抛物线y=x2+4x+5的对称轴是直线x=.18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是.20.抛物线y=(x﹣2)2+3的顶点坐标是.三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:(,);(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。
九年级数学上册第二十二章二次函数单元测试习题(含答案) (100)
九年级数学上册第二十二章二次函数单元测试习题(含答案)如图,抛物线y=ax2+bx+3过A(﹣2,0)、B (6,0)两点,交y轴于点C,对称轴交x轴于点E,点D是其顶点,点H为x轴上一动点,连接CD、CH、DH.(1)求抛物线的函数表达式;(2)当点H与点B重合时,求CDH的面积;(3)当DH⊥CD时,求点H的坐标.【答案】(1)y=﹣14x2+x+3;(2)6;(3)H(4,0)【解析】【分析】(1)根据待定系数法求得即可;(2)先求得直线BC的解析式,即可求得直线BC与对称轴的交点坐标,然后根据S△CDH=S△CDF+S△BDF求得即可;(3)过D作DM⊥y轴于M,过H点作HN⊥DM于N,易证得△DCM∽△HDN,根据相似三角形的性质得出124DN=,解得DN=2,即可求得OH=MN=4.【详解】解:(1)抛物线y=ax2+bx+3过A(﹣2,0)、B (6,0)两点,∴4230 36630a ba b-+=⎧⎨++=⎩,解得141ab⎧=-⎪⎨⎪=⎩,∴抛物线为y=﹣14x2+x+3;(2)当x=0时,y=3,解C(0,3),设直线BC的解析式为y=kx+c,把B(6,0)、C(0,3)代入得603k cc+=⎧⎨=⎩,解得123kc⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为y=﹣12x+3,设对称轴DE交BC于点F,则F(2,2),∵D(2,4),∴DF=2,∴S△CDH =1262⨯⨯=6;(3)如图,过D作DM⊥y轴于M,过H点作HN⊥DM于N,则∠CMD =∠DNH=90°,∵DH⊥CD,∴∠MCD+∠MDC=∠MDC+∠NDH=90°,∴∠MCD=∠NDH,∴△DCM∽△HDN,∴CM MD DN HN=,∵D(2,4),C(0,3),∴DM=2,MC=1,HN=4,∴124DN=,解得DN=2,∴OH=MN=4,∴H(4,0).【点睛】本题考查了待定系数法求二次函数的解析式,三角形的面积,三角形相似的判定和性质,作出辅助线构建相似三角形是解题的关键.82.数学兴趣小组几名同学到商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.(1)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(2)若每天盈利为W元,请利用配方法直接写出每箱售价为多少元时,每天盈利最多.【答案】(1)当每箱牛奶售价为50元时,平均每天的利润为900元.(2)60元.【解析】【分析】(1)根据平均每天销售这种牛奶的利润=每箱的利润×销售量,设每箱售价为x元,根据“每天盈利900元”列出方程(x-40)[30+3(70-x)]=900 求解即可;(2)根据平均每天销售这种牛奶的利润等于每箱的利润×销售量得到W=(x-40)[30+3(70-x)],整理后根据二次函数的性质求解.【详解】(1)解:设每箱售价为x元,根据题意得:(x-40)[30+3(70-x)]=900化简得:2x-120x+3500=0解得:x1=50或x2=70(不合题意,舍去)∴x=50答:当每箱牛奶售价为50元时,平均每天的利润为900元.(2)由题意得W=(x-40)[30+3(70-x)]=-32x+360x-9600()2=3601200--+x∴当售价为每箱牛奶60元时,每天盈利最多.【点睛】本题考查了二次函数的应用:先把二次函数关系式变形成顶点式:y=a(x-k)2+h,当a<0,x=k时,y有最大值h;当a>0,x=k时,y有最小值h.也考查了利润的含义.83.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,点P是AB边上一个动点,过点P作AB的垂线交AC边与点D,以PD为边作∠DPE=60°,PE交BC边与点E.(1)当点D为AC边的中点时,求BE的长;(2)当PD=PE 时,求AP 的长;(3)设AP 的长为x ,四边形CDPE 的面积为y ,请直接写出y 与x 的函数解析式及自变量x 的取值范围.【答案】(1)54;(2)125;(3)2(03)y x x =+<< 【解析】【分析】(1)根据含有30°角的直角三角形的性质和勾股定理求出AP 的长,从而求出BP 的长,然后求出BE 的长;(2)设AP= x ,则BP=4—x ,根据含有30°角的直角三角形的性质和勾股定理求出PD 和PE 的长,再根据PD=PE 列出方程即可.(3)分别用AP 表示PD 、PE 、BE,再根据ABC APD BPE y S S S ∆∆∆=--即可求出.