直线与方程期末复习总结卷
《直线的方程》小结与复习总结

③直线的倾斜角概念要抓住3个要点:找交点,逆时针,
最小正角.
(2)直线的斜率
已知两点P(x1,y1),Q(x2,y2),如果x1≠x2,那么直
线PQ的斜率为
k
y2 x2
xy11(x1
. x2)
当直线与x轴不垂直时,直线的斜率k与倾斜角α之
间满足 k=ta.nα
2. 直线方程的五种形式
名 称 已知条件
小结:
1.注意倾斜角与斜率的关系中倾斜角 为直角时斜率的情况 2.判断两直线的位置关系中的平行时注意 验证排除重合的情况
3.求直线方程的方法:
①直接法;②待定系数法.
4.注意各种直线方程的适用范围,求解时 要防止可能产生的遗漏情况.
5.注重数形结合、分类讨论思想的运用.
标准方程
适用范围
点斜式 点P1(x1,y1)和斜k率yy1k(xx1) 不垂直x于 轴的直
斜 截 式 斜率k和y轴上的截距 ykxb 不垂直x于 轴的直
两点式
截距式 一般式
点 P 1(x 1 , y 1)和 P 2(点 x2 , y2) yy1 xx1 不垂直x于 、y轴的直 y1 y2 x1 x2
1.彼岸花 ‖ 奈何桥故人以北爱荒凉
D
2 3
-5
巩固练习2
1.如果A(3, 1)、B(-2, k)、C(8, 11),在同一直线
上,那么k 的值是
D
(A)-6 (B)-7 (C)-8 (D)-9
小结:证明三点共线的方法--斜率相等法,
2 .求 过 M ( 2,1) 点 , 倾 斜 角 比 直 线 x 4 0
y
数 形 结 合 可 知 斜 率 K ( , 1 ) ( 1 , )
倾 斜 角 的 范 围 是 4 5 o 1 3 5 oPB来自oxA
直线方程复习题

直线方程期末复习一、知识点梳理 (一)直线的方程的概念如果以一个方程的解为坐标的点都在某条直线上,且这条直线上点的坐标都是这个方程的解,那么这个方程叫做这条直线的方程.....,这条直线叫做这个方程的直线...... (二)直线的倾斜角和斜率1.直线的倾斜角:x 轴的轴的 与直线l 之间所成的角a 叫做直线l 的倾斜角,当直线l 与x 轴平行或重合时,规定它的倾斜角为轴平行或重合时,规定它的倾斜角为 .倾斜角的取值范围是:是: . 2.直线的斜率:直线b kx y +=中的系数k (1)直线的倾斜角和斜率的变化关系:)直线的倾斜角和斜率的变化关系:(2)经过两点11122212(,),(,)()P x y P x y x x ¹的直线的斜率为k = . (三)直线方程的五种形式: 名 称已知条件已知条件方 程不适用范围不适用范围点斜式点斜式斜截式斜截式两点式两点式截距式截距式一般式一般式斜截式一般式方程11y k x b=+22y k x b=+111222A xB y CA xB y C++=++=相交垂直平行的关系为的关系为平行的直线系:平行的直线系: . 平行的直线系:平行的直线系: . . 垂直的直线系:垂直的直线系: . 垂直的直线系:垂直的直线系: . 的坐标为的坐标为 . 若点1P 、2P 的坐标分别为1122(,)(,)x y x y 、,则=||21P P . 3.点到直线的距离点到直线的距离点000(,)P x y 到直线:0l Ax By c ++=的距离d = . 4.两平行线间的距离两平行线间的距离1200Ax By C Ax By C ++=++=与间的距离为间的距离为 d = . 二、复习题1.若直线c by ax =+过第一、二、三象限,则( ) A.0,0>>bc abB.0,0<>bc abC.0,0><bc abD.0,0<<bc ab 2.已知直线b kx y +=满足1=-b k ,则该直线过定点,则该直线过定点 . 3.经过两点)3,0(),0,4(-B A 的直线方程是的直线方程是 . 4.经过两条直线0543=-+y x 和01343=--y x 的交点,且斜率为2的直线方程是程是 . 5.原点到直线052=-+y x 的距离为的距离为 . 6.点A (0,5)到直线y =2x 的距离是的距离是 . 7.过点(2,1)且到原点距离为2的直线方程为的直线方程为 . 8.过点P (-1,3)且垂直于直线032=+-y x 的直线方程为( ) A.012=-+y xB.052=-+y xC.052=-+y xD.072=+-y x9.如果直线062:1=++y ax l 与03)1(:2=+-+y a x l 平行,那么a 等于( ) A.1B.-1C.2D.3210.如果直线012=++y ax 与直线02=-+y x 垂直,那么a 的值等于( ) A.1B.31-C.32-D.-211.如果两条直线033=-+y x 与016=++my x 互相平行,那么它们之间的距离为( ) A.4B.13132 C.13265 D.1020712.点P (2,5)关于直线x +y =0对称的点的坐标是( ) A.(5,2)B.(2,-5)C.(-5,-2)D.(-2,-5)13.如果直线l 与直线0543=+-y x 关于x 轴对称,轴对称,那么直线那么直线l 的方程为( ) A.0543=-+y x B.0543=++y x C.0543=-+-y x D.0543=++-y x14.已知入射光线所在直线的方程为042=+-y x ,经x 轴反射,那么反射光线所在直线的方程是( ) A.42--=x yB.42+-=x yC.121+=x y D.121--=x y15. 与点(1,-1)关于点(2,3)对称的点是对称的点是 . 16. 与点(1,-1)关于直线0632=-+y x 对称的点是对称的点是 . 17. 与直线0632=-+y x 关于点(1,-1)对称的直线的方程是对称的直线的方程是 . 18.如图,直线321,,l l l 的倾斜角分别为321,,a a a ,从小到大排列为 ,直线321,,l l l 的斜率分别为321,,k k k ,从小到大排列为,从小到大排列为 . 19. 已知直线l 过点)2,1(-P ,且与点A 、B 为端点的线段相交,求直线l 的斜率的取值范围(1))3,1(),5,1(B A (2))0,1(),5,1(B A (3))3,2(),1,2(--B A (4))0,3(),3,2(B A --20.已知直线01)2()2(:1=+++-y m x m l ,03)4(:22=---my x m l(1)若21//l l ,求实数m 的值;的值; (2)若21l l ^,求实数m 的值. 21.求过定点)1,2(P 且与坐标轴围成的三角形的面积为4的直线方程. 22.已知直线l 过点M(3,1)且被两平行线01:1=++y x l ,06:2=++y x l 截得的线段长为5,求直线l 的方程. 23.已知直线l 过点P(3,4)且与点A(-2,2),B(4,-2)等距离,求直线l 的方程. 24.三角形ABC 的顶点A(3,-1),AB 边上的中线所在直线的方程为6x+10y-59=0.角B 的平分线所在直线的方程为x-4y+10=0,求BC 边所在直线的方程. 25.平行四边形ABCD 的两边AB 、AD 所在的直线方程分别为043,01=+-=-+y x y x ,其对角线的交点坐标为(3,3),求另两边BC 、CD 所在的直线方程. 。
直线与方程复习题(含答案)

直线的倾斜角与斜率题组一直线的倾斜角1.已知直线l 过点(m,1),(m +1,tan α+1),则 ( ) A .α一定是直线l 的倾斜角 B .α一定不是直线l 的倾斜角 C .α不一定是直线l 的倾斜角 D .180°-α一定是直线l 的倾斜角 解析:设θ为直线l 的倾斜角, 则tan θ=tan α+1-1m +1-m=tan α,∴α=kπ+θ,k ∈Z ,当k ≠0时,θ≠α. 答案:C2.如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )A .k sin α>0B .k cos α>0C .k sin α≤0D .k cos α≤0 解析:显然k <0,π2<α<π,∴cos α<0,∴k cos α>0. 答案:B题组二直线的斜率及应用3.若一个直角三角形的三条边所在直线的斜率分别为k 1,k 2,k 3,且k 1<k 2<k 3,则下列说法中一定正确的是( )A .k 1k 2=-1B .k 2k 3=-1C .k 1<0D .k 2≥0 解析:结合图形知,k 1<0. 答案:C4.(2008·浙江高考)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________.解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,又a >0,∴a =1+ 2.答案:1+ 25.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是________.解析:设直线AB 的倾斜角为2α,则直线l 的倾斜角为α,由于0°≤2α<180°,∴0° ≤α<90°,由tan2α=-2-(-5)3-(-1)=34,得tan α=13,即直线l 的斜率为13.答案:13题组三两条直线的平行与垂直6.(2009·陕西八校模拟)已知两条直线l 1:ax +by +c =0,直线l 2:mx +ny +p =0,则an =bm 是直线l 1∥l 2的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵l 1∥l 2⇒an -bm =0,且an -bm =0⇒/ l 1∥l 2,故an =bm 是直线l 1∥l 2的必要不充分条件. 答案:B7.(2009·福建质检)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为( )A .5B .4C .2D .1 解析:由题意知,a 2b -(a 2+1)=0且a ≠0, ∴a 2b =a 2+1,∴ab =a 2+1a =a +1a,∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”).