2020届高考数学一轮复习人教B版空间向量的运算作业Word版含答案

合集下载

2020年高考数学一轮复习单元滚动检测卷系列8-立体几何与空间向量(含答案解析)

2020年高考数学一轮复习单元滚动检测卷系列8-立体几何与空间向量(含答案解析)

2020年高考数学一轮复习单元滚动检测卷系列考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.单元检测八立体几何与空间向量第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知α、β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a、b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a、b,a⊂α,b⊂β,a∥β,b∥α,可以推出α∥β的是()A.①③B.②④C.①④D.②③2.某空间几何体的三视图如图所示,则此几何体的体积()A.有最小值2 B.有最大值2C.有最大值6 D.有最大值43.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.如图所示,在正方体AC1中,E,F分别是AB和AA1的中点,给出下列说法:①E,C,D1,F四点共面;②CE,D1F,DA三线共点;③EF和BD1所成的角为45°;④A1B∥平面CD1E;⑤B1D⊥平面CD1E,其中,正确说法的个数是()A.2 B.3C.4 D.55.设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,则下列命题中正确的是()A.若α⊥β,β⊥γ,则α⊥γB.若α⊥β,m⊥α,则m∥βC.α∥β,m⊄β,m∥α,则m∥βD.m∥α,n∥β,α⊥β,则m⊥n6.将正三棱柱截去三个角如图1所示,A、B、C分别是△GHI三边的中点,得到几何体如图2,则该几何体按图2所示方向的侧视图为()7.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是()①动点A′在平面ABC上的射影在线段AF上;②BC∥平面A′DE;③三棱锥A′-FED的体积有最大值.A.①B.①②C.①②③D.②③8.如图,在棱长为4的正方体ABCD-A′B′C′D′中,E,F分别是AD,A′D′的中点,长为2的线段MN的一个端点M在线段EF上运动,另一个端点N在底面A′B′C′D′上运动,则线段MN的中点P的轨迹(曲面)与二面角A-A′D′-B′所围成的几何体的体积为()A.4π3 B.2π3C.π6 D.π3第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上) 9.已知直线l,m,平面α,β,且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l∥m;④若l∥m,则α⊥β.其中为真命题的序号是________10.如图所示,四棱锥P-ABCD的底面ABCD是边长为a的正方形,侧棱P A=a,PB=PD=2a,则它的5个面中,互相垂直的面有______对.11.一个圆锥的侧面展开图是圆心角为43π,半径为18 cm 的扇形,则圆锥母线与底面所成角的余弦值为________.12.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为________.13.某个几何体的三视图如图所示,其中正视图的圆弧是半径为2的半圆,则该几何体的表面积为________.14.已知单位向量i ,j ,k 两两所成夹角均为θ(0<θ<π,且θ≠π2),若空间向量a=x i +y j +z k (x ,y ,z ∈R ),则有序实数组(x ,y ,z )称为向量a 在“仿射”坐标系O -xyz (O 为坐标原点)下的“仿射”坐标,记作a =(x ,y ,z )θ.有下列命题: ①已知a =(2,0,-1)θ,b =(1,0,2)θ,则a ·b =0;②已知a =(x ,y,0)π3,b =(0,0,z )π3,其中xyz ≠0,则当且仅当x =y 时,向量a ,b的夹角取得最小值;③已知a =(x 1,y 1,z 1)θ,b =(x 2,y 2,z 2)θ,则a -b =(x 1-x 2,y 1-y 2,z 1-z 2)θ;④已知O A →=(1,0,0)π3,O B →=(0,1,0)π3,O C →=(0,0,1)π3,则三棱锥O -ABC 的体积V =212.其中真命题有________(写出所有真命题的序号).三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤)15.(13分)如图,在平行六面体ABCD-A1B1C1D1中,E,M,N分别是AA1,CD,CB的中点,求证:(1)MN∥B1D1;(2)AC1∥平面EB1D1.16.(13分)如图,三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.17.(13分)如图所示,已知四棱锥P—ABCD的底面ABCD是等腰梯形,且AB∥CD,O是AB的中点,PO⊥平面ABCD,PO=CD=DA=12AB=4,M是P A的中点.(1)证明:平面PBC∥平面ODM;(2)求平面PBC与平面P AD所成锐二面角的余弦值.18.(13分)如图,在三棱锥P-ABC中,底面ABC是边长为4的正三角形,P A=PC=23,侧面P AC⊥底面ABC,M,N分别为AB,PB的中点.(1)求证:AC⊥PB;(2)求二面角N-CM-B的余弦值.19.(14分)如图,在三棱锥P-ABC中,P A⊥平面ABC,AB⊥AC.(1)求证:AC⊥PB;(2)设O,D分别为AC,AP的中点,点G为△OAB内一点,且满足O G→=13(O A→+O B→),求证:DG∥平面PBC;(3)若AB=AC=2,P A=4,求二面角A-PB-C的余弦值.20.(14分)如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上、下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.