【详解】(1)在△ABC 中,∠ACB=90°,∠A=30°,AB=4,12,2BC AB AC ∴==∴== ∵点D 为AC 边的中点3522AD DP AP BP AB AP∴====∴=-=,∵∠DPE=60°,过点P作AB的垂线交AC边与点D,∴∠EPB=30°,∴EB15=24BP=(2)设AP= x,则BP=4—x,在两个含有30°的,Rt APD Rt BPE∆∆中得出:AD=2DP,BP=2BE,由勾股定理解得:(),432PD x PE x==-,∵PD=PE,∴)4x x=-解得125x=即有AP= 125(3)由(2)知:AP= x,)()1,4,42PD x PE x BE x==-=-)()211112?••4?4223222(03)24ABC APD BPEy S S S x x x xx x∆∆∆∴=--=⨯⨯---=-+<<【点睛】本题主要考查了含有30°角的直角三角形的性质和勾股定理,以及二次函数,熟练掌握相关知识是解题的关键.84.如图,二次函数y=ax2+bx+c过点A(﹣1,0),B(3,0)和点C(4,5).(1)求该二次函数的表达式及最小值.(2)点P(m,n)是该二次函数图象上一点.①当m=﹣4时,求n的值;②已知点P到y轴的距离不大于4,请根据图象直接写出n的取值范围.【答案】(1) y=x2﹣2x﹣3,-4;(2)①21;②﹣4≤n≤21【解析】【分析】(1)根据题意,设出二次函数交点式(1)(3)=+-,点C坐标代入求y a x x出a值,把二次函数化成顶点式即可得到最小值;(2)①m=-4,直接代入二次函数表达式,即可求出n的值;②由点P到y轴的距离不大于4,得出﹣4≤m≤4,结合二次函数图象可知,m=1时,n取最小值,m=-4时,n取最大值,代入二次函数的表达式计算即可.【详解】解:(1)根据题意,设二次函数表达式为,(1)(3)=+-,点C代入,y a x x得(41)(43)5a+-=,∴a=1,∴函数表达式为y=x2﹣2x﹣3,化为顶点式得:2=--,y x(1)4∴x=1时,函数值最小y=-4,故答案为:2=--;-4;(1)4y x(2)①当m=﹣4时,n=16+8﹣3=21,故答案为:21;②点P到y轴的距离为|m|,∴|m|≤4,∴﹣4≤m≤4,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,在﹣4≤m≤4时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=21,∴﹣4≤n≤21,故答案为:﹣4≤n≤21.【点睛】本题考查了待定系数法求二次函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键.85.如图,直线5=+与x轴交于点A,与y轴交于点B,抛物线y x2=-++经过A、B两点.y x bx c(1)求抛物线的解析式;(2)点P为抛物线在第二象限内一点,并且在对称轴的左边,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,设点P的横坐标为m.①当矩形PQMN的周长最大时,求ACM∆的面积;②在①的条件下,当矩形PMNQ的周长最大时,G是直线AC上一点,F是抛物线上一点,是否存在点F,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请直接写出F点的坐标.【答案】(1)245y x x=--+(2)①2;②存在,(-2,9)或(1,0)或(-6,-7)【解析】【分析】(1)先求出A、B两点的坐标,再代入抛物线2y x bx c=-++求出b、c的值即可;(2)①先用m表示出PM的长,再求出抛物线的对称轴及PQ的长,利用矩形的面积公式可得出其周长的解析式,进而可得出矩形面积的最大值,求出C 点坐标,由三角形的面积公式即可得出结论;②根据C点坐标得出P点坐标,故可得出PC的长,再分点F在点G的上方与点F在点G的下方两种情况进行讨论即可.【详解】解:(1)∵y=x+5与x轴交于点A,与y轴交于点B,∴当y=0时,x=-5,即A点坐标为(-5,0),当x=0时,y=5,即B点坐标为(0,5),将A(-5,0),B(0,5)代入y=-x2+bx+c,得25505b cc--+=⎧⎨=⎩,解得45b c =-⎧⎨=⎩, ∴抛物线的解析式为245y x x =--+;(2)①∵点P 的横坐标为m ,∴P (m ,-m 2-4m+5),∴PM=-m 2-4m+5. ∵抛物线y=-x 2-4x+5的对称轴为直线:4222b x a -=-=-=-- ∴PQ=2(-2-m )=-4-2m .