答案:C8.(2010·合肥模拟)已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则ab为( )A.23 B .-23 C.13 D .-13 解析:曲线y =x 3在点P (1,1)处的切线斜率为3, 所以a b =-13.答案:D9.(2009·泰兴模拟)设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.解析:∵l 1⊥l 2,k 1=-12,∴k 2=2,又点(0,1)在直线l 1上,故点(-1,0)在直线l 2上, ∴直线l 2的方程为y =2(x +1),即2x -y +2=0. 答案:2x -y +2=0题组四直线的倾斜角和斜率的综合问题10.若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________.解析:数形结合.在同一坐标系内画出函数y =kx ,y =|x -1|的图象如图所示,显然k ≥1或k =0时满足题意.答案:k ≥1或k =011.(2009·青岛模拟)已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________. 解析:如图所示,k P A =6-3-1-2=-1, ∴直线P A 的倾斜角为3π4,k PB =6-2-1-(-5)=1,∴直线PB 的倾斜角为π4,从而直线l 的倾斜角的范围是[π4,3π4].答案:[π4,3π4]12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标. (1)∠MOP =∠OPN (O 是坐标原点). (2)∠MPN 是直角. 解:设P (x,0),(1)∵∠MOP =∠OPN ,∴OM ∥NP . ∴k OM =k NP .又k OM =2-02-0=1,k NP =0-(-2)x -5=2x -5(x ≠5),∴1=2x -5,∴x =7,即P 点坐标为(7,0).(2)∵∠MPN =90°,∴MP ⊥NP , ∴k MP ·k NP =-1. 又k MP =22-x (x ≠2),k NP =2x -5(x ≠5), ∴22-x ×2x -5=-1,解得x =1或x =6, 即P 点坐标为(1,0)或(6,0).直线方程题组一直线方程的求法1.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解析:当x =1时,y =1,即所求直线过点(1,1),在直线x -2y +1=0中,令y =0,得x =-1,则(-1,0)关于直线x =1对称的点(3,0)在所求直线上,故所求方程为x +2y -3=0. 答案:D2.设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=0 解析:由于直线P A 的倾斜角为45°,且|P A |=|PB |, 故直线PB 的倾斜角为135°, 又当x =2时,y =3,即P (2,3),∴直线PB 的方程为y -3=-(x -2),即x +y -5=0. 答案:A3.(2009·安徽高考)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是 ( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析:由直线l 与直线2x -3y +4=0垂直,可知直线l 的斜率是-32,由点斜式可得直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.答案:A题组二直线方程中参数的确定4.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC =2CB ,则a 等于( )A .2B .1 C.45 D.53解析:设点C (x ,y ),由于AC =2CB , 所以(x -7,y -1)=2(1-x,4-y ),所以有⎩⎪⎨⎪⎧ x -7=2-2x y -1=8-2y ⇒⎩⎪⎨⎪⎧x =3y =3, 又点C 在直线y =12ax 上,所以有3=32a ,a =2.答案:A5.(2009·厦门模拟)若点(5,b )在两条平行直线6x -8y +1=0与3x -4y +5=0之间,则整数b 的值为( )A .5B .-5C .4D .-4 解析:过点(5,b )且与两直线平行的直线的方程为3x -4y +4b -15=0. 由题意知,18<4b -154<54,∴318<b <5,又b 是整数,∴b =4. 答案:C题组三直线方程的应用6.经过点P (1,4)的直线在两坐标轴上的截距都是正值,且截距之和最小,则直线的方程为 ( )A .x +2y -6=0B .2x +y -6=0C .x -2y +7=0D .x -2y -7=0解析:设直线的方程为x a +y b =1(a >0,b >0),则有1a +4b =1,∴a +b =(a +b )(1a +4b )=5+b a +4ab ≥5+4=9,当且仅当b a =4ab ,即a =3,b =6时取“=”.∴直线方程为2x +y -6=0. 答案:B7.已知A (3,0),B (0,4),动点P (x ,y )在线段AB 上移动,则xy 的最大值等于________. 解析:线段AB 的方程为x 3+y4=1(0≤x ≤3),∴1=x 3+y 4≥2xy12,∴xy ≤3. (当且仅当x =32,y =2时取“=”).答案:38.已知直线l 1:x +3y -5=0,l 2:3kx -y +1=0.若l 1,l 2与两坐标轴围成的四边形有一个外接圆,则k =________.解析:由题意知,l 1⊥l 2,∴3k -3=0,k =1. 答案:1题组四直线方程的综合问题9.(2009·上海春季高考)过点A (4,-1)和双曲线x 29-y 216=1右焦点的直线方程为________.解析:由于a 2=9,b 2=16,∴c 2=25,故右焦点为(5,0). 所求直线方程为y-1=x -54-5,即x -y -5=0.答案:x -y -5=010.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +2n 的最小值为________.解析:由题意知,点A (-2,-1).∴2m +n =1,∴1m +2n =(1m +2n )(2m +n )=4+n m +4m n ≥4+4=8(当且仅当m =14,n =12时取“=”). 答案:811.过点M (0,1)作直线,使它被两直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,求此直线方程.解:法一:过点M 且与x 轴垂直的直线是y 轴,它和两已知直线的交点分别是⎝⎛⎭⎫0,103和(0,8),显然不满足中点是点M (0,1)的条件.故可设所求直线方程为y =kx +1,与两已知直线l 1,l 2分别交于A 、B 两点,联立方程组⎩⎪⎨⎪⎧y =kx +1,x -3y +10=0,① ⎩⎪⎨⎪⎧y =kx +1,2x +y -8=0,② 由①解得x A =73k -1,由②解得x B =7k +2, ∵点M 平分线段AB ,∴x A +x B =2x M ,即73k -1+7k +2=0.解得k =-14,故所求直线方程为x +4y -4=0.法二:设所求直线与已知直线l 1,l 2分别交于A 、B 两点. ∵点B 在直线l 2:2x +y -8=0上, 故可设B (t,8-2t ).又M (0,1)是AB 的中点, 由中点坐标公式得A (-t,2t -6). ∵A 点在直线l 1:x -3y +10=0上, ∴(-t )-3(2t -6)+10=0,解得t =4. ∴B (4,0),A (-4,2),故所求直线方程为x +4y -4=0. 12.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程. 解:(1)法一:直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1).法二:设直线过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立,即(x 0+2)k -y 0+1=0恒成立, 所以x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1,故直线l 总过定点(-2,1).(2)直线l 的方程可化为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是k ≥0.(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,∴A (-1+2k k ,0),B (0,1+2k ),又-1+2k k <0且1+2k >0,∴k >0,故S =12|OA ||OB |=12×1+2kk(1+2k ) =12(4k +1k +4)≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号,故S 的最小值为4,此时直线l 的方程为x -2y +4=0.直线的交点坐标与距离公式题组一两条直线的交点问题1.若直线l 1:y =kx +k +2与l 2:y =-2x +4的交点在第一象限,则实数k 的取值范围是( )A .k >-23 B .k <2C .-23<k <2D .k <-23或k >2解析:由⎩⎪⎨⎪⎧y =kx +k +2y =-2x +4得⎩⎪⎨⎪⎧x =2-kk +2y =6k +4k +2,由⎩⎪⎨⎪⎧2-kk +2>06k +4k +2>0得⎩⎪⎨⎪⎧-2<k <2,k <-2或k >-23,∴-23<k <2. 答案:C2.若y =a |x |的图象与直线y =x +a (a >0)有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1 解析:结合图象知,a 的取值范围是a >1.