大学数学(高数微积分)专题七第1讲(课堂讲义)

合集下载

《微积分》(上下册) 教学课件 01.第1章 函数、极限、连续 高等数学第一章第9-10节

《微积分》(上下册) 教学课件 01.第1章 函数、极限、连续 高等数学第一章第9-10节
12
定义 2 设函数 f ( x)在U(x0, )内有定义,如果
y
lim f (x) f (x ),
x x0
0
y f (x)
称函数 f ( x)在点 x 连续. 0
如 f ( x) x2,
0
x0
x
lim f ( x) lim x2 4 f (2),
x2
x2
f ( x) x2在x 2点连续.
说明 y f (x)在x x0点连续 下列三条同时成立 (1) f (x0)有定义;
(2) lim f (x)存在; xx0
(3)lim x x0
f
(x)
f (x0 ).
13
例1
试证函数
f
ห้องสมุดไป่ตู้
(
x)
x
sin1 x
,
0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
3、反函数函数的连续性
严格单调的连续函数必有严格单调的连续反函数. 例如, y sin x在[ , ]上单调增加且连续,
22 故 y arcsinx 在[1,1]上也是单调增加且连续.
同理 y arccosx 在[1,1]上单调减少且连续;
y arctanx, y arccot x 在(,)上单调且连续.
§1.9 无穷小量的比较与等价代换
例如, 当x 0时, x, x2,sin x, x2 sin 1 都是无穷小.
x2
lim 0,

x0 x
x x2比x要快得多;
察 各 极 限
lim sin x x0 x

高等数学第七章资料

高等数学第七章资料
两边积分得
ln y ln( x 2) lnC 所以方程的通解为
y C( x 2)
例1 求方程 ( x 2) dy y dx
解2 方程改写为
的通解
y C e P( x)dx
dy 1 y 0 dx x 2
所以
p( x) 1 x2
由公式得通解
y

y2 C(1 x2 ) 1
三、小结
分离变量法步骤: 1.分离变量; 2.两端积分-------隐(显)式通解.
作业 P304习题7-2 1(1)(3)(7)(8), 2(1)(2)
第三节 齐次方程
一、齐次方程
定义1 可化为形如 dy f ( y ) 的一阶微分方程称为 dx x 齐次方程.
解: 设所求曲线方程为 y = y(x) , 则有如下关系式:
y' 2x

由①得
y x1 2
② (C为任意常数)
由 ② 得 C = 1, 因此所求曲线方程为 y x2 1 .
例2 列车在平直的线路上以20米/秒的速度行驶,
当制动时列车获得加速度 0.4 米/秒2, 问
(1)开始制动后多少时间列车才能停住? (2)在这段时间内列车行驶了多少路程?
解 分离变量
两边积分
ey ex C
即 (ex C )ey 1 0 ( C < 0 )
2、 求微分方程 dy 1 x y2 xy2 的通解 dx
解 方程可化为 分离变量,得 两边积分,得 得通解
dy (1 x)(1 y2 ) dx
dy 1 y2

y C1C2e x e2x是否 y 3 y 2 y 0的通解?

大一高数课件第七章7-3-1

大一高数课件第七章7-3-1
对角线的长为 |m n || ,m n |, n m n { 1 , 1 ,1 }m , n { 1 ,3 , 1 } m
|m n |3 , |m n |1,1
平 行 四 边 形 的 对 角 线 的 长 度 各 为3, 1.1

b0
=__________;
c0=____________;
5、一向量与xoy, yoz,zox三个坐标平面的夹角,,
满足cos2+cos2 +cos2 =____________ .
二、一向量的终点在点B(2,1,7),它在 X轴, Y轴 和Z轴上的投影依次为4,4和7,求这向量的 起点A的坐.标
zz1
(z2z)
zz1z2 1
,
M 为有向线段 AB的定比分点. M 为中点时,
x x1 x2 , 2
y y1 y2 , 2
z z1 z2 . 2
三、向量的模与方向余弦的坐标表示式
非零向量 a的方向角:
z
、、
非零向量与三条坐标轴的 正向的夹角称为方向角.
向向量量的的坐坐标 标: 表达ax式, :ay,a az ,{a x,a y,a z}
M 1 M 2 { x 2 x 1 ,y 2 y 1 ,z 2 z 1 } 特殊地: O M {x ,y ,z}
向量的加减法、向量与数的乘法运算的坐标表达式
a a b {{ a a x x , a b yx ,, a a zy } ,b y b , a { z b x b ,z b } y,b z},
空间两向量的夹角的概念:
a0,
b0,
向量a 与向量b 的夹角