∴矩形PQMN 的周长l=2(PM+PQ )=2(-m 2-4m+5-4-2m ) ∴l=-2m 2-12m+2=-2(m+3)2+20, ∵-2<0∴当m=-3时,矩形PQMN 的周长l 最大, 此时点C 的坐标为(-3,2),CM=AM=2, ∴12222ACM S ∆=⨯⨯=; ②存在,点F 坐标为(-2,9)或(1,0)或(-6,-7) 由①可知,(3,8),(3,2)P C --826PC ∴=-=以点P 、C 、G 、F 为顶点的四边形是平行四边形 PC FG ∴=设2(,45)F t t t --+,则(,5)G t t +当点F 在点G 上方时,如图1,即245(5)6t t t --+-+=122,3t t ∴=-=-(舍)(2,9F ∴-)当点F 在点G 下方时,如图2,即25(45)6t t t +---+=121,6t t ∴==-(舍)(1,0F ∴)或(6,7)--∴点F 坐标为(-2,9)或(1,0)或(-6,-7)【点睛】本题考查的是二次函数综合题,涉及到平行四边形的判定与性质、矩形的判定与性质及二次函数图象上点的坐标特点等知识,在解答(2)②时要先判断出平行四边形的边,再由平行四边形的性质求解.86.某兴趣小组想借助如图所示的直角墙角ADC (两边足够长),用20m 长的篱笆围成一个矩形ABCD 花园(篱笆只围AB 、BC 两边).(1)若围成的花园面积为291m ,求花园的边长;(2)在点P 处有一颗树与墙CD ,AD 的距离分别为12m 和6m ,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时花园的边长.【答案】(1)花园的边长为:13m 和7m ;(2)当8x =或12时,y 有最大值为96,此时花园的边长为8cm 或12cm .【解析】【分析】(1)根据等量关系:矩形的面积为91,列出方程即可求解;(2)由在P 处有一棵树与墙CD ,AD 的距离分别是12m 和6m ,列出不等式组求出x 的取值范围,根据二次函数的性质求解即可.【详解】(1)设AB 长为xm .由题意得:()2091x x -=解得:113x = 27x =答:花园的边长为:13m 和7m .(2)设花园的一边长为x ,面积为y .()()22202010100y x x x x x =-=-+=--+由题意:62012x x ≥⎧⎨-≥⎩或12206x x ≥⎧⎨-≥⎩ 解得:68x ≤≤,或1214x ≤≤.当8x =或12时,y 有最大值为96,此时花园的边长为8cm 或12cm .【点睛】本题考查了方程的应用,二次函数的应用以及不等式组的应用,认真审题准确找出等量关系是解题的关键.87.如图,抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,与y 轴交于点C ,连接,AC BC .点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m .(1)求此抛物线的表达式;(2)过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以,,A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;(3)过点P 作PN BC ⊥,垂足为点N .请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?【答案】(1) 211433y x x =-++;(2) 存在,()1,3Q 或822⎛⎫- ⎪ ⎪⎝⎭;;(3) 当2m =时,PN . 【解析】【分析】(1)由二次函数交点式表达式,即可求解;(2)分AC AQ AC CQ CQ AQ ===、、三种情况,分别求解即可;(3)由211sin 44233PN PQ PQN m m m ⎫=∠=-+++-⎪⎝⎭即可求解. 【详解】解:(1)由二次函数交点式表达式得:2()()()3412y a x x a x x =+-=--, 即:124a -=,解得:13a =-, 则抛物线的表达式为211433y x x =-++; (2)存在,理由:点、、A B C 的坐标分别为3,04,()()(04)0,-、、,则5,7,45AC AB BC OAB OBA ===∠=∠=︒,将点B C 、的坐标代入一次函数表达式:y kx b =+并解得:4y x =-+…①, 同理可得直线AC 的表达式为:443y x =+, 设直线AC 的中点为4()3,2M -,过点M 与CA 垂直直线的表达式中的k 值为34-, 同理可得过点M 与直线AC 垂直直线的表达式为:3748y x =-+…②, ①当AC AQ =时,如图1,则5AC AQ ==,设:QM MB n ==,则7AM n =-,由勾股定理得:2272)5(n n -+=,解得:3n =或4(舍去4),故点()1,3Q ;②当AC CQ =时,如图1,5CQ =,则5BQ BC CQ =-=,则82QM MB -==,故点822Q ⎛- ⎝⎭; ③当CQ AQ =时,联立①②并解得:252x =(舍去);故点Q 的坐标为:()1,3Q 或822⎛⎫- ⎪ ⎪⎝⎭; (3)设点21)1,433(P m m m -++,则点4(),Q m m -+, ∵OB OC =,∴45ABC OCB PQN ∠=∠=︒=∠,2211sin 4423633⎛⎫=∠=-+++-=-+ ⎪⎝⎭PN PQ PQN m m m m m ,∵0<,∴PN有最大值,当2m=时,PN.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.88.