答案解析1.C 2.B 3.B 4.B 5.C 6.A7.C [①中由已知可得面A ′FG ⊥面ABC ,∴点A ′在面ABC 上的射影在线段AF 上.②BC ∥DE ,根据线面平行的判定定理可得BC ∥平面A ′DE .③当面A ′DE ⊥面ABC 时,三棱锥A ′-FDE 的体积达到最大.]8.D [连接FN ,PF ,∵MF ⊥平面A ′B ′C ′D ′,∴MF ⊥NF ,又∵点P 为MN 的中点,∴PF =12MN =1,即得点P 的轨迹为以点F 为球心,半径为1的球在二面角A -A ′D ′-B ′内的部分,即为球的14,其体积V =14×43π×13=π3.故应选D.]9.①④解析 ①正确,因为l ⊥α,α∥β⇒l ⊥β,又m ⊂β,故l ⊥m ;②错,当两平面相交且交线为直线m 时也满足题意;③错,各种位置关系均有可能;④正确,l ⊥α,l ∥m ⇒m ⊥α,又m ⊂β,所以α⊥β,综上可知命题①④为真命题.10.5解析 底面ABCD 是边长为a 的正方形,侧棱P A =a ,PB =PD =2a ,可得P A ⊥底面ABCD ,P A ⊂平面P AB ,P A ⊂平面P AD ,可得:平面P AB ⊥平面ABCD ,平面P AD ⊥平面ABCD ;AB ⊥平面P AD ,可得平面P AB ⊥平面P AD ;BC ⊥平面P AB ,可得平面P AB ⊥平面PBC ;CD ⊥平面P AD ,可得平面P AD ⊥平面PCD . 11.23 解析 设母线长为l ,底面半径为r ,则依题意易知l =18 cm ,由θ=2πr l ,代入数据即可得r =12 cm ,因此所求角的余弦值即为r l =1218=23. 12.73πa 213.92+14π解析 依题意,题中的几何体是在一个长方体的上表面放置了半个圆柱,其中长方形的长、宽、高分别是4,5,4,圆柱的底面半径是2、高是5,因此该几何体的表面积等于3×(4×5)+2×(4×4)+π×22+12×(2π×2)×5=92+14π.14.③④解析 对①,a =2i -k ,b =i +2k ,则a ·b =(2i -k )·(i +2k )=2+3i ·k -2=3cos θ,当且仅当θ=π2时,3cos θ=0,故①错误;如图所示在正方体中设OA ,OB ,OC 分别为x ,y ,z 轴,若a =(x ,y,0),b =(0,0,z ),则当且仅当在平面AOB 中存在点D 使CD ⊥平面AOB 时,a ,b 的夹角最小,此时,x =y >0,故②错误;由题意a =x 1i +y 1j +z 1k ,b =x 2i +y 2j +z 2k ,所以a -b =x 1i +y 1j +z 1k -(x 2i +y 2j +z 2k )=(x 1-x 2)i +(y 1-y 2)j +(z 1-z 2)k ,故③正确;如图所示,正方体的边长为22,三棱锥O -ABC 为边长为1的正四面体,其体积为(22)3-13×12×(22)2×22×4=212,故④正确.15.证明(1)∵M,N分别是CD,CB的中点,∴MN∥BD.又∵BB1綊DD1,∴四边形BB1D1D是平行四边形.所以BD∥B1D1.又MN∥BD,从而MN∥B1D1.(2)方法一连接A1C1,A1C1与B1D1交于O点,连接OE.∵四边形A1B1C1D1为平行四边形,则O点是A1C1的中点,E 是AA1的中点,∴EO是△AA1C1的中位线,EO∥AC1,AC1⊄平面EB1D1,EO⊂平面EB1D1,所以AC1∥平面EB1D1.方法二取BB1中点为H点,连接AH,C1H,EH,∵E,H点分别为AA1,BB1中点,∴EH綊C1D1,则四边形EHC1D1是平行四边形,∴ED1∥HC1,又HC1⊄平面EB1D1,ED1⊂平面EB1D1,∴HC1∥平面EB1D1.又∵EA綊B1H,则四边形EAHB1是平行四边形,∴EB1∥AH,又AH⊄平面EB1D1,EB1⊂平面EB1D1,∴AH∥平面EB1D1.∵AH∩HC1=H,∴平面AHC1∥平面EB1D1.而AC1⊂平面AHC1,∴AC1∥平面EB1D1.16.(1)证明由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC ⊥平面ACC 1A 1.又∵DC 1⊂平面ACC 1A 1,∴DC 1⊥BC . 由题设知∠A 1DC 1=∠ADC =45°, ∴∠CDC 1=90°,即DC 1⊥DC . 又∵DC ∩BC =C ,∴DC 1⊥平面BDC . 又∵DC 1⊂平面BDC 1, ∴平面BDC 1⊥平面BDC .(2)解 设棱锥B -DACC 1的体积为V 1,AC =1. 由题意得V 1=13×1+22×1×1=12. ∵三棱柱ABC -A 1B 1C 1的体积V =1, ∴(V -V 1)∶V 1=1∶1.∴平面BDC 1分此棱柱所得两部分体积的比为1∶1. 17.(1)证明 因为O ,M 分别为AB ,AP 的中点, 所以OM ∥PB .又∵PB ⊄平面ODM ,OM ⊂平面ODM , ∴PB ∥平面ODM因为CD =12AB ,O 为AB 的中点,所以CD =BO , 又因为CD ∥AB ,所以四边形OBCD 为平行四边形, 所以BC ∥OD .又∵BC ⊄平面ODM ,OD ⊂平面ODM , ∴BC ∥平面ODM .因为BC ∩PB =B ,DO ∩OM =O , 所以平面PBC ∥平面ODM .(2)解 方法一 延长AD ,BC 交于点E ,连接PE ,则平面PBC ∩平面P AD =PE .易知PB =P A ,EB =EA ,PE =PE ,所以△PBE 与△P AE 全等.过点A 作AQ ⊥PE 于点Q ,连接BQ ,则BQ ⊥PE ,由二面角定义可知,∠AQB 为所求角或其补角.易求得PE =8,AE =8,P A =42, 由等积法求得AQ =27=BQ , 所以cos ∠AQB =AQ 2+BQ 2-AB 22AQ ·BQ=28+28-642×27×27=-17<0,所以所求角为π-∠AQB ,所以cos(π-∠AQB )=17, 因此平面PBC 与平面P AD 所成锐二面角的余弦值为17. 