大学数学(高数微积分)第九章欧几里得空间第七节(课堂讲义)PPT课件

大学数学(高数微积分)第九章欧几里得空间第七节(课堂讲义)PPT课件

一条直线)上所有点的距离以垂线最短.
下面可以证
明一个固定向量和一个子空间中各向量的距离也是
以“垂线最短” .
先设一个子空间 W,它是由向量 1, 2, …, k
所生成,即 W = L(1, 2, …, k) .
说一个向量 垂
直于子空间 W,就是指向量 垂直于 W 中任何一
个向量. 容易验证 垂直于 W 的充分必要条件是
我们想找出 y 对 x 的一个近似公式.
解 把表中数值画出图来看,发现它的变化
趋势近于一条直线.
因此我们决定选取 x 的一次式
ax + b 来表达 .
当然最好能选到适当的 a , b 使得
下面的等式
3.6a + b - 1.00 = 0 , 3.7a + b - 0.9 = 0 ,
9
3.8a + b - 0.9 = 0 , 3.9a + b - 0.81 = 0 , 4.0a + b - 0.60 = 0 , 4.1a + b - 0.56 = 0 , 4.2a + b - 0.35 = 0
都成立. 实际上是不可能的.
任何 a , b 代入上面
各式都会发生些误差.
于是想找 a , b 使得上面各
式的误差的平方和最小,即找 a , b 使
10
(3.6a + b - 1.00 )2 + (3.7a + b - 0.9 )2 + (3.8a + b - 0.9 )2 + (3.9a + b - 0.81 )2 + (4.0a + b - 0.60 )2 + (4.1a + b - 0.56 )2 + (4.2a + b - 0.35 )2 最小. 这里讨论的是误差的平方即二乘方,故称为 最小二乘法. 现在转向一般的最小二乘法问题.

大学数学(高数微积分)第七章线性变换第五节课件(课堂讲义)

大学数学(高数微积分)第七章线性变换第五节课件(课堂讲义)
等于空间的维数.
V1 , ,Vr 的维数之和
当线性变换 A 在一组基下的矩阵 A 是对角形
时:
1
A
2
.
n
整理课件
12
A 的特征多项式就是
| E - A | = ( - 1) ( - 2) … ( - n) .
因此,如果线性变换 A 在一组基下的矩阵是对角
形,那么主对角线上的元素除排列次序外是确定的. 它们正是 A 的特征多项式全部的根 (重根按重数计 算) .
第五节 对角矩阵
主要内容
充分必要条件 特征值与特征向量的性质 举例
整理课件
1
பைடு நூலகம்
一、充分必要条件
对角矩阵可以认为是矩阵中最简单的一种.

在我们来考察,究竟哪些线性变换的矩阵在一组适
当的基下可以是对角矩阵.
定理 8 设 A 是 n 维线性空间 V 的一个线性 变换, A 的矩阵可以在某一组基下为对角矩阵的 充分必要条件是, A 有 n 个线性无关的特征向量.
整理课件
13
三、举例
例 1 设线性变换 A 在基 1 , 2 , 3 下的矩阵

2 1 2 A 5 3 3
1 0 2 问是否存在一组基,使 A 在这组基下的矩阵为对
形?若存在,求出这组基.
整理课件
14
例 2 设线性变换 A 在基 1 , 2 , 3 下的矩阵

2 2 2 A 2 5 4.
a111 + a222 +…+ akkk + ak+1k+1k+1 = 0
第三式减去第二式得
a1(1 - k+1)1 + … + ak (k - k+1) k = 0 .

《大学数学课件一元函数微积分学》

《大学数学课件一元函数微积分学》

曲线长度与曲率
曲线长度公式
曲线长度的计算需要对曲线进行参数化,然 后对其微分求和。实数的曲线长度困难,函 数的曲线长度一般参数化之后再求积分。
计算曲率
曲率定义为在曲线某一点处曲线凝聚程度的 量,凡是具有确定的曲率的曲线上的点组成 的集合,成为曲线的曲率线。
微积分的实际应用举例
金融领域应用
微积分在金融等经济学领域中有广泛的应用,能 够帮助我们更好地理解时间价值、股市价格、股 息、衍生证券等。
龙虾曲线
一种分段光滑的曲线,通过迭代形成,是高阶 导数比较经典的应用之一。
复分析
复函数又叫做复变量函数,它是一个变量为一 个复数的函数。复分析是以复函数为研究对象 的数学分支。
不定积分的概念与求法
基本积分法
通过多种方法计算不定积 分:代换法、分部积分法、 三角函数积分法、有理函 数积分法、分式分解。
应用于牛顿第二定律
在物理领域中,微积分的应用非常广泛,牛顿第 二定律是牛顿—莱布尼茨公式的一个重要应用例 子。
定积分的概念与性质
定积分概念
在一定区间内,用先进(上)的近似值与落后(下)的近似值的平均数来逐 渐缩小误差范围的整个过程,那么最后这个误差的范围越来越小。
牛顿—莱布尼茨公式
定积分的本质意义就是计算曲线下对应的面积,和物理中的质量、体积密度、 功力密度有关,是牛顿—莱布尼茨公式的重要应用场景。
极限概念
当自变量趋近于某个值时,函数值趋近于一个限的极限。
高阶导数及其应用
高阶导数的定义
高阶导数指的是对导数的导数(即二阶导数、三阶导数……)
泰勒展开式
泰勒公式是一个非常重要的工具.利用泰勒公式,可以把函数转化成为一些比较简单的多项式的和的 形式,从而来研究一些不易计算的函数。