已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.【答案】(1)y=﹣x2+2x+3;(2)将抛物线向上平移4个单位.【解析】【分析】(1)利用待定系数法求抛物线解析式;(2)计算出自变量为﹣2对应的二次函数值,然后利用点平移的规律确定抛物线的平移情况.【详解】解:(1)把B(﹣1,0)和点C(2,3)代入y=﹣x2+bx+c得10 423b cb c--+=⎧⎨-++=⎩,解得23bc=⎧⎨=⎩,所以抛物线解析式为y=﹣x2+2x+3;(2)把x=﹣2代入y=﹣x2+2x+3得y=﹣4﹣4+3=﹣5,点(﹣2,﹣5)向上平移4个单位得到点(﹣2,﹣1),所以需将抛物线向上平移4个单位.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.89.平面直角坐标系xOy中,对于任意不在同一条直线上的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.点A,B,C的所有“三点矩形”中,面积最小的矩形称为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH 是点A,B,C的“最佳三点矩形”.如图2,已知()4,1M ,()2,3N -,点()P m n ,.(1)①若1m =,4n =,则点M ,N ,P 的“最佳三点矩形”的周长为 ,面积为 ;②若1m =,点M ,N ,P 的“最佳三点矩形”的面积为24,求n 的值;(2)若点P 在直线24y x =-+上.①求点M ,N ,P 的“最佳三点矩形”面积的最小值及此时m 的取值范围; ②当点M ,N ,P 的“最佳三点矩形”为正方形时,求点P 的坐标;(3)若点()P m n ,在抛物线2y ax bx c =++上,且当点M ,N ,P 的“最佳三点矩形”面积为12时,21m -≤≤-或13m ≤≤,直接写出抛物线的解析式.【答案】(1)①18,18;②1n =-或5;(2)①1322m ≤≤;②点P 的坐标为3,72⎛⎫- ⎪⎝⎭或7,32⎛⎫- ⎪⎝⎭;(3)21344y x =+或211344y x =-+. 【解析】【分析】(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=-3代入y=-2x+4,可得x分别为-32,72,点P的坐标为(-32,7)或(72,-3);(3)利用“最佳三点矩形”的定义画出图形,可分别求得解析式.【详解】解:(1)①如图1,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(-2,3),∴|x M-x N|=6,|y M-y N|=2.又∵m=1,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=-1或5.(2)如图2,由①易得点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为12,32;结合图象可知:12≤m≤32;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=-3代入y=-2x+4,可得x分别为-32,72;∴点P的坐标为(-32,7)或(72,-3);(3)如图3,设抛物线的解析式为y=ax2+bx+c,经过点(-1,1),(1,1),(3,3),∴11923a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,解得1434abc⎧=⎪⎪=⎨⎪⎪=⎩,∴y=14x2+34,同理抛物线经过点(-1,3),(1,3),(3,1),可求得抛物线的解析式为y=-14x2+134,∴抛物线的解析式21344y x =+或211344y x =-+. 【点睛】 本题主要考查了二次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.90.在平面直角坐标系中,已知抛物线21y x bx c 2=-++(b ,c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,﹣1),C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q .(i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M 、P 、Q 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;(ii )取BC 的中点N ,连接NP ,BQ .试探究PQ NP BQ+是否存在最大值.若存在,求出该最大值;若不存在,请说明理由. 【答案】(1)21y x 2x 12=-+-;(2)(i )M 1(4,﹣1),M 2(﹣2,﹣7),M 3(1+2-+,M 4(12-;(ii )存在,PQ NP BQ+的最大值【解析】【分析】(1)先求出点B 的坐标,然后利用待定系数法求出抛物线的函数表达式.