答案:B题组二有关直线的对称问题3.直线l :4x +3y -2=0关于点A (1,1)对称的直线方程为 ( ) A .4x +3y -4=0 B .4x +3y -12=0 C .4x -3y -4=0 D .4x -3y -12=0解析:在对称直线上任取一点P (x ,y ),则点P 关于点A 对称的点P ′(x ′,y ′)必在直线l 上.由⎩⎪⎨⎪⎧x ′+x =2y ′+y =2得P ′(2-x,2-y ), ∴4(2-x )+3(2-y )-2=0,即4x +3y -12=0. 答案:B4.(2010·临沂质检)已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________.解析:设点A 关于直线y =x +1对称的点A ′(x 0,y 0), 则⎩⎪⎨⎪⎧y 0-1x 0-3=-1y 0+12=x 0+32+1,解得⎩⎪⎨⎪⎧x 0=0y 0=4,即A ′(0,4).∴直线A ′B 的方程为2x -y +4=0.由⎩⎪⎨⎪⎧ 2x -y +4=0y =x +1得⎩⎪⎨⎪⎧x =-3y =-2,得C (-3,-2). ∴直线AC 的方程为x -2y -1=0. 答案:x -2y -1=0题组三有关距离问题5.点(1,cos θ)到直线x sin θ+y cos θ-1=0的距离是14(0°≤θ≤180°),那么θ= ( )A .150°B .30°或150°C .30°D .30°或210°解析:由题意知14=|sin θ+cos 2θ-1|sin 2θ+cos 2θ=|sin θ-sin 2θ|,又0≤sin θ≤1,∴sin 2θ-sin θ+14=0,(sin θ-12)2=0,∴sin θ=12,又0°≤θ≤180°,∴θ=30°或150°. 答案:B6.(2010·武汉模拟)已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于( )A.79 B .-13 C .-79或-13 D.79或13 解析:由题意知|6a +3+1|a 2+1=|-3a -4+1|a 2+1,解得a =-13或a =-79.答案:C7.(2010·孝昌模拟)若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为 ( ) A .23 B .3 3 C .3 2 D .4 2解析:由题意知,M 点的轨迹为平行于直线l 1、l 2且到l 1、l 2距离相等的直线l ,其方程为x +y -6=0,∴M 到原点的距离的最小值为d =62=3 2. 答案:C题组四综 合 问 题 8.(2009·哈尔滨模拟)若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2) D .(-1,-2)解析:因为k ,-1,b 三个数成等差数列,所以k +b =-2, 即b =-k -2,于是直线方程化为y =kx -k -2, 即y +2=k (x -1),故直线必过定点(1,-2). 答案:A 9.点P (-1,3)到直线l :y =k (x -2)的距离的最大值等于( )A .2B .3C .3 2D .2 3 解析:直线l :y =k (x -2)的方程化为kx -y -2k =0, 所以点P (-1,3)到该直线的距离为 d =3|k +1|k 2+1=3k 2+2k +1k 2+1=31+2k k 2+1,由于2k k 2+1≤1,所以d ≤32, 即距离的最大值等于3 2.答案:C10.已知点A (3,1),在直线x -y =0和y =0上分别有点M 和N 使△AMN 的周长最短,求点M 、N 的坐标.解:A (3,1)关于y =x 的对称点A1(1,3),A (3,1)关于y =0的对称点A 2(3,-1),△AMN 的周长最小值为|A 1A 2|,|A 1A 2|=25,A 1A 2的方程:2x +y -5=0.A 1A 2与x -y =0的交点为M ,由⎩⎪⎨⎪⎧2x +y -5=0x -y =0⇒M (53,53), A 1A 2与y =0的交点N ,由⎩⎪⎨⎪⎧ 2x +y -5=0y =0⇒N (52,0). 11.已知n 条直线:l 1:x -y +C 1=0,C 1=2且l 2:x -y +C 2=0,l 3:x -y +C 3=0,…,l n :x -y +C n =0,其中C 1<C 2<C 3<…<C n ,这n 条平行直线中,每相邻两条之间的距离顺次为2,3,4,…,n .(1)求C n ;(2)求x -y +C n =0与x 轴、y 轴围成的图形的面积.解:(1)由已知条件可得l 1:x -y +2=0,则原点O 到l 1的距离d 1=1,由平行直线间的距离可得原点O 到l n 的距离d n 为1+2+…+n =n (n +1)2, ∵C n =2d n ,∴C n =2·n (n +1)2. (2)设直线l n :x -y +C n =0交x 轴于点M ,交y 轴于点N ,则△OMN 的面积S △OMN =12|OM |·|ON |=12(C n )2=n 2(n +1)24.。
直线与方程复习题答案

直线与方程复习题答案一、选择题1. 直线方程 \( y = mx + b \) 中,\( m \) 表示直线的斜率,\( b \) 表示直线与y轴的交点。
A. 正确B. 错误答案:A2. 下列哪个方程表示的是过点 (1,2) 且斜率为3的直线?A. \( y = 3x + 1 \)B. \( y = 3x - 1 \)C. \( y = 3x + 2 \)D. \( y = 3x - 2 \)答案:C3. 直线 \( x + 2y - 6 = 0 \) 与 \( x - y + 5 = 0 \) 的交点坐标为:A. (1,3)B. (3,1)C. (-1,-3)D. (-3,-1)答案:A二、填空题1. 直线 \( ax + by + c = 0 \) 的斜截式方程是 \( y = \frac{-a}{b}x + \frac{c}{b} \)。
答案:\( \frac{-a}{b} \),\( \frac{c}{b} \)2. 若直线 \( l \) 与直线 \( 3x - 4y + 5 = 0 \) 平行,则直线\( l \) 的斜率为 \( \frac{3}{4} \)。
答案:\( \frac{3}{4} \)三、解答题1. 求过点 (2,3) 且垂直于直线 \( 2x - 3y + 6 = 0 \) 的直线方程。
解:已知直线 \( 2x - 3y + 6 = 0 \) 的斜率为 \( \frac{2}{3} \),垂直于它的直线斜率为 \( -\frac{3}{2} \)。
代入点斜式方程\( y - y_1 = m(x - x_1) \) 得:\( y - 3 = -\frac{3}{2}(x - 2) \)化简得:\( 3x + 2y - 12 = 0 \)2. 已知直线 \( l \) 经过点 (1,0) 和 (0,1),求直线 \( l \) 的方程。
解:直线 \( l \) 经过点 (1,0) 和 (0,1),其斜率为\( \frac{1 - 0}{0 - 1} = -1 \)。
直线与方程总复习及练习.doc

直线与方程总复习及练习知识点:1.倾斜角:X 轴正向与直线L 向上方向之间所成的角叫做直线的倾斜角。
001800<≤α2. 斜率:αtan =k1212x x y y k --= 斜率k 与倾斜角 α之间的关系:⎪⎪⎩⎪⎪⎨⎧<=⇒<<⇒⇒=>=⇒<<==⇒=0tan 18090)(tan 900tan 90000tan 0a k a k a a a k a k a 不存在不存在3.两直线平行与垂直的判定:①两直线平行的判定:(1)1 ∥2 ⇔ k 1=k 2 且21b b ≠或两条直线的斜率都不存在。
(2)1 ∥2 ⇔12210A B A B -=且12210B C B C -≠②两直线垂直的判定:(1)1 ⊥2 ⇔ k 1·k 2=-1或一条直线斜率为0,另一条直线斜率不存在。
(2)1 ⊥2 ⇔12120A A B B +=4.直线的方程:(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
(2)斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。
(3)两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。
(4)截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+by a x ,它不包括垂直于坐标轴的直线和过原点的直线。
(5)一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。
注意:设直线方程的一些常用技巧:(1)知直线纵截距b ,常设其方程为y kx b =+;(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);(3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;(5)与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。
直线与方程题型总结答案