方法二 以O 为原点,建立如图所示的空间直角坐标系. 则P (0,0,4),B (-4,0,0), A (4,0,0),C (-2,-23,0), D (2,-23,0). 因为PB→=(-4,0,-4), BC→=(2,-23,0), 所以易求得平面PBC 的一个法向量n 1=(3,1,-3). 又P A →=(4,0,-4), AD→=(-2,-23,0), 所以易求得平面P AD 的一个法向量n 2=(3,-1,3). 设θ为平面PBC 与平面P AD 所成的锐二面角, 则cos θ=|3×3+1×-1+-3×3|3+1+3×3+1+3=17,所以平面PBC 与平面P AD 所成锐二面角的余弦值为17. 18.(1)证明 取AC 的中点O ,连接OP ,OB .∵P A =PC ,AB =CB ,∴AC ⊥PO ,AC ⊥OB .又∵平面P AC ⊥平面ABC ,且AC 是平面P AC 与平面ABC 的交线,PO ⊂平面P AC ,∴PO ⊥平面ABC .如图所示建立空间直角坐标系Oxyz ,由已知得A (2,0,0),B (0,23,0),C (-2,0,0), P (0,0,22),M (1,3,0),N (0,3,2). ∴A C →=(-4,0,0),P B →=(0,23,-22), ∴A C →·P B →=0, ∴A C →⊥P B →.∴AC ⊥PB .(2)解 CM →=(3,3,0),M N →=(-1,0,2), 设n =(x ,y ,z )为平面CMN 的法向量,则 ⎩⎪⎨⎪⎧CM →·n =3x +3y =0,M N →·n =-x +2z =0,取z =1,得x =2,y =- 6.n =(2,-6,1)为平面CMN 的一个法向量.又∵O P →=(0,0,22)为平面MBC 的一个法向量,设二面角N -CM -B 的大小等于θ,由已知得二面角N -CM -B 是锐角, ∴cos θ=|n ·O P →|n ||O P →||=13.∴二面角N -CM -B 的余弦值等于13.19.(1)证明 因为P A ⊥平面ABC ,AC ⊂平面ABC , 所以P A ⊥AC .又因为AB ⊥AC ,且P A ∩AB =A ,所以AC ⊥平面P AB . 又因为PB ⊂平面P AB , 所以AC ⊥PB .(2)证明 因为P A ⊥平面ABC ,所以P A ⊥AB ,P A ⊥AC . 又因为AB ⊥AC ,所以以A 为原点,分别以AC ,AB ,AP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz .设AC =2a ,AB =b ,P A =2c ,则A (0,0,0),B (0,b,0),C (2a,0,0),P (0,0,2c ),D (0,0,c ),O (a,0,0), 又因为O G →=13(O A →+O B →), 所以G (a 3,b3,0),于是D G →=(a 3,b3,-c ),B C →=(2a ,-b,0),P B →=(0,b ,-2c ). 设平面PBC 的一个法向量n =(x 0,y 0,z 0), 则有⎩⎨⎧n ·B C →=0n ·P B →=0,即⎩⎨⎧2ax 0-by 0=0,by 0-2cz 0=0.不妨设z 0=1,则有y 0=2c b ,x 0=ca , 所以n =(c a ,2cb ,1).因为n ·D G →=(c a ,2c b ,1)·(a 3,b3,-c ) =c a ·a 3+2c b ·b3+1·(-c )=0, 所以n ⊥D G →,又因为DG ⊄平面PBC ,所以DG ∥平面PBC .(3)解 由(2)可知平面PBC 的一个法向量n =(c a ,2cb ,1)=(2,2,1). 又因为AC ⊥平面P AB ,所以面P AB 的一个法向量是A C →=(2,0,0).又cos 〈n ,A C →〉=n ·A C →|n ||A C →|=43×2=23,由图可知,二面角A -PB -C 为锐角, 所以二面角A -PB -C 的余弦值为23.20.(1)证明 因为BQ ∥AA 1,BC ∥AD ,BC ∩BQ =B , AD ∩AA 1=A ,所以平面QBC ∥平面A 1AD .从而平面A 1CD 与这两个平面的交线相互平行, 即QC ∥A 1D .故△QBC 与△A 1AD 的对应边相互平行, 于是△QBC ∽△A 1AD .所以BQ BB 1=BQ AA 1=BC AD =12,即Q 为BB 1的中点.(2)解 如,连接QA ,QD ,设AA 1=h ,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下, BC =a ,则AD =2a .图(1)VQ -A 1AD =13·12·2a ·h ·d =13ahd ,V Q -ABCD =13·a +2a 2·d ·(12h )=14ahd , 所以V 下=VQ -A 1AD +V Q -ABCD =712ahd , 又V 四棱柱A 1B 1C 1D 1-ABCD =32ahd , 所以V 上=V 四棱柱A 1B 1C 1D 1-ABCD -V 下 图(1)=32ahd -712ahd =1112ahd . 故V 上∶V 下=11∶7.(3)解 如,以D 为坐标原点,DA →,DD 1→分别为x 轴和z 轴正方向建立空间直角坐标系.设∠CDA =θ,BC =a , 则AD =2a , 因为S 梯形ABCD =a +2a 2·2sin θ=6,所以a =2sin θ.从而C (2cos θ,2sin θ,0),A 1(4sin θ,0,4), 所以DC →=(2cos θ,2sin θ,0),DA 1→=(4sin θ,0,4), 图(2)设平面A 1DC 的一个法向量n =(x ,y,1), 由⎩⎪⎨⎪⎧DA 1→·n =4sin θ x +4=0,DC →·n =2x cos θ+2y sin θ=0,得x =-sin θ,y =cos θ, 所以n =(-sin θ,cos θ,1).又因为平面ABCD 的一个法向量m =(0,0,1), 所以cos 〈n ,m 〉=n ·m |n ||m |=22,故平面α与底面ABCD 所成二面角的大小为π4.。