(2)(i )首先求出直线AC 的解析式和线段PQ 的长度,作为后续计算的基础.若△MPQ 为等腰直角三角形,则可分为以下两种情况:△当PQ 为直角边时:点M 到PQ的距离为.此时,将直线AC 向右平移4个单位后所得直线(y=x ﹣5)与抛物线的交点,即为所求之M 点.△当PQ 为斜边时:点M 到PQ.此时,将直线AC 向右平移2个单位后所得直线(y=x ﹣3)与抛物线的交点,即为所求之M 点.(ii )由(i )可知,PQ=因此当NP+BQ 取最小值时,PQNP BQ +有最大值.如答图2所示,作点B 关于直线AC 的对称点B ′,由解析可知,当B ′、Q 、F (AB 中点)三点共线时,NP+BQ 最小,最小值为线段B ′F 的长度.【详解】解:(1)由题意,得点B 的坐标为(4,﹣1).△抛物线过A (0,﹣1),B (4,﹣1)两点, △c 1{1164b c 12=--⨯++=-,解得b 2{c 1==-. △抛物线的函数表达式为:21y x 2x 12=-+-. (2)(i )△A (0,﹣1),C (4,3),△直线AC 的解析式为:y=x ﹣1.设平移前抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上.△点P 在直线AC 上滑动,△可设P 的坐标为(m ,m ﹣1). 则平移后抛物线的函数表达式为:()21y x m m 12=--+-. 解方程组:()2y x 1{1y x m m 12=-=--+-,解得11x m {y m 1==-,22x m 2{y m 3=-=-. △P (m ,m ﹣1),Q (m ﹣2,m ﹣3).过点P 作PE △x 轴,过点Q 作QE △y 轴,则PE=m ﹣(m ﹣2)=2,QE=(m ﹣1)﹣(m ﹣3)=2,△PQ=0.若△MPQ 为等腰直角三角形,则可分为以下两种情况:△当PQ 为直角边时:点M 到PQ的距离为PQ 的长), 由A (0,﹣1),B (4,﹣1),P 0(2,1)可知,△ABP 0为等腰直角三角形,且BP 0△AC ,BP 0=如答图1,过点B 作直线l 1△AC ,交抛物线21y x 2x 12=-+-于点M ,则M 为符合条件的点.△可设直线l 1的解析式为:y=x+b 1.△B (4,﹣1),△﹣1=4+b 1,解得b 1=﹣5.△直线l 1的解析式为:y=x ﹣5. 解方程组2y x 5{1y x 2x 12=-=-+-,得:11x 4{y 1==-,22x 2{y 7=-=-. △M 1(4,﹣1),M 2(﹣2,﹣7).△当PQ 为斜边时:MP=MQ=2,可求得点M 到PQ. 如答图1,取AB 的中点F ,则点F 的坐标为(2,﹣1).由A (0,﹣1),F (2,﹣1),P 0(2,1)可知:△AFP 0为等腰直角三角形,且点F 到直线AC.过点F 作直线l 2△AC ,交抛物线21y x 2x 12=-+-于点M ,则M 为符合条件的点.△可设直线l 2的解析式为:y=x+b 2,△F (2,﹣1),△﹣1=2+b 2,解得b 1=﹣3.△直线l 2的解析式为:y=x ﹣3. 解方程组2y x 3{1y x 2x 12=-=-+-,得:11x 1{y 2=+=-+22x 1{y 2=-=- △M 3(1+,2-+),M 4(12-.综上所述,所有符合条件的点M 的坐标为:M 1(4,﹣1),M 2(﹣2,﹣7),M 3(1+,2-),M 4(12--. (ii )PQ NP BQ+存在最大值.理由如下: 由(i )知PQ=为定值,则当NP+BQ 取最小值时,PQ NP BQ+有最大值.如答图2,取点B 关于AC 的对称点B ′,易得点B ′的坐标为(0,3),BQ=B ′Q .连接QF ,FN ,QB ′,易得FN △PQ ,且FN=PQ ,△四边形PQFN 为平行四边形.△NP=FQ .△NP+BQ=FQ+B ′P ≥FB ′==△当B ′、Q 、F 三点共线时,NP+BQ 最小,最小值为△PQ NP BQ +=.。
2022-2023学年人教版九年级数学上册第二十二章 二次函数单元检测试题含答案
第二十二章《二次函数》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分) 1.下列y关于x的函数中,属于二次函数的是()A.y=x﹣1 B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+12.在同一直角坐标系中,二次函数y=﹣3x2、、y=3x2的图象的共同点是()A.关于y轴对称,开口向上B.关于y轴对称,当x<0时,y随x的增大而减小C.关于y轴对称,最高点是原点D.关于y轴对称,顶点坐标是(0,0)3.二次函数y=﹣(x﹣2)2+1的图象中,若y随x的增大而减小,则x的取值范围是()A.x<2 B.x>2 C.x<﹣2 D.x>﹣24.已知一个二次函数,当x=1时,y有最大值8,其图象的形状、开口方向与抛物线y=﹣2x2相同,则这个二次函数的表达式是()A.y=﹣2x2﹣x+3 B.y=﹣2x2+4C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+65.