题型一:重点考查直线的倾斜角)2cos10,2sin10,)2cos130,2sin130,则直线.160【详解】方法一:由斜率和倾斜角关系,利用两点连线斜率公式可得tan 方法二:根据三角函数定义可知,P Q 在圆160QOM +,由此可得倾斜角.的倾斜角为)0180θ≤<,()()33cos10sin10sin 12010sin102sin1302sin10222cos1302cos10cos 12010cos1033cos10sin1022−+−−==−+−−−()()3sin10cos103sin 1030sin 20sin 202tan 20sin 70cos 2033sin 1060sin10cos102−−==−=−=−++tan160.PQ 的倾斜角为160;方法二:由三角函数的定义可知:点,P Q 在圆24x y +=上,如图所示,为直线PQ 与轴的交点,则10,130QOM ∠,120=,又OQ =,30OQM ∴∠,160QOM +∠,∴直线PQ 的倾斜角为160. 160.2023春·安徽合肥·高二统考开学考试)直线y ++ 34π⎤⎡⋃⎥⎢⎦⎣精练核心考点3,24ππ⎤⎡⎫⎪⎥⎢⎦⎣⎭3,24ππ⎤⎡⎫⎪⎥⎢⎦⎣⎭3,4ππ⎤⎡⎫⎪⎥⎢⎦⎣⎭【详解】解:直线l 的斜率为3≤,α∈3,4⎤⎡⎫⎪⎥⎢⎦⎣⎭ππ. .(2023·全国·高二专题练习)直线,135︒︒⎤⎦【详解】解:直线x y −,则3x =,直线的斜率不存在,倾斜角为90;1≤,可得为不等于90的倾斜角),90135θ︒<≤综合,倾斜角的取值范围是45︒≤.题型二:重点考查直线的斜率19,6⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭)因为点M 在函数)在线段AB ()19,6⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭,记点16,2P ⎛− ⎝16,2P ⎛⎫− ⎪⎝⎭,所以21y +精练核心考点30,则实数D .323303=两点的直线的方向向量为题型三:重点考查斜率与倾斜角的变化关系第一象限,则直线l 的倾斜角的取值范围是()30,60)30,90 )60,9060,90⎤⎦B【详解】因为直线:l ,直线23x y +()0,2B ;30; 90;)30,90.·全国·高二专题练习)经过点P10PA k −=且直线l 与连接点如下图所示,则tan PA k ≤α∴∈π[0,4故选:B例题3.(精练核心考点2.(2023·全国·高二专题练习)已知坐标平面内三点ABC 的边A .0,⎡⎢⎣C .3⎡⎢⎣【答案】D【详解】如图所示,1为ABC 的边BD 斜率k .(2023·全国·高二专题练习)若实数的取值范围为5,73⎡⎤⎢⎥⎣⎦题型四:重点考查斜率公式的应用精练核心考点题型五:重点考查由直线与线段相交求直线斜率(倾斜角)范围3,7⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭【详解】解:设过点P 且垂直于当直线l 由位置PA 绕点P 此时,11354725PA k k +≥==+当直线l 由位置PC 绕点P 此时,1254PB k k +≤==精练核心考点1,2⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭1,2⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭题型六:重点考查两直线的平行或垂直关系;方法二:直线1l 的方向向量()6,3AB =−的方向向量(3,6CD =因为0AB CD ⋅=,所以AB CD ⊥,所以5.(2023·全国·高二专题练习)已知两条直线60my +=2)30m x y −+=,当m 为何值时,相交; 平行; 垂直.【答案】(1)m ≠−3;题型七:重点考查直线的方程.(2023·全国·高二专题练习)在ABC中,已知点轴上截距是y轴上截距的3⎫,即(−⎪⎭;题型八:重点考查两直线的交点坐标【详解】三条直线不能构成三角形三条直线相交于同一点S的最小值AOBS最小值为AOB题型九:重点考查两点间的距离公式故选:B.xA B'=所以函数的最小值为故答案为:42精练核心考点1.(2023·全国·高二专题练习)已知故选:B2.(2023·全国·高二课堂例题)【答案】32【详解】()2221x x x ++=+()(224824x x x −+=−+=如图,设点(),0A x ,()1,1B −,值.由于AB AC BC +≥,当A ,B 故答案为: 32.3.(2023·全国·高二专题练习)函数为 .【答案】41【详解】()()219f x x =−+1故答案为:41题型十:重点考查点到直线的距离公式例题2.(2023秋·高二课时练习)求垂直于直线3105的直线l 的方程. 【答案】390x y −+=或3x −【详解】设与直线35x y +−则由点到直线的距离公式知()()2310310⨯−−+−===mm d350y+=.春·上海·高二期中)已知ABC的三个顶点y+=,且60)2,3,所以因此有+24=723+6=0m n m n −−⎧⎨⎩或+24=723+6=0m n m n −−−⎧⎨⎩,解得:=3=4m n ⎧⎨⎩或=3=0m n −⎧⎨⎩, 所以点A 的坐标为:()3,4或()3,0−.题型十一:重点考查两条平行线间的距离公式精练核心考点。
直线与方程知识点归纳及对应习题
直线与方程一、直线倾斜角和斜率000180α≤<. k=tan α(α不为090)。
经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠) 练习:1、直线x +y -5=0的倾斜角为( )A. -30°B. 60°C. 120°D. 150°2、在下列四个命题中,正确的共有()①坐标平面内的任何一条直线均有倾斜角和斜率;②直线的倾斜角的取值范围是[0,π];③若一条直线的斜率为tanα,则此直线的倾斜角为α;④若一条直线的倾斜角为α,则此直线的斜率为tanα.A. 0个B. 1个C. 2个D. 3个二、直线的方程1、直线方程的几种形式点斜式:)(11x x k y y -=- (斜率存在) ; 两点式:121121x x x x y y y y --=--),(2121y y x x ≠≠其中 斜截式:b kx y += (斜率存在) ; 截距式:1=+by a x (0a ≠≠且b 0) 一般式:0=++C By Ax )不同时为其中0,(B A 练习:3、过点(-1,2)且在坐标轴上的截距相等的直线的一般式方程是______.4、 已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x-y-5=0,∠B 平分线BN 所在直线方程为x-2y-5=0.求:(1)顶点B 的坐标;(2)直线BC 的方程.5、已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在的直线方程为2x-y-5=0,AC 边上的高BH 所在直线的方程为x-2y-5=0.(1)求直线BC 的方程;(2)求直线BC 关于CM 的对称直线方程.2、 两条直线位置关系的判定:已知 0:11=++C By Ax l , 0:22=++C By Ax l ,则:(1)0212121=+⇔⊥B B A A l l(2)1212211221//(1)-00(0);l l A B A B BC B C B ⇔=-≠≠且斜率存在,即1221(2)0(0).AC A C B -≠=斜率存在,即(3)1l 与2l 相交01221≠-⇔B A B A练习:6、若直线l1:(m-2)x-y-1=0与直线l2:3x-my=0互相平行,则m 的值为( )A. 0或或3B. 0或3C. 0或D. 或37、已知直线ax+3y-1=0与直线3x-y+2=0互相垂直,则a=( )A. -3B. -1C. 1D. 38、已知两条直线l1(3+m )x+4y=5-3m ,l2 2x+(5+m )y=8.当m 分别为何值时,l1与l2:(1)相交?(2)平行?(3)垂直?3、几种直线系方程(1)过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ(λ为参数),其中直线l 2不在直线系中. (2)平行于直线0n 0(n )Ax By C Ax By C ++=++=≠的直线可表示为(3)垂直于直线0m 0Ax By C Bx Ay ++=-+=的直线可表示为练习:9、过直线x+y-3=0和2x-y=0的交点,且与直线2x+y-5=0垂直的直线方程是()A. 4x+2y-3=0B. 4x-2y+3=0C. x+2y-3=0D. x-2y+3=010、已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M ,(1)求过点M 且到点P (0,4)的距离为2的直线l 的方程;(2)求过点M 且与直线l3:x+3y+1=0平行的直线l 的方程.三、直线的交点坐标与距离公式1.两条直线的交点2.几种距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P-+-= 点),(00y x P 到直线0:=++C By Ax l 的距离2200B A CBy Ax d +++=(直线方程要化为一般式)两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2212B A C C d +-=(直线化为系数相同的一般式)练习:11、原点到直线y=-x+的距离为( ) A. 1 B. C. 2 D.12、直线3x+4y-12=0和6x+8y+6=0间的距离是______ .13、若直线l1:x-2y+1=0与l2:2x+ay-2=0平行,则l1与l2的距离为( ) A. B. C. D.3、 直线l 上一动点P 到两个定点A 、B 的距离“最值问题”:(1) 在直线l 上求一点P ,使PB PA +取得最小值:“同侧对称异侧连”(2)在直线l 上求一点P 使PB PA -取得最大值:“异侧对称同侧连” (3) 22PB PA +的最值:函数思想“转换成一元二次函数,找对称轴”。
第三章 直线与方程知识点归纳及练习题