高考数学一轮复习学案:空间向量及其运算(含答案)

高考数学一轮复习学案:空间向量及其运算(含答案)

高考数学一轮复习学案:空间向量及其运算(含答案)8.6空间向量及其运算空间向量及其运算最新考纲考情考向分析1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示2.掌握空间向量的线性运算及其坐标表示3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线和垂直.本节是空间向量的基础内容,涉及空间直角坐标系.空间向量的有关概念.定理.公式及四种运算等内容一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行.垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力.1空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度模为1的向量相等向量方向相同且模相等的向量ab相反向量方向相反且模相等的向量a的相反向量为a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量ab共面向量平行于同一个平面的向量2.空间向量中的有关定理1共线向量定理空间两个向量a与bb0共线的充要条件是存在实数,使得ab.2共面向量定理共面向量定理的向量表达式pxayb,其中x,yR,a,b为不共线向量3空间向量基本定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组x,y,z,使得pxaybzc,a,b,c叫做空间的一个基底3空间向量的数量积及运算律1数量积及相关概念两向量的夹角已知两个非零向量a,b,在空间任取一点O,作OAa,OBb,则AOB叫做向量a,b的夹角,记作a,b,其范围是0a,b,若a,b2,则称a与b互相垂直,记作ab.两向量的数量积已知空间两个非零向量a,b,则|a||b|cosa,b叫做向量a,b 的数量积,记作ab,即ab|a||b|cosa,b2空间向量数量积的运算律abab;交换律abba;分配律abcabac.4空间向量的坐标表示及其应用设aa1,a2,a3,bb1,b2,b3.向量表示坐标表示数量积aba1b1a2b2a3b3共线abb0,Ra1b1,a2b2,a3b3垂直ab0a0,b0a1b1a2b2a3b30模|a|a21a22a23夹角a,ba0,b0cosa,ba1b1a2b2a3b3a21a22a23b21b22b23知识拓展1向量三点共线定理在平面中A,B,C三点共线的充要条件是OAxOByOC其中xy1,O 为平面内任意一点2向量四点共面定理在空间中P,A,B,C四点共面的充要条件是OPxOAyOBzOC其中xyz1,O为空间中任意一点题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1空间中任意两个非零向量a,b共面2在向量的数量积运算中abcabc3对于非零向量b,由abbc,则ac.4两向量夹角的范围与两异面直线所成角的范围相同5若A,B,C,D是空间任意四点,则有ABBCCDDA0.6若ab0,则a,b是钝角题组二教材改编2P97A组T2如图所示,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点若ABa,ADb,AA1c,则下列向量中与BM相等的向量是A12a12bcB.12a12bcC12a12bcD.12a12bc答案A解析BMBB1B1MAA112ADABc12ba12a12bc.3P98T3正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长为________答案2解析|EF|2EF2ECCDDF2EC2CD2DF22ECCDECDFCDDF122212212cos120021co s1202,|EF|2,EF的长为2.题组三易错自纠4在空间直角坐标系中,已知A1,2,3,B2,1,6,C3,2,1,D4,3,0,则直线AB与CD的位置关系是A垂直B平行C 异面D相交但不垂直答案B解析由题意得,AB3,3,3,CD1,1,1,AB3CD,AB与CD共线,又AB与CD没有公共点,ABCD.5与向量3,4,5共线的单位向量是__________________________________答案3210,225,22和3210,225,22解析因为与向量a共线的单位向量是a|a|,又因为向量3,4,5的模为32425252,所以与向量3,4,5共线的单位向量是1523,4,52103,4,56O为空间中任意一点,A,B,C三点不共线,且OP34OA18OBtOC,若P,A,B,C四点共面,则实数t______.答案18解析P,A,B,C四点共面,3418t1,t18.题型一空间向量的线性运算1.如图所示,在长方体ABCDA1B1C1D1中,O为AC的中点用AB,AD,AA1表示OC1,则OC1________________.答案12AB12ADAA1解析OC12AC12ABAD,OC1OCCC112ABADAA112AB12ADAA1.2.xx上饶期中如图,在三棱锥OABC中,M,N分别是AB,OC 的中点,设OAa,OBb,OCc,用a,b,c表示NM,则NM等于A.12abcB.12abcC.12abcD.12abc答案B解析NMNAAMOAON12ABOA12OC12OBOA12OA12OB12OC12abc思维升华用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键要正确理解向量加法.减法与数乘运算的几何意义首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量在立体几何中三角形法则.平行四边形法则仍然成立题型二共线定理.共面定理的应用典例典例xx唐山质检如图所示,已知斜三棱柱ABCA1B1C1,点M,N分别在AC1和BC上,且满足AMkAC1,BNkBC0k11向量MN是否与向量AB,AA1共面2直线MN是否与平面ABB1A1平行解1AMkAC1,BNkBC,MNMAABBNkC1AABkBCkC1ABCABkC1AB1C1ABkB1AABABkAB1ABkAA1AB1k ABkAA1,由共面向量定理知向量MN与向量AB,AA1共面2当k0时,点M,A重合,点N,B重合,MN在平面ABB1A1内,当0k1时,MN不在平面ABB1A1内,又由1知MN与AB,AA1共面,MN平面ABB1A1.思维升华1证明空间三点P,A,B共线的方法PAPBR;对空间任一点O,OPOAtABtR;对空间任一点O,OPxOAyOBxy12证明空间四点P,M,A,B共面的方法MPxMAyMB;对空间任一点O,OPOMxMAyMB;对空间任一点O,OPxOMyOAzOBxyz1;PMAB或PAMB 或PBAM跟踪训练xx抚州模拟如图,在四棱柱ABCDA1B1C1D1中,底面ABCD是平行四边形,E,F,G分别是A1D1,D1D,D1C1的中点1试用向量AB,AD,AA1表示AG;2用向量方法证明平面EFG 平面AB1C.1解设ABa,ADb,AA1c.由图得AGAA1A1D1D1Gcb12DC12abc12ABADAA1.2证明由题图,得ACABBCab,EGED1D1G12b12a12AC,EG与AC无公共点,EGAC,EG 平面AB1C,AC平面AB1C,EG平面AB1C.又AB1ABBB1ac,FGFD1D1G12c12a12AB1,FG与AB1无公共点,FGAB1,FG平面AB1C,AB1平面AB1C,FG平面AB1C,又FGEGG,FG,EG平面EFG,平面EFG平面AB1C.题型三空间向量数量积的应用典例xx济南月考如图,已知平行六面体ABCDA1B1C1D1中,底面ABCD是边长为1的正方形,AA12,A1ABA1AD120.1求线段AC1的长;2求异面直线AC1与A1D所成角的余弦值;3求证AA1BD.1解设ABa,ADb,AA1c,则|a||b|1,|c|2,ab0,cacb21cos1201.AC1ACCC1ABADAA1abc,|AC1||abc|abc2|a|2|b|2|c|22abbcca121222xx2.线段AC1的长为2.2解设异面直线AC1与A1D所成的角为,则cos|cosAC1,A1D||AC1A1D||AC1||A1D|.AC1abc,A1Dbc,AC1A1Dabcbcabacb2cxx2222,|A1D|bc2|b|22bc|c|21221227.cos|AC1A1D||AC1||A1D||2|27147.故异面直线AC1与A1D 所成角的余弦值为147.3证明AA1c,BDba,AA1BDcbacbca110,AA1BD,即AA1BD.思维升华1利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置2利用夹角公式,可以求异面直线所成的角,也可以求二面角3可以通过|a|a2,将向量的长度问题转化为向量数量积的问题求解跟踪训练如图,在平行六面体ABCDA1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两两夹角为60.1求AC1的长;2求BD1与AC夹角的余弦值解1记ABa,ADb,AA1c,则|a||b||c|1,a,bb,cc,a60,abbcca12.|AC1|2abc2a2b2c22abbcca11121212126,|AC1|6,即AC1的长为6.2BD1bca,ACab,|BD1|2,|AC|3,BD1ACbcaabb2a2acbc1,cosBD1,ACBD1AC|BD1||AC|66.即BD1与AC夹角的余弦值为66.坐标法在立体几何中的应用典例12分如图,已知直三棱柱ABCA1B1C1,在底面ABC中,CACB1,BCA90,棱AA12,M,N分别是A1B1,A1A的中点1求BN的模;2求cosBA1,CB1的值;3求证A1BC1M.思想方法指导利用向量解决立体几何问题时,首先要将几何问题转化成向量问题,通过建立坐标系利用向量的坐标进行求解规范解答1解如图,以点C作为坐标原点O,CA,CB,CC1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系由题意得B0,1,0,N1,0,1,所以|BN|10xx1023.2分2解由题意得A11,0,2,B0,1,0,C0,0,0,B10,1,2,所以BA11,1,2,CB10,1,2,BA1CB13,|BA1|6,|CB1|5,所以cosBA1,CB1BA1CB1|BA1||CB1|3010.6分3证明由题意得C10,0,2,M12,12,2,A1B1,1,2,C1M12,12,0,9分所以A1BC1M121200,所以A1BC1M,即A1BC1M.12分。