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+66.下列函数解析式中,一定为二次函数的是()A.y=x+3 B.y=ax2+bx+c C.y=t2﹣2t+2 D.y=x2+7.已知二次函数的图象经过点、、、四点,则与的大小关系正确的是()A. B.C. D.不能确定8.下面所示各图是在同一平面直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象.正确的是()A.B.C.D.9.下列关于抛物线y=﹣x2+2的说法正确的是()A.抛物线开口向上B.顶点坐标为(﹣1,2)C.在对称轴的右侧,y随x的增大而增大D.抛物线与x轴有两个交点10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是x≥0;⑤抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<﹣1<x2,且x1+x2>﹣2,则y1<y2其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分) 11.若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.12.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y =(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则的值为.13.若函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,则常数k的值为.14.据权威部门发布的消息,2019年第一季度安徽省城镇居民人均可支配收入约为0.75万元,若第三季度安徽省城镇居民人均可支配收人为y万元,平均每个季度城镇居民人均可支配收入增长的百分率为x,则y与x之间的函数表达式是.15.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行m才停下来.16.如图,已知抛物线y=x2+bx+c的对称轴为直线x=1,点A,B均在抛物线上,且AB与x轴平行,若点A的坐标为,则点B的坐标为.17.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第象限.18.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有.(只填序号)三.解答题(共46分,19题6分,20 ---24题8分)19. 已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?20. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.21.在平面直角坐标系中,有抛物线y=x2+1,已知点A(0,2),P(m,n)是抛物线上一动点,过O、P的直线交抛物线于点D,若AP=2AD,求直线OP的解析式.22. 已知抛物线,如图所示,直线是其对称轴,确定,,,的符号;求证:;当取何值时,,当取何值时.23. 如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)如图,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标.24. 某公司计划安排25人生产甲、乙两种产品,已知每人每天生产25件甲或15件乙,甲产品每件利润18元,当参与生产乙产品的工人少于10人时,乙产品每件利润为40元,在4人的基础上每增加1人,每件乙产品的利润下降1元,设每天安排x人生产甲产品,且不少于4人生产乙产品.(1)请根据以上信息完善下表:产品工人数(人)每天产量(件)每件利润(元)甲x18乙(2)请求出销售甲乙两种产品每天的总利润y关于x的表达式;(3)请你设计合理的工人分配方案,使得每天的利润最大化,并求出这个最大利润.答案解析一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案 D D B D B C C B A A 二、填空题11. 312..13. 0或﹣1.14. y=0.75(1+x)2.15. 600.16.(2,).17.解:根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.18.解由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=∴abc>0,4ac<b2,当x<时,y随x的增大而减小.故①②⑤正确∵﹣=<1∴2a+b>0故③正确由图象可得顶点纵坐标小于﹣2,则④错误当x=1时,y=a+b+c<0故⑥错误故答案为①②③⑤三.解答题19. 解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.20. 