1.直线的倾斜角与斜率(1)倾斜角与斜率从“形”和“数”两方面刻画了直线的倾斜程度,但倾斜角α是角度(0°≤α<180°),是倾斜度的直接体现;斜率k是实数(k∈(-∞,+∞)),是倾斜程度的间接反映.在解题的过程中,用斜率往往比用倾斜角更方便.(2)倾斜角与斜率的对应关系:当α=90°时,直线的斜率不存在;当α≠90°时,斜率k=tan α,且经过两点A(x1,y1),B(x2,y2)(x1≠x2)的直线的斜率k AB=y2-y1 x2-x1.(3)当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增大到0(不含0).2.解题时要根据题目条件灵活选择,注意其适用条件:点斜式和斜截式不能表示斜率不存在的直线,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过原点的直线,一般式虽然可以表示任何直线,但要注意A2+B2≠0,必要时要对特殊情况进行讨论.3.由两直线的方程判断两条直线是否平行或垂直时,要注意条件的限制;同时已知平行或垂直关系求直线的方程或确定方程的系数关系时,要根据题目条件设出合理的直线方程.4.学习时要注意特殊情况下的距离公式,并注意利用它的几何意义,解题时往往将代数运算与几何图形直观分析相结合.5.直线系方程直线系方程是解析几何中直线方程的基本内容之一,它把具有某一共同性质的直线族表示成一个含参数的方程,然后根据直线所满足的其他条件确定出参数的值,进而求出直线方程.直线系方程的常见类型有:(1)过定点P (x 0,y 0)的直线系方程是:y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax +By +C =0的直线系方程是:Ax +By +λ=0(λ是参数,λ≠C );(3)垂直于已知直线Ax +By +C =0的直线系方程是:Bx -Ay +λ=0(λ是参数);(4)过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ是参数,当λ=0时,方程变为A 1x +B 1y +C 1=0,恰好表示直线l 1;当λ≠0时,方程表示过直线l 1和l 2的交点,但不含直线l 2).6.“对称”问题的解题策略对称问题主要有两大类:一类是中心对称,一类是轴对称.(1)中心对称①两点关于点对称,设P 1(x 1,y 1),P (a ,b ),则P 1(x 1,y 1)关于P (a ,b )对称的点为P 2(2a -x 1,2b -y 1),即P 为线段P 1P 2的中点.特别地,P (x ,y )关于原点对称的点为P ′(-x ,-y ).②两直线关于点对称,设直线l 1,l 2关于点P 对称,这时其中一条直线上任一点关于点P 对称的点在另一条直线上,并且l 1∥l 2,P 到l 1,l 2的距离相等.(2)轴对称①两点关于直线对称,设P 1,P 2关于直线l 对称,则直线P 1P 2与l 垂直,且线段P 1P 2的中点在l 上,这类问题的关键是由“垂直”和“平分”列方程.②两直线关于直线对称,设l 1,l 2关于直线l 对称.当三条直线l 1,l 2,l 共点时,l 上任意一点到l 1,l 2的距离相等,并且l 1,l 2中一条直线上任意一点关于l 对称的点在另外一条直线上;当l 1∥l 2∥l 时,l 1与l 间的距离等于l 2与l 间的距离.题型一 直线的倾斜角和斜率倾斜角和斜率分别从“形”和“数”两个方面刻画了直线的倾斜程度.倾斜角α与斜率k 的对应关系和单调性是解题的易错点,应引起特别重视.(1)对应关系①α≠90°时,k =tan α.②α=90°时,斜率不存在.(2)单调性当α由0°→90°→180°(不含180°)变化时,k 由0(含0)逐渐增大到+∞,然后由-∞逐渐增大到0(不含0).经过A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)两点的直线的斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2),应注意其适用的条件x 1≠x 2,当x 1=x 2时,直线斜率不存在.例1 已知坐标平面内的三点A (-1,1),B (1,1),C (2,3+1).(1)求直线AB ,BC ,AC 的斜率和倾斜角;(2)若D 为△ABC 的边AB 上一动点,求直线CD 的斜率k 的取值范围.跟踪训练1 求经过A (m,3)、B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围.题型二 直线方程的五种形式直线方程的五种形式在使用时要根据题目的条件灵活选择,尤其在选用四种特殊形式的方程时,注意其适用条件,必要时要对特殊情况进行讨论.求直线方程的方法一般是待定系数法,在使用待定系数法求直线方程时,要注意直线方程形式的选择及适用范围,如点斜式、斜截式适合直线斜率存在的情形,容易遗漏斜率不存在的情形;两点式不含垂直于坐标轴的直线;截距式不含垂直于坐标轴和过原点的直线;一般式适用于平面直角坐标系中的任何直线.因此,要注意运用分类讨论的思想.在高考中,题型以选择题和填空题为主,与其他知识点综合时,一般以解答题的形式出现.例2 求与直线y =43x +53垂直,并且与两坐标轴围成的三角形的面积为24的直线l 的方程.跟踪训练2 过点P (-1,0),Q (0,2)分别作两条互相平行的直线,使它们在x 轴上截距之差的绝对值为1,求这两条直线的方程.题型三直线的位置关系两条直线的位置关系有相交(特例垂直)、平行、重合三种,主要考查两条直线的平行和垂直.通常借助直线的斜截式方程来判断两条直线的位置关系.解题时要注意分析斜率是否存在,用一般式方程来判断,可以避免讨论斜率不存在的情况.例3已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a、b的值.(1)直线l1过点(-3,-1),并且直线l1与直线l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1、l2的距离相等.跟踪训练3(1)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程;(2)已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为 5.求直线l1的方程.题型四最值问题方法梳理1.构造函数求解最值:利用函数的定义域、奇偶性、周期性、单调性等性质特征及复合函数的结构特征求解函数的最值.2.结合直线方程的相关特征,保证在符合条件的范围内求解最值.3.结合图象,利用几何性质帮助解答.数学思想函数思想:通常情况下求解最值问题可以转化为对函数的研究,函数思想给我们一种最严谨的眼光来看待问题,是一种探求普遍真理的思想,本章中求最大距离、最大面积等问题时常常会用到函数思想.例4已知△ABC,A(1,1),B(m,m)(1<m<4),C(4,2).当m为何值时,△ABC的面积S最大?跟踪训练4 如图,一列载着危重病人的火车从O 地出发,沿北偏东α度(射线OA )方向行驶,其中sin α=1010.在距离O 地5a (a 为正常数)千米,北偏东β度的N 处住有一位医学专家,其中sin β=35,现120指挥中心紧急征调离O 地正东p 千米B 处的救护车,先到N 处载上医学专家,再全速赶往乘有危重病人的火车,并在C 处相遇.经计算,当两车行驶的路线与OB 所围成的三角形OBC 的面积S 最小时,抢救最及时.(1)在以O 为原点,正北方向为y 轴的直角坐标系中,求射线OA 所在的直线方程;(2)求S 关于p 的函数关系式S =f (p );(3)当p 为何值时,抢救最及时?题型五 分类讨论思想分类讨论思想其实质就是将整体问题化为部分问题来解决.在解题过程中,需选定一个标准,根据这个标准划分成几个能用不同形式解决的小问题,从而使问题得到解决.在本章中涉及到分类讨论的问题主要是由直线的斜率是否存在及直线的点斜式、斜截式、两点式、截距式的局限性引起的分类讨论问题.例5 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R )在两坐标轴上的截距相等,求直线l 的方程.题型六 数形结合思想根据数学问题的条件和结论的内在联系,将抽象的数学语言与直观的图形相结合,使抽象思维与形象思维相结合. 例6 已知直线l 过点P (-1,2),且与以A (-2,-3),B (3,0)为端点的线段相交,求直线l 的斜率的取值范围.1.在平面解析几何中,用代数知识解决几何问题时应首先挖掘出几何图形的几何条件,把它们进一步转化为代数方程之间的关系求解.2.关于对称问题,要充分利用“垂直平分”这个基本条件,“垂直”是指两个对称点的连线与已知直线垂直,“平分”是指:两对称点连成线段的中点在已知直线上,可通过这两个条件列方程组求解.3.涉及直线斜率问题时,应从斜率存在与不存在两方面考虑,防止漏掉情况.。
必修二第三章直线与方程知识点总结及练习(答案)
第三章 直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向x 轴平行或重合时,我们规定它的倾斜角为0(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=( P1(x1,y1),P2(x2,y2),x1≠x2)注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
1当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
12(7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交 交点坐标即方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的一组解。