2020年新高考数学一轮复习考点题型深度剖析专题39空间向量的运算及应用课后层级训练含解析

2020年新高考数学一轮复习考点题型深度剖析专题39空间向量的运算及应用课后层级训练含解析

1.如图,三棱锥O ABC中,M,N分别是AB,OC的中点,设OA=a,OB=b,OC=c,用a,b,c表示NM,则NMA.(-a+b+c)B.(a+b-c)C.(a-b+c)D.(-a-b+c)→→→→→1→→1→1→→1→1→1→1【答案】B[NM=NA+AM=(OA-ON)+AB=OA-OC+(OB-OA)=OA+OB-OC=(a+b-c).]2.已知四边形ABCD满足:AB·BC>0,BC·CD>0,CD·DA>0,DA·AB>0,则该四边形为()【答案】D[由AB·BC>0,BC·CD>0,CD·DA>0,DA·AB>0,知该四边形一定不是平面图形.]3.在空间四边形ABCD中,AB·CD+AC·DB+AD·BC=()令AB=a,AC=b,AD=c,则AB·CD+AC·DB+AD·BC=a·(c-b)+b·(a-c)+c·(b-a)=a·c-a·b+b·a 课下层级训练(三十九)空间向量的运算及应用[A级基础强化训练]→→→→→=()121212122222222→→→→→→→→A.平行四边形C.长方形B.梯形D.空间四边形→→→→→→→→→→→→→→A.-1C.1【答案】B[如图,B.0D.不确定→→→→→→→→→-b·c+c·b-c·a=0.]4.如图,在大小为45°的二面角A EF D中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是()A.3C.1B.2D.3-2【答案】D[∵BD=BF+FE+ED,∴|BD|2=|BF|2+|FE|2+|ED|2+2BF·FE+2FE·ED+2BF·ED=1+1+1-2=3-2,故|BD|=3- 2.]5.正方体ABCD A1B1C1D1的棱长为1,若动点P在线段BD1上运动,则DC·AP的取值范围是()由题意,设BP=λBD1,其中λ∈[0,1],DC·AP=AB·(AB+BP)=AB·(AB+λBD1)=AB2+λAB·BD1=1+3⎪=1-λ∈[0,1].因此→·→的取值范围是[0,1].]DC AP⎛→1→→6.在空间四边形ABCD中,G为CD的中点,则AB+(BD+BC)=________.→→1→→→1→→→→【答案】AG[依题意有AB+(BD+BC)=AB+×2BG=AB+BG=AG.]7.如图,在四面体O ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=________.(用【答案】a+b+c[OE=OA+OD=OA+OB+OC=a+b+c.]【答案】2[|EF|2=EF2=(EC+CD+DF)2=EC2+CD2+DF2+2(EC·CD+EC·DF+CD·DF)=12+22+12+2(1×2×cos120°+0+2×1×cos120°)=2,∴|EF|=2,∴EF的长为 2.]→→→→→→→→→→→→→→→→→A.(0,1)C.[0,1]【答案】C[如图所示,B.[0,1)D.[-1,1]→→→→→→→→→→→→→λ· -⎝3⎫3⎭222→→→→a,b,c表示)111→1→1→1→1→1→111244222442448.正四面体ABCD的棱长为2,E,F分别为BC,AD中点,则EF的长为________.→→→→→→→→→→→→→→→12 9.如图,四棱柱ABCD A1B1C1D1的各个面都是平行四边形,E、F分别在B1B和D1D上,且BE=3BB1,DF=3DD1.(1)求证:A、E、C1、F四点共面;(2)已知EF=xAB+yAD+zAA1,求x+y+z的值.【答案】(1)证明∵AC1=AB+AD+AA1=AB+AD+AA1+AA13= AB+AA1⎪+ AD+AA1⎪3⎭⎝=(AB+BE)+(AD+DF)=AE+AF.(2)解∵EF=AF-AE=AD+DF-(AB+BE)=AD+DD1-AB-BB1=-AB+AD+AA1.3∴x=-1,y=1,z=,∴x+y+z=.10.如图,在正方体ABCD A1B1C1D1中,AA1=a,AB=b,AD=c,点M,N分别是A1D,B1D1的中点.(1)试用a,b,c表示MN;【答案】(1)解∵A1D=AD-AA1=c-a,∴A1M=A1D=(c-a).2同理,A1N=(b+c),2∴MN=A1N-A1M=(b+c)-(c-a)2=(b+a)=a+b.(2)证明∵AB1=AA1+AB=a+b,∴MN=AB1,即MN∥AB1,2→→→→→→→→→→1→2→3⎛→1→⎫⎛→2→⎫⎝3⎭→→→→→→又AC1、AE、AF有公共点A,∴A、E、C1、F四点共面.→→→→→→→→2→→1→→→1→331133→→→→(2)求证:MN∥平面ABB1A1.→→→→1→12→1→→→112111222→→→→1→∵AB1⊂平面ABB1A1,MN⊄平面ABB1A1,∴MN∥平面ABB1A1.