高等数学-第7章 微分方程

将上式两端积分,并由
中的函数可写成的函数,即
(引进新的未知函数(
代入方程(),便得方程
分离变量,得两端积分,得
代替
解方程
因此是齐次方程。

令,则
两端积分,得
以代入上式中的
方程
离变量后得,两端积分,得
,这是对应的齐次线性方程(
把上式代入(
.
以除)的两端,再通过上述代换得线性方程
型的微分方程

..
,那末而方程就成为
但是,因此又得到一个一阶微分方程
)的通解为
(3)
合函数的求导法则把化为对
)就成为
通解为
)的通解为
如果函数均是方程的解,那末
我们所求得的解是不是方程的通解呢?
,那末称此两函数在区间,否则,即
如果
就是该方程的通解,其中
的任一特解,
就是方程的通解。

.如果
的解,那末

的系数(
和它的各阶导数都只相差一个常数因子。


把代入方程(

)的两个根。

特征方程微分方程

型,
(是与
不是特征方程的根,



,)其中、
)的重复次数。

高等数学上册第七章课件.ppt


y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程

解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]

《高等数学(一)微积分》讲义

1.概念回顾
2、极限的求法, )
1)数列极限 lim an = A , 函数极限 lim f ( x ) = A .
n→∞ x
2)函数极限与单侧极限之间的关系
⎧ f ( x0 + ) = lim+ f ( x ) = A x → x0 ⎪ lim f ( x ) = A. ⇔ ⎨ x → x0 f ( x0 − ) = lim− f ( x ) = A ⎪ x → x0 ⎩
知识点:设 a0 ≠ 0, b0 ≠ 0, m , n ∈ N ,
⎧ am b m ⎪ n a x + L + a1 x + a0 ⎪ 则 lim m n =⎨0 x →∞ b x + L + b x + b n 1 0 ⎪∞ ⎪ ⎩ m=n m<n m>n
6/69
5n − 4 n − 1 例 6.(1) lim n+1 n→∞ 5 + 3n+ 2
5
2、 极限的求法
利用极限四则运算、 连续函数、重要极限、无穷小代换、洛比达法则等 例 5:
x+5 . 求 lim 2 x →∞ x − 9
解:
1 5 1 5 lim( + 2 ) + 2 x+5 x →∞ x x = 0 = 0. lim 2 = lim x x = x →∞ x − 9 x →∞ 9 9 1 1− 2 lim(1 − 2 ) x →∞ x x
2
x 2 ⋅ (3 x ) 3 所以 lim = lim = x → 0 (1 − cos 2 x )ln(1 + x ) x → 0 (2 x 2 ) ⋅ x 2
(3) lim x[ln( x + 2) − ln x ] = lim x ln(1 +

大学数学(高数微积分)专题七第2讲(课堂讲义)


力和速度.具体操作时,应注意以下几点:
(1)准确画出函数图象,注意函数的定义域.
5
思想方法概述
(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一
本 种行之有效的方法,值得注意的是首先要把方程两边的代数
讲 栏
式看作是两个函数的表达式(有时可能先作适当调整,以便于
目 开
作图),然后作出两个函数的图象,由图求解.

目 开
由图可知x·f(x)<0的x的取值范围是
关 (-1,0)∪(0,1).
13
热点分类突破
求参数范围或解不等式问题经常联系函数的图象,
本 讲
根据不等式中量的特点,选择适当的两个(或多个)函数,利
栏 用两个函数图象的上、下位置关系转化数量关系来解决问

开 题,往往可以避免繁琐的运算,获得简捷的解答.
由图知10<c<12,∴abc∈(10,12).
答案 (1)(-1,0)
(2)C
16
热点分类突破
类型三 利用数形结合思想求最值
例3 若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,
则|a+b-c|的最大值为
()
A. 2-1 B.1
C. 2
D.2

讲 解析 设a=(1,0),b=(0,1),c=(x,y),
目 开
速度.
关 5.数形结合思想常用模型:一次、二次函数图象;斜率公
式;两点间的距离公式(或向量的模、复数的模);点到直
线的距离公式等.
22
名师押题我来做
1.已知0<a<1,则方程a|x|=|logax|的实根个数为
A.1
B.2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档