方程组无解//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合(822,x y )是平面直角坐标系中的两个点,(9)点到直线距离公式:一点()00,y x P 到直线0:1=++C By Ax l 的距离2200BA C By Ax d +++=(10)两平行直线距离公式已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 的距离为2221BA C C d +-=直线的方程1.设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a +b +c =0.证明 ∵A 、B 、C 三点共线,∴k AB =k AC , ∴ca c ab a b a --=--3333,化简得a 2+ab +b 2=a 2+ac +c 2,∴b 2-c 2+ab -ac =0,(b -c )(a +b +c )=0, ∵a 、b 、c 互不相等,∴b -c ≠0,∴a +b +c =0.2.(2009·宜昌调研)若实数x ,y 满足等式(x -2)2+y 2=3,那么xy的最大值为 ( )A .21B .33 C .23D .3答案D3.(1)求经过点A (-5,2)且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程; (2)过点A (8,6)引三条直线l 1,l 2,l 3,它们的倾斜角之比为1∶2∶4,若直线l 2的方程是y =43x ,求 直线l 1,l 3的方程.解 (1)①当直线l 在x 、y 轴上的截距都为零时,设所求的直线方程为y =kx , 将(-5,2)代入y =kx 中,得k =-52,此时,直线方程为y =-52x , 即2x +5y =0. ②当横截距、纵截距都不是零时,设所求直线方程为ay a x +2=1,将(-5,2)代入所设方程,解得a =-21,此时,直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0.(2)设直线l 2的倾斜角为α,则tan α=43.于是tan 2α=ααsin cos 1-=3153541=-, tan2α=724)43(1432tan 1tan 222=-⨯=-αα,所以所求直线l 1的方程为y -6=31(x -8),即x -3y +10=0,l 3的方程为y -6=724(x -8),即24x -7y -150=0. 4.直线l 经过点P (3,2)且与x ,y 轴的正半轴分别交于A 、B 两点,△OAB 的面积为12,求直线l 的方程.解 方法一 设直线l 的方程为1=+bya x (a >0,b >0), ∴A (a ,0),B (0,b ), ∴⎪⎩⎪⎨⎧=+=.123,24ba ab 解得⎩⎨⎧==.4,6b a∴所求的直线方程为46yx +=1,即2x +3y -12=0. 方法二 设直线l 的方程为y -2=k (x -3), 令y =0,得直线l 在x 轴上的截距a =3-k2,令x =0,得直线l 在y 轴上的截距b =2-3k . ∴⎪⎭⎫ ⎝⎛-k 23(2-3k )=24.解得k =-32.∴所求直线方程为y -2=-32(x -3).即2x +3y -12=0.9.已知线段PQ 两端点的坐标分别为(-1,1)、(2,2),若直线l :x +my +m =0与线段PQ 有交点,求m 的取值范围.解 方法一 直线x +my +m =0恒过A (0,-1)点. k AP =1011+--=-2,k AQ =2021---=23, 则-m 1≥23或-m1≤-2, ∴-32≤m ≤21且m ≠0.又∵m =0时直线x +my +m =0与线段PQ 有交点,∴所求m 的取值范围是-32≤m ≤21. 方法二 过P 、Q 两点的直线方程为y -1=1212+-(x +1),即y =31x +34,代入x+my +m =0, 整理,得x =-37+m m . 由已知-1≤-37+m m ≤2, 解得-32≤m ≤21.两直线方程例1 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0, (1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值.解 (1)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为 l 1:y =-x a 2-3,l 2:y =x a-11-(a +1), l 1∥l 2⇔⎪⎩⎪⎨⎧+-≠--=-)1(3112a a a ,解得a =-1,综上可知,a =-1时,l 1∥l 2,否则l 1与l 2不平行.方法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎪⎩⎪⎨⎧≠⨯--=⨯--061)1(021)1(2a a a a⇔⎪⎩⎪⎨⎧≠-=--6)1(0222a a a a ⇒a =-1,故当a =-1时,l 1∥l 2,否则l 1与l 2不平行.(2)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立.当a ≠1时,l 1:y =-2a x -3,l 2:y =x a-11-(a +1), 由⎪⎭⎫⎝⎛-2a ·a-11=-1⇒a =32.方法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0⇒a =32. 例3 (12分)已知直线l 过点P (3,1)且被两平行线l 1:x +y +1=0,l 2:x +y +6=0截得的线段长为5,求直线l 的方程.解 方法一 若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别是A (3,-4),B (3,-9), 截得的线段长|AB |=|-4+9|=5,符合题意.若直线l 的斜率存在时,则设直线l 的方程为y =k (x -3)+1,分别与直线l 1,l 2的方程联立,由⎩⎨⎧=+++-=011)3(y x x k y ,解得A ⎪⎭⎫⎝⎛+-+-141,123k k k k .8分由⎩⎨⎧=+++-=061)3(y x x k y ,解得B ⎪⎭⎫⎝⎛+-+-191173k k ,k k ,由两点间的距离公式,得2173123⎪⎭⎫ ⎝⎛+--+-k k k k +2191141⎪⎭⎫⎝⎛+--+-k k k k =25, 解得k =0,即所求直线方程为y =1. 综上可知,直线l 的方程为x =3或y =1.方法二 设直线l 与l 1,l 2分别相交于A (x 1,y 1),B (x 2,y 2),则x 1+y 1+1=0,x 2+y 2+6=0,两式相减,得(x 1-x 2)+(y 1-y 2)=5①6分又(x 1-x 2)2+(y 1-y 2)2=25② 联立①②可得⎩⎨⎧=-=-052121y y x x 或⎩⎨⎧=-=-502121y y x x ,10分由上可知,直线l 的倾斜角分别为0°和90°, 故所求的直线方程为x =3或y =1.例4 求直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程.解 方法一 由⎩⎨⎧+=+=132x y x y 知直线l 1与l 的交点坐标为(-2,-1),∴设直线l 2的方程为y +1=k (x +2),即kx -y +2k -1=0.在直线l 上任取一点(1,2),由题设知点(1,2)到直线l 1、l 2的距离相等, 由点到直线的距离公式得 221122kk k +-+-=22)1(2322-++-,解得k =21(k =2舍去),∴直线l 2的方程为x -2y =0. 方法二 设所求直线上一点P (x ,y ),则在直线l 1上必存在一点P 1(x 0,y 0)与点P 关于直线l 对称. 由题设:直线PP 1与直线l 垂直,且线段PP 1的中点P 2⎪⎪⎭⎫ ⎝⎛++2,200y y x x 在直线l 上.∴⎪⎪⎩⎪⎪⎨⎧++=+-=•--122110000x x y y x x yy ,变形得⎩⎨⎧+=-=1100x y y x , 代入直线l 1:y =2x +3,得x +1=2×(y -1)+3,整理得x -2y =0.所以所求直线方程为x -2y =0.线性规划例1 画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域,并回答下列问题:(1)指出x ,y 的取值范围; (2)平面区域内有多少个整点?解 (1)不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合.x +y ≥0表示直线x +y =0上及右上方的点的集合, x ≤3表示直线x =3上及左方的点的集合.所以,不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x .表示的平面区域如图所示.结合图中可行域得x ⎥⎦⎤⎢⎣⎡-∈325,,y ∈[-3,8]. (2)由图形及不等式组知⎩⎨⎧∈≤≤-+≤≤-Z ,325x x x y x 且 当x =3时,-3≤y ≤8,有12个整点; 当x =2时,-2≤y ≤7,有10个整点;当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点; ∴平面区域内的整点共有 2+4+6+8+10+12=42(个).例2 (2008·湖南理,3)已知变量x 、y 满足条件,09201⎪⎩⎪⎨⎧≤-+≤-≥y x y x x 则x +y 的最大值是( )A .2B .5C .6D .8答案C例3 (12分)某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?解 设每天生产甲、乙两种产品分别为x 吨、y 吨,利润总额为z 万元,1分则线性约束条件为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+1515,3001032005430049y x y x y x y x4分目标函数为z =7x +12y , 6分 作出可行域如图,8分作出一组平行直线7x +12y =t ,当直线经过直线4x +5y =200和直线3x +10y =300的交点A (20,24)时,利润最大.10分即生产甲、乙两种产品分别为20吨、24吨时,利润总额最大,z max =7×20+12×24=428(万元).