[B级能力提升训练]11.已知空间四边形 ABCD 的每条边和对角线的长都等于 a ,点 E ,F 分别是 BC ,AD 的中点,则AE ·AF 的值为( )A .a21a 2 C . a 2D . 3 → → 1 → → 1→ 1 → → → → 1 1 【答案】C[AE ·AF = (AB +AC )· AD = (AB ·AD +AC ·AD )= (a 2cos 60°+a 2cos 60°)= a 2.]A .AE ·BC <AE ·CDB .AE ·BC =AE ·CDC .AE ·BC >AE ·CDD .AE ·BC 与AE ·CD 的大小不能比较【答案】C[取 BD 的中点 F ,连接 EF ,则 EF ∥CD 且 EF = CD .因为 AE ⊥BC ,〈AE ,EF 〉=〈AE ,CD 〉>90°,所以AE ·BC =0,AE ·CD <0,因此AE ·BC >AE ·CD .]13.A ,B ,C ,D 是空间不共面四点,且AB ·AC =0,AC ·AD =0,AB ·AD =0,则△BCD 的形状是________三角【答案】锐角[因为BC ·BD =(AC -AB )·(AD -AB )=AC ·AD -AC ·AB -AB ·AD +AB 2=AB 2>0,①(A 1A +A 1D 1+A 1B 1)2=3A 1B 12;②A 1C ·(A 1B 1-A 1A )=0;③向量AD 1与向量A 1B 的夹角是 60°;④正方体 ABCD A 1B 1C 1D 1 的体积为|AB ·AA 1·AD |.【答案】①② [①中,(A 1A +A 1D 1+A 1B 1)2=A 1A 2+A 1D 12+A 1B 12=3A 1B 12,故①正确;②中,A 1B 1-A 1A =AB 1,因为AB 1⊥A 1C ,故②正确;③中,两异面直线 A 1B 与 AD 1 所成的角为 60°,但AD1与A →1B 的夹角为 120°,故③不正确;④中,|AB ·AA 1·AD |=0,故④也不正确.]→ →21 44a 22 2 4 4 412.空间四边形 ABCD 的各边和对角线均相等,E 是 BC 的中点,那么()→ → → →→ → → →→ → → →→ → → →12→ → → → → → → → → → → →→ → → → → →形.(填锐角、直角、钝角中的一个)→ → → → → →→ → → → → → → → 所以∠CBD 为锐角.同理∠BCD ,∠BDC 均为锐角.] 14.已知 ABCD A 1B 1C 1D 1 为正方体, → → → →→ → →→ →→ → →其中正确的序号是________.→ → → → → → → → → →→→ → →(1)EF·BA;(2)EF·DC;【答案】解设AB=a,AC=b,AD=c.→1→1→(1)EF=BD=c-a,BA=-a,DC=b-c,→EF·→=(c-a)·(-a)=a2-a·c=.→→1(2)EF·DC=(c-a)·(b-c)=(b·c-a·b-c2+a·c)=-.→→→→111(3)EG=EB+BC+CG=a+b-a+c-b=-a+b+c,|EG|2=a2+b2+c2-a·b+b·c-c·a=,则|EG|=.→11→→→1(4)AG=b+c,CE=CA+AE=-b+a,AG·CE2cos〈AG,CE〉==-,|AG||CE|由于异面直线所成角的范围是(0,],所以异面直线AG与CE所成角的余弦值为.11115.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:→→→→(3)EG的长;(4)异面直线AG与CE所成角的余弦值.→→→则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,22211111BA2222421124222111222→1111→244422222222→→→→→→3π22316.(2019·辽宁沈阳模拟)如图,在直三棱柱ABC A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点.(1)求证:CE⊥A′D;【答案】(1)证明设CA=a,CB=b,CC′=c,∴CE=b+c,A′D=-c+b-a.∴CE·A′D=-c2+b2=0.∴CE⊥A′D,即CE⊥A′D.(2)解∵AC′=-a+c,|AC′|=2|a|,|CE|=|a|.AC →′·CE=(-a+c)·(b+c)=c2=|a|2,1∴cos〈AC′,CE〉=|a|2=1052×|a|2即异面直线CE与AC′所成角的余弦值为10(2)求异面直线CE与AC′所成角的余弦值.→→→根据题意得,|a|=|b|=|c|,且a·b=b·c=c·a=0,→→11222→→1122→→→→→52→111222→→12210.10.。