解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.21.【答案】解:∵P(m,n)是抛物线y=x2+1上一动点,∴m2+1=n,∴m2=4n-4,∵点A(0,2),∴AP===n,∴点P到点A 的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,∵AP=2AD,∴PF=2DE,∴OF=2OE,设OE=a,则OF=2a,∴×(2a)2+1=2(a2+1),解得a=,∴a2+1=×2+1=,∴点D的坐标为(,),设OP的解析式为y=kx,则k=,解得k=,∴直线OP的解析式为y=x.【解析】根据点P在抛物线上用n表示出m2,再利用勾股定理列式求出AP,从而得到点P到点A的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x 轴于F,根据AP=2AD判断出PF=2DE,得到OF=2OE,设OE=a,表示出OF=2a,然后代入抛物线解析式并列出方程求出a的值,再求出点D的坐标,最后利用待定系数法求一次函数解析式解答.22. 解:∵抛物线开口向下,∴,∵对称轴,∴,∵抛物线与轴的交点在轴的上方,∴,∵抛物线与轴有两个交点,∴;证明:∵抛物线的顶点在轴上方,对称轴为,∴当时,;根据图象可知,当时,;当或时,.23. 解:(1)设抛物线解析式为y=a(x+2)(x﹣4),把C(0,﹣4)代入得a•2•(﹣4)=﹣4,解得a=,∴抛物线解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4;(2)连接AC,则AC与抛物线所围成的图形的面积为定值,当△ACM的面积最大时,图中阴影部分的面积最小值,作MN∥y轴交AC于N,如图甲,设M(x, x2﹣x﹣4),由A(4,0),C(0,﹣4)知线段AC所在直线解析式为y=x﹣4,则N(x,x﹣4),∴MN=x﹣4﹣(x2﹣x﹣4)=﹣x2+2x,∴S△ACM=S△MNC+S△MNA=•4•MN=﹣x2+4x=﹣(x﹣2)2+4,当x=2时,△ACM的面积最大,图中阴影部分的面积最小值,此时M点坐标为(2,﹣4).24. 解:(1)请根据以上信息完善下表:产品工人数(人)每天产量(件)每件利润(元)甲x25x18乙25﹣x15(25﹣x)19+x(2)y=18×25x+15 (25﹣x)(19+x)=﹣15x2+540x+7125.(3)y=﹣15x2+540x+7125=﹣15(x﹣18)2+11985,当x=18时,y取得最大值,最大值为11985,∴分配18个人生产甲产品,7人生产乙产品时,可以获得最大利润11985元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
第 17 题图
18.如图所示,已知二次函数
第 18 题图
的图象经过(-1,0)和(0,-1)两点,则化
简代数式
=
.
三 、解答题(共 46 分) 19.(6 分)已知抛物线的顶点为
,与 y 轴的交点为
求抛物线的解析式.
20.(6 分)已知抛物线的解析式为 (1)求证:此抛物线与 x 轴必有两个不同的交点;
交于 两点,且 点在 轴 左侧, 点的坐标为(0,-4),连接 , .有以
下说法: ①
;②当 时,
的值随 的增大而增大;③当来自- 时,;④△ 面积的最小值为 4 ,其中正确的是
.(写出所有正确说法的序号)
12.把 抛物线
的图象先向右平移 3 个单位长度,再向下平移 2 个单位长
度,所得图象的解析式是
则
轴没有交点,所以
9.B 解 析:由图象可知
.当
时,
因此只有①③正确.
10. D 解析:因为二次函数与 轴有两个交点,所以
.(1)正确.抛物线开口
向 上,所以 0.抛物线与 轴交点在 轴负半轴上,所以 .又
,
(2)错误.(3)错误.由图
象可知当
所以(4)正确.由图象可知当
,所以(5)正确. 11.③④ 解析:本题综合考查了二次函数与方程和方程组的综合应用.
(2)点 (-1, )是抛物线上一点,点 关于原点 的对称点为点 ,连接 , , ,
求△ 的面积.
22.(8 分)已知:关于 的方程
(1)当 取何值时,二次函数
的对称轴是
;
(2)求证: 取任何实数时,方程
总有实数根.
23.(8 分)已知抛物线
与 轴有两个不同的交点.
(1)求 的取值范围;
(2)抛物线
设点 A 的坐标为( , ),点 B 的坐标 为( ).
不妨设 ,解 方程组
得
∴ ( ,- ),B(3,1).
此时
,
,∴
.而 =16,∴ ≠
,∴ 结论①错误.
当 = 时, 求出 A(-1,- ),B(6,10),
此时 由① 时, 比较两个结果发现
(
)(2
)=16.
(
)(
)=16.
的值相等.∴ 结论②错误.
,给出下列结
论:(1)
;(2) >0;(3)
;(4)
则正确的结论是( )
A.(1)(2)(3) (4)
B.(2)(4)(5)
C.(2)(3)(4)
D.(1) (4)(5)
二、填空 题(每小题 3 分,共 24 分)
11.(2013· 成都中考)在平面直角坐标系 中,直线
;(5)
.