答 每天生产甲产品20吨、乙产品24吨,才能使利润总额达到最大.12分直线与方程1.设直线l 与x 轴的交点是P ,且倾斜角为α,若将此直线绕点P 按逆时针方向旋转45°,得到直线的倾斜角为α+45°,则( )A .0°≤α<180°B .0°≤α<135°C . 0°<α≤135°D . 0°<α<135°答案 D2.(2008·全国Ⅰ文)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30°B .45°C .60°D .120° 答案 B3.过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或4 答案 A4.过点P (-1,2)且方向向量为a =(-1,2)的直线方程为( )A .2x +y =0B .x -2y +5=0C .x -2y =0D .x +2y -5=0答案 A5.(2009·株州模拟)一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为 . 答案 x +2y -2=0或2x +y +2=0例1 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上.证明∵A (1,-1),B (3,3),C (4,5),∴k AB =1313-+=2,k BC =3435--=2,∴k AB =k BC , ∴A 、B 、C 三点共线.例2已知实数x ,y 满足y =x 2-2x +2 (-1≤x ≤1). 试求:23++x y 的最大值与最小值. 解 由23++x y 的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x ,y )的直线的斜率k ,如图可知:k PA≤k ≤k PB ,由已知可得:A (1,1),B (-1,5), ∴34≤k ≤8,故23++x y 的最大值为8,最小值为34. 例3 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍.解 (1)方法一 设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2),∴l 的方程为y =32x ,即2x -3y =0. 若a ≠0,则设l 的方程为1=+b ya x ,∵l 过点(3,2),∴123=+aa ,∴a =5,∴l 的方程为x +y -5=0, 综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 方法二 由题意知,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-k2,令x =0,得y =2-3k , 由已知3-k 2=2-3k ,解得k =-1或k =32,∴直线l 的方程为:y -2=-(x -3)或y -2=32(x -3), 即x +y -5=0或2x -3y =0.(2)由已知:设直线y =3x 的倾斜角为α,则所求直线的倾斜角为2α. ∵tan α=3,∴tan2α=αα2tan 1tan 2-=-43.又直线经过点A (-1,-3),、 因此所求直线方程为y +3=-43(x +1),即3x +4y +15=0. 例4 (12分)过点P (2,1)的直线l 交x 轴、y 轴正半轴于A 、B 两点,求使: (1)△AOB 面积最小时l 的方程;(2)|PA |·|PB |最小时l 的方程.解 方法一 设直线的方程为1=+bya x (a >2,b >1), 由已知可得112=+b a (1)∵2ba 12•≤b a 12+=1,∴ab ≥8.∴S △AOB =21ab ≥4.当且仅当a 2=b 1=21,即a =4,b =2时,S △AOB 取最小值4,此时直线l 的方程为24yx +=1,即x +2y -4=0. 6分 (2)由a 2+b1=1,得ab -a -2b =0, 变形得(a -2)(b -1)=2, |PA |·|PB |=22)01()2(-+-a ·22)1()02(b -+-=]4)1[(]1)2[(22+-⋅+-b a ≥)1(4)2(2-⋅-b a .当且仅当a -2=1,b -1=2,即a =3,b =3时,|PA |·|PB |取最小值4.此时直线l 的方程为x +y -3=0.方法二 设直线l 的方程为y -1=k (x -2) (k <0),则l 与x 轴、y 轴正半轴分别交于A ⎪⎭⎫ ⎝⎛-0,12k 、B (0,1-2k ).(1)S △AOB =21⎪⎭⎫ ⎝⎛-k 12(1-2k )=21×⎥⎦⎤⎢⎣⎡-+-+)1()4(4k k ≥21(4+4)=4. 当且仅当-4k =-k 1,即k =-21时取最小值,此时直线l 的方程为y -1=-21(x -2),即x +2y -4=0. 6分(2)|PA |·|PB |=22441)1(k k ++=84422++k k ≥4, 当且仅当24k=4k 2,即k =-1时取得最小值,此时直线l 的方程为y -1=-(x -2),即x +y -3=0.1.设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a +b +c =0.证明∵A 、B 、C 三点共线,∴k AB =k AC ,∴ca c ab a b a --=--3333,化简得a 2+ab +b 2=a 2+ac +c 2,∴b 2-c 2+ab -ac =0,(b -c )(a +b +c )=0, ∵a 、b 、c 互不相等,∴b -c ≠0,∴a +b +c =0.2.(2009·宜昌调研)若实数x ,y 满足等式(x -2)2+y 2=3,那么xy的最大值为 ( )A .21B .33 C .23D .3答案D3.(1)求经过点A (-5,2)且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程;·(2)过点A (8,6)引三条直线l 1,l 2,l 3,它们的倾斜角之比为1∶2∶4,若直线l 2的方程是y =43x ,求直线l 1,l 3的方程.解 (1)①当直线l 在x 、y 轴上的截距都为零时,设所求的直线方程为y =kx , 将(-5,2)代入y =kx 中,得k =-52,此时,直线方程为y =-52x ,即2x +5y =0. ②当横截距、纵截距都不是零时,设所求直线方程为ay a x+2=1, 将(-5,2)代入所设方程,解得a =-21,此时,直线方程为x +2y +1=0. 综上所述,所求直线方程为x +2y +1=0或2x +5y =0.(2)设直线l 2的倾斜角为α,则tan α=43.于是tan 2α=ααsin cos 1-=3153541=-, tan2α=724)43(1432tan 1tan 222=-⨯=-αα,所以所求直线l 1的方程为y -6=31(x -8), 即x -3y +10=0,l 3的方程为y -6=724(x -8),即24x -7y -150=0. 4.直线l 经过点P (3,2)且与x ,y 轴的正半轴分别交于A 、B 两点,△OAB 的面积为12,求直线l 的方程.解 方法一 设直线l 的方程为1=+bya x (a >0,b >0), ∴A (a ,0),B (0,b ),∴⎪⎩⎪⎨⎧=+=.123,24b a ab 解得⎩⎨⎧==.4,6b a ∴所求的直线方程为46y x +=1,即2x +3y -12=0.方法二 设直线l 的方程为y -2=k (x -3),令y =0,得直线l 在x 轴上的截距a =3-k2, 令x =0,得直线l 在y 轴上的截距b =2-3k .∴⎪⎭⎫ ⎝⎛-k 23(2-3k )=24.解得k =-32.∴所求直线方程为y -2=-32(x -3).即2x +3y -12=0.一、选择题1.直线x cos θ+y -1=0 (θ∈R )的倾斜角的范围是( ) A .[)π,0B .⎪⎭⎫⎢⎣⎡ππ43,4C .⎥⎦⎤⎢⎣⎡-4,4ππD .⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,0 答案D2.已知直线l 过点(a ,1),(a +1,tan α +1),则( )A .α一定是直线l 的倾斜角B .α一定不是直线l 的倾斜角C .α不一定是直线l 的倾斜角D .180°-α一定是直线l 的倾斜角答案C3.已知直线l 经过A (2,1),B (1,m 2)(m ∈R )两点,那么直线l 的倾斜角的取值范围是( )A .[)π,0B .⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡πππ,24,0C .⎥⎦⎤⎢⎣⎡40π,D .⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡ππππ,22,4 答案 B4.过点(1,3)作直线l ,若经过点(a ,0)和(0,b ),且a ∈N *,b ∈N *,则可作出的l 的条数为( )A .1B .2C .3D .4答案B5.经过点P (1,4)的直线在两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( ) A .x +2y -6=0 B .2x +y -6=0 C .x -2y +7=0D .x -2y -7=0答案B 6.若点A (2,-3)是直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的公共点,则相异两点(a 1,b 1)和(a 2,b 2)所确定的直线方程是( )A .2x -3y +1=0B .3x -2y +1=0C .2x -3y -1=0D .3x -2y -1=0答案A二、填空题7.(2008·浙江理,11)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a = . 