2020高考数学 第九章 7 空间向量及其运算课后限时作业 理(通用版).doc

2020高考数学 第九章 7 空间向量及其运算课后限时作业 理(通用版).doc

高考立体设计理数通用版第九章 7 空间向量及其运算课后限时作业一、选择题(本大题共6小题,每小题7分,共42分)1.已知空间向量AB →、BC →、CD →、AD →,则下列结论正确的是 ( ) A.AB →=BC →+C D →B.AB →-DC →+BC →=AD →C.AD →=AB →+BC →+DC →D.BC →=BD →-DC →解析:利用向量加法的三角形法则验证即可. 答案:B2.给出下列命题:①将空间中所有的单位向量移到同一个点为起点,则它们的终点构成一个圆; ②若空间向量a 、b 满足|a|=|b|,则a=b ; ③在正方体ABCD-A 1B 1C 1D 1中,必有11C A AC =;④若空间向量m 、n 、p 满足m=n ,n=p,则m=p ; ⑤空间中任意两个单位向量必相等.其中假命题的个数是 ( ) A .1 B .2 C .3 D .4解析:①假命题.将空间中所有的单位向量移到同一个点为起点时,它们的终点将构成一个球面,而不是一个圆;②假命题.根据向量相等的定义,要保证两向量相等,不仅模要相等,而且方向还要相同,但②中向量a 与b 的方向不一定相同;③真命题. 11C A AC 与的方向相同,模也相等,应有11C A AC =;④真命题.向量的相等满足递推规律;⑤假命题.空间中任意两个单位向量模均为1,但方向不一定相同,故不一定相等. 故选C. 答案:C3.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0D.OM →+OA →+OB →+OC →=0 解析:由共面向量定理知C 正确. 答案:C4.下列各组向量中不平行的是 ( ) A.a=(1,2,-2),b=(-2,-4,4) B.c=(1,0,0),d=(-3,0,0) C.e=(2,3,0),f=(0,0,0) D.g=(-2,3,5),h=(16,24,40) 解析:b=-2a ⇒a ∥b;d=-3c ⇒d ∥c;零向量与任何向量都平行. 答案:D5.已知向量a=(1,1,0),b=(-1,0,2),且ka+b 与2a-b 互相垂直,则k 的值是 ( ) A.1B.51C.53 D.57 解析:由题意得(ka+b)·(2a-b)=0,解得k=57. 答案:D6.在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若c A A b D A a B A ===11111,,.则下列向量中与M B 1相等的向量是( )A.c b a ++-2121B.c b a ++2121 C. c b a +-2121D. c b a +--2121解析:()()c b a b a c BC BA A A BM B B M B ++-=+-+=++=+=21212121111.答案:A二、填空题(本大题共4小题,每小题6分,共24分)7.已知向量a=(2,-1,3),b=(-4,2,x),若a ⊥b ,则x= ;若a ∥b,则 x= . 解析:若a ⊥b ,则-8-2+3x=0,x=310;若a ∥b ,则2∶(-4)=(-1)∶2=3∶x,x=-6. 答案:310-6 8.已知向量a=(2,-3,0),b=(k,0,3),若a,b 成120°角,则k= . 解析:cos 〈a,b 〉=219132||||2-=+⨯=••k k b a b a ,得k=39-.答案:39-9.已知G 是△ABC 的重心,O 是空间中与G 不重合的任一点,若OG OC OB OA λ=++,则λ= . 解析:重心G坐标为⎪⎭⎫⎝⎛++++++3,3,3321321321z z z y y y x x x ,有()OC OB OA OG ++=31. 答案:310.如图,在棱长为1的正方体A BCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .解析:建立空间直角坐标系,易知52cos =θ. 答案:52 三、解答题(本大题共2小题,每小题12分,共24分)11.如图所示,棱长为1的正方体ABCD —A 1B 1C 1D 1,E 、F 、G 分别是DD 1、BD 、BB 1的中点.(1)求证:EF ⊥CF . (2)求CE 的长.(1)证明:建立右图所示的空间直角坐标系D —xyz .则D (0,0,0),E ⎝ ⎛⎭⎪⎫0,0,12,C (0,1,0),F ⎝ ⎛⎭⎪⎫12,12,0,G ⎝ ⎛⎭⎪⎫1,1,12. 所以EF →=⎝ ⎛⎭⎪⎫12,12,-12,CF →=⎝ ⎛⎭⎪⎫12,-12,0,CG →=⎝ ⎛⎭⎪⎫1,0,12,CE →=⎝⎛⎭⎪⎫0,-1,12.EF →·CF →=12×12-12×12+⎝ ⎛⎭⎪⎫-12×0=0,所以EF →⊥CF →,即EF ⊥CF .(2)解:|CE →|=02+-12+⎝ ⎛⎭⎪⎫122=52.12.已知四面体ABCD 中,AB ⊥CD ,AC ⊥BD ,G 、H 分别是△ABC 和△ACD 的重心.求证: (1)AD ⊥BC ; (2)GH ∥BD.证明:(1)因为AB ⊥CD •⇔=0,AC ⊥BD BD AC •⇔=0, 而()()+•+=•=0, 所以AD ⊥BC .(2) 设E 、F 分别为BC 、CD 的中点.欲证GH ∥BD ,只需证GH ∥EF ,()EF 32AF EA 32AH GA GH =+=+=. 所以GH ∥BD.B 组一、选择题(本大题共2小题,每小题8分,共16分)1.下列命题中假命题的个数是 ( )①若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0; ②|a|-|b|=|a +b|是a 、b 共线的充要条件; ③若a 、b 共线,则a 与b 所在的直线平行;④对空间任意点O 与不共线的三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面.A .1B .2C .3D .4解析:易知只有①是正确的,其中对于④,若O ∉平面ABC ,则OA →、OB →、OC →不共面,由空间向量基本定理知,P 可为空间任一点,所以P 、A 、B 、C 四点不一定共面. 答案:C2.空间四边形OABC 中,OB=OC ,∠AOB=∠AOC=3π,则cos 〈BC ,OA 〉的值是( ) A.21B.22C.21-D.0解析:cos 〈BC ,OA 〉==••|BC ||OA |BC OA.答案:D二、填空题(本大题共2小题,每小题8分,共16分) 3.已知向量a=(-2,2,-1),向量b=(0,3,-4),则向量a 在向量b 上的射影的长度是 . 解析:a 在向量b 上的射影为|a|·cos 〈a,b 〉=510||=•b b a =2. 答案:24.若a =(2,3,-1),b=(-2,1,3),则以a,b 为邻边的平行四边形的面积为 . 解析:由cos 〈a,b 〉=72||||-=•b a b a ,得sin 〈a,b 〉=753,故以a,b 为邻边的平行四边形的面积为|a|·|b|·sin 〈a,b 〉=56. 答案:56三、解答题(本大题共2小题,每小题14分,共28分)5. 如图所示,直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .(1)解:以C 为原点,以CA 、CB 、CC 1为x 、y 、z 轴建立空间直角坐标系O -xyz . 依题意得B (0,1,0)、N (1,0,1),所以|BN →|=1-02+0-12+1-02= 3.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2).所以BA 1→=(1,-1,2),CB 1→=(0,1,2), BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→|·|CB 1→|=3010.(3)证明:依题意,得C 1(0,0,2)、M ⎝ ⎛⎭⎪⎫12,12,2, A 1B →=(-1,1,-2),C 1M →=⎝ ⎛⎭⎪⎫12,12,0.所以A 1B →·C 1M →=-12+12+0=0,所以A 1B →⊥C 1M →,所以A 1B ⊥C 1M .6.正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM =BN =a(0<a<2).(1)求MN 的长;(2)求a 为何值时,MN 的长最小;(3)当MN 长最小时,求平面MNA 与平面MNB 所成二面角α的余弦值大小. 解:(1)在平面ABCD 内作MP ⊥AB 交AB 于点P ,连结PN , 则MP ⊥平面ABEF ,所以MP ⊥BN.由已知CM=BN=a ,CB=AB=BE=1,AC=2,所以|MP|=|AP|=(2-a)·22=221-a,|PB|=22a.因为BN PB MP MN ++=,所以|MN |2=MP 2+PB 2+BN 2+2(MP ·PB +PB ·BN +MP ·BN )=212222222222212222+⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯-+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-a a a a a a a . 所以|MN |=21222+⎪⎪⎭⎫ ⎝⎛-a a (0<a<2).(2)由(1)得|MN |=21222+⎪⎪⎭⎫ ⎝⎛-a a , 当a=22时,=|MN |22, 即M 、N 分别移到AC 、BF 的中点时, MN 的长最小,最小值为22. (3)以B 为原点,以BA 、BE 、BC 为x,y,z 轴建立空间直角坐标系.取MN 的中点G ,则⎪⎪⎭⎫⎝⎛-a a a G 4221,42,22,所以,4221,42,221⎪⎪⎭⎫ ⎝⎛+---=a a a GA⎪⎪⎭⎫ ⎝⎛+---=a a a GB 4221,42,22. 所以31||||cos -=•=GB GA α.。