为常数)与抛物线
2014 人教版九年级数学上册第 22 章《二次函数》单 元测试及答案 (1)
一、选择题(每小题 3 分,共 30 分)
1.(2013·兰州中考)二次函数
的图象的顶点坐标是( )
A.(1,3)
B.( 1,3) C.(1, 3) D.( 1, 3)
2.(2013·哈尔滨中考)把抛物线 所得到的抛物线是( )
(2)若此抛物线与直线
的一个交点在 y 轴上,求 m 的值.
21.(8 分)(2013·哈尔滨中考)某水渠的横截面呈抛物线形,水面的宽为 (单位:米),
现以 所在直线为 轴,以抛物线的对称轴为 轴建立如图所示 的平面直角坐标系,设坐标
原点为 .已知
米,设抛物线解析式为
.
第 21 题图
(1)求 的值;
坐标为
.观察函数的图象发现它的顶点在第一象限,∴
.
4.A 解析:把
配方,得
.∵ -1 0,∴ 二次函数图象的开
口向下.又图象的对称轴是直线 ,∴ 当 1 时, 随 的增大而增大.
5. B 解析:顶点为
当
上.
6.C 解析:令
,得
7.D
解析:由题意可知
时, 所以
故图象顶点在直线 所以当
8.B 解析:因为当 取任意实数时,都有 ,又二次函数的图 象开口向上,所以图象与
B.
C.
D.c
8.已知二次函数 )
,当 取任意实数时,都有 , 则 的取值范围是(
A.
.
C.
D.
9.如图所示是二次函数
图象的一部分,图象过点
对称轴为
给出四个结论:①
②
③
④
其中正确的结论是( )
A.②④
B.①③
C.②③
, D.①④
二次函数图象的
A O
=1
第 9 题图
10.已知二次函数
第 10 题图
的图象如图所示,其对称轴为直线
与 轴的两交点间的距离为 2,求 的值.
24.(10 分)心理学家发现,在一定的时间范围内,学生对概念的接受能力 与提出概念所用
的时间 (单位:分钟)之间满足函数关系式
的值
越大,表示接受能力越强.
(1)若用 10 分钟提出概念,学生的接受能力 的值是多少? (2)如果改用 8 分钟或 15 分钟来提出这一概念,那么与用 10 分钟相比,学生的接受能力是增 强了还是减弱了?通过计算来回答.
当 - 时,解方程组
得出 A(-2 ,2),B ( ,-1),
求出
12, 2, 6,∴
,即结论③正确.
把方程组
消去 y 得方程
,∴
,
.
∵
=
·| | OP·| |= ×4×|
|
向下平移 2 个单位,再向右平移 1 个单位,
A.
B.
C.
D.
3.(2013·吉林中考)如图,在平面直角坐标系中,抛物线所表示的函数解析式为
,则下列结论正确的是( )
A.
B. <0, >0
C. <0, <0
D. >0, <0
4.(2013·河南中考)在二次函数
的图象上,若 随 的增大而增大,则
的取值范围是( )
参考答案 1.A 解析:因为
的图象的顶点坐标为
,所以
的图象的顶点坐标为(1,3).
2.D 解析:把抛物线
向下平移 2 个单位,所得到的抛物线是
,
再向右平移 1 个单位,所得到的抛物线是
.
点拨:抛物线的平移规律是左加右减,上加下减. 3.A 解析:∵ 图中抛物线所表示的函数解析式为
,∴ 这条抛物线的顶点
A. 1 5.二次函数
B. 1
C. -1
D. -1
第 3 题图
无论 取何值,其图象的顶点都在( )
A.直线
上
C.x 轴上
B.直线
上
D.y 轴上
6. 抛物线 A.-3
B.-4
轴交点的纵坐标为( )
C.-5
D.-1
7.已知二次函数
,当 取
, ( ≠ )时,函数值相等,则当 取
时,函数值为( )
A.
.
13.已知抛物线
的顶点为
则
,
.
14.如果函数 15.将二次函数
化为
是二次函数,那么 k 的值一定是
.
的形式,则
.
16.二次函数
的图象是由函数
的图象先向
(左、右)平
移 个单位长度,再向
(上、下)平移
个单位长度得到的.
17.如图,已知抛物线
经过点(0,-3),请你确定一个 的值 ,使该抛物线
与 轴的一个交点在(1,0)和(3,0)之间,你所确定的 的值是