答案 1+28.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是 . 答案31三、解答题9.已知线段PQ 两端点的坐标分别为(-1,1)、(2,2),若直线l :x +my +m =0与线段PQ 有交点,求m 的取值范围.解 方法一 直线x +my +m =0恒过A (0,-1)点. k AP =1011+--=-2,k AQ =2021---=23,则-m 1≥23或-m 1≤-2,∴-32≤m ≤21且m ≠0.又∵m =0时直线x +my +m =0与线段PQ 有交点,∴所求m 的取值范围是-32≤m ≤21. 方法二 过P 、Q 两点的直线方程为 y -1=1212+-(x +1),即y =31x +34,代入x+my +m =0,整理,得x =-37+m m.由已知-1≤-37+m m ≤2, 解得-32≤m ≤21. 10.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4);(2)斜率为61.解 (1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-k4-3,3k +4, 由已知,得(3k +4)(k4+3)=±6, 解得k 1=-32或k 2=-38. 直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =61x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1. ∴直线l 的方程为x -6y +6=0或x -6y -6=0. 11.已知两点A (-1,2),B (m ,3). (1)求直线AB 的方程;(2)已知实数m ∈⎥⎥⎦⎤⎢⎢⎣⎡---13,133,求直线AB 的倾斜角α的取值范围.解 (1)当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为y -2=11+m (x +1). (2)①当m =-1时,α=2π;②当m ≠-1时,m +1∈(]3,00,33 ⎪⎪⎭⎫⎢⎢⎣⎡-,∴k =11+m ∈(-∞,-3]∪⎪⎪⎭⎫⎢⎢⎣⎡+∞,33, ∴α∈⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡32,22,6ππππ .综合①②知,直线AB 的倾斜角α∈⎥⎦⎤⎢⎣⎡32,6ππ.12.过点P (3,0)作一直线,使它夹在两直线l 1:2x -y -2=0与l 2:x +y +3=0之间的线段AB 恰被点P 平分,求此直线的方程.解 方法一 设点A (x ,y )在l 1上,由题意知⎪⎪⎩⎪⎪⎨⎧=+=+0232B B y y x x ,∴点B (6-x ,-y ),解方程组⎩⎨⎧=+-+-=--03)()6(022y x y x ,得⎪⎪⎩⎪⎪⎨⎧==316311y x ,∴k =833110316=--. ∴所求的直线方程为y =8(x -3),即8x -y -24=0. 方法二 设所求的直线方程为y =k (x -3),则⎩⎨⎧=---=022)3(y x x k y ,解得⎪⎪⎩⎪⎪⎨⎧-=--=24223k ky k k x A A , 由⎩⎨⎧=++-=03)3(y x x k y ,解得⎪⎪⎩⎪⎪⎨⎧+-=+-=16133k ky k k x B B . ∵P (3,0)是线段AB 的中点,∴y A +y B =0,即24-k k +16+-k k =0,∴k 2-8k =0,解得k =0或k =8. 又∵当k =0时,x A =1,x B =-3,此时32312≠-=+B A x x ,∴k =0舍去, ∴所求的直线方程为y =8(x -3), 即8x -y -24=0.。
直线与方程知识总结及典型 例题(高一人教版必修二)
)
(A)2x-3y=0;
(B)x+y+5=0;
(C)2x-3y=0或x+y+5=0
(D)x+y+5或x-y+5=0
4.直线x=3的倾斜角是( )
A.0 B. C. D.不存在
5.圆x2+y2+4x=0的圆心坐标和半径分别是( )
A.(-2,0),2 B.(-2,0),4 C.(2,0),2 D.(2,0),4
相交 平行 重合
交点 夹角 平行线间的距离
表示平面区域
直线 与方程
直线与直线位置关系 倾斜角 五种形式 直线方程
二元一次不等式
线性规划 斜率
与
与方程 点 关于直线的方程,直线的斜率、倾斜角,两点间距离公式,点到直
线的距离公式,夹角与到角公式,两直线的垂直、平行关系等知识的试 题,都属于基本要求,既有选择题、填空题,也有解答题,所占的分值 为5~10分,一般涉及到两个以上的知识点,这些仍将是今后高考考查 的热点。
(A)-
(B)-3;
(C) (D)3
12.直线当变动时,所有直线都通过定点( )
(A)(0,0)
(B)(0,1)
(C)(3,1)
(D)(2,1)
二、填空题(每题4分,共16分)
13.直线过原点且倾角的正弦值是,则直线方程为
14.直线mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为
15.如果三条直线mx+y+3=0, xy2=0, 2xy+2=0不能成为一个三角形三边
7.点(2,1)到直线3x 4y + 2 = 0的距离是
(A) (B) (C) (D)
8.直线x y 3 = 0的倾斜角是( )
(A)30° (B)45° (C)60° (D)90°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程期末复习卷
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)
1.已知点A (1,3),B (-1,33),则直线AB 的倾斜角是( ) A .60° B .30° C .120°
D .150°
2.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0
D .x -y +3=0
3.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6 C .32
D .23
4.直线x a 2-y
b 2=1在y 轴上的截距为( )
A .|b |
B .-b 2
C .b 2
D .±b
5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0 B .-4 C .-8
D .4
6.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限
D .第四象限
7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )
A .-2
B .-7
C .3
D .1
8.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( )
A .19x -9y =0
B .9x +19y =0
C .3x +19y =0
D .19x -3y =0
9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0)
B .(17,27
)
C .(27,17)
D .(17,114
)
10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0
D .x +2y -3=0
11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )
A .-4
B .-2
C .0
D .2
12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )
A .(2,0)或(4,6)
B .(2,0)或(6,4)
C .(4,6)
D .(0,2)
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为_________.
14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.
15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.
16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知直线l 经过点P (-2,5)且斜率为-34,
(1)求直线l 的方程;
(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.
18.(本小题满分12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于
直线x+3y+4=0的直线方程.
19.(本小题满分12分)已知A(4,-3),B(2,-1)和直线l:4x+3y-2=0,求一点P,使|PA|=|PB|,且点P到直线l的距离等于2.
20.(本小题满分12分)△ABC中,A(0,1),AB边上的高CD所在直线的方程为x+2y -4=0,AC边上的中线BE所在直线的方程为2x+y-3=0.
(1)求直线AB的方程;
(2)求直线BC的方程;
(3)求△BDE的面积.
21.已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l 过定点;
(2)若直线l 不经过第四象限,求k 的取值范围;
(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为4,求直线l 的方程.
22.(1)要使直线l 1:m y m m x m m 2)()32(2
2
=-+-+与直线l 2:x -y=1平行,求m 的值.
(2)直线l 1:a x +(1-a)y=3与直线l 2:(a -1)x +(2a+3)y=2互相垂直,求a 的值.。