2020版江苏高考数学一轮复习教程:随堂巩固训练第十四章空间向量 2含答案解析

2020版江苏高考数学一轮复习教程:随堂巩固训练第十四章空间向量 2含答案解析

随堂巩固训练(2)1. 在△ABC 中,A(2,-5,3),AB →=(4,1,2),BC →=(3,-2,5),则顶点B 、C 的坐标分别为____________________.2. 已知向量a =(1,1,0),b =(-1,0,2),若k a +b 与2a -b 平行,则实数k =________.3. 已知a ,b 是空间两个向量,若|a |=3,|b |=2,|a -b |=7,则|a +b |=________.4. 已知向量a =(2,-1,3),b =(-4,2,x ),若a ⊥b ,则x =________;若a ∥b ,则x =________.5. 若向量a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ=________________________________________________________________________.6. 在正方体ABCDA 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为________.7. 已知正方体ABCDA 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥PABC 的体积为________.8. 如图,已知空间几何体ABCDA 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1) 求证:E ,B ,F ,D 1四点共面;(2) 若点G 在BC 上,BG =23,点M 在BB 1上,GM →⊥BF →,垂足为H ,求证:EM ⊥平面BCC 1B 1.9. 如图,在直三棱柱ABCA 1B 1C 1的底面三角形ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1) 求|BN →|;(2) 求cos 〈BA 1→,CB 1→〉的值; (3) 求证:A 1B ⊥C 1M.10. 如图,已知正三棱柱ABCA 1B 1C 1的各棱长都相等,P 为A 1B 上的点,A 1P →=λA 1B →,且PC ⊥AB.求: (1) λ的值;(2) 异面直线PC 与AC 1所成角的余弦值.答案与解析随堂巩固训练(2)1. B(6,-4,5),C(9,-6,10) 解析:由A(2,-5,3),AB →=(4,1,2),解得B(6,-4,5),再由BC →=(3,-2,5),解得C(9,-6,10).2. -2 解析:计算得k a +b =(k -1,k ,2),2a -b =(3,2,-2),由k a +b 与2a -b 平行,得k -13=k 2=2-2,解得k =-2.3. 19 解析:因为|a -b |=7,所以|a |2+|b |2-2a ·b =7.又因为|a |=3,|b |=2,所以a ·b =3,所以|a +b |2=|a |2+|b |2+2a ·b =9+4+2×3=19,则|a +b |=19.4. 103 -6 解析:若a ⊥b ,则-8-2+3x =0,所以x =103;若a ∥b ,则2∶(-4)=(-1)∶2=3∶x ,所以x =-6.5. -2或255 解析:cos 〈a ,b 〉=a·b|a ||b |=6-λ3λ2+5=89,解得λ=-2或λ=255.6.459解析:设正方体的棱长为2,以{DA →,DC →,DD 1→}为正交基底,建立空间直角坐标系,可知CM →=(2,-2,1),D 1N →=(2,2,-1),所以cos 〈CM →,D 1N →〉=4-4-13×3=-19,故sin 〈CM →,D 1N →〉=459.7.118解析:以{BA →,BC →,BB 1→}为单位正交基底,建立空间直角坐标系(如图),设BP →=λBD 1→,可得P(λ,λ,λ),再由cos ∠APC =AP →·CP →|AP →||CP →|=2λ(λ-1)+λ22λ2+(λ-1)2=11+13λ2-2λ,可求得当λ=13时,∠APC 最大,故V PABC =13×12×1×1×13=118.8. 解析:(1) 建立如图所示的空间直角坐标系,则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3), 所以BD 1→=BE →+BF →,故BD 1→,BE →,BF →共面. 又它们有公共点B ,所以E ,B ,F ,D 1四点共面.(2) 如图,设M(0,0,z),则GM →=⎝⎛⎭⎫0,-23,z . 又BF →=(0,3,2).由题设得GM →·BF →=0,得z =1. 所以M(0,0,1).因为E(3,0,1),所以ME →=(3,0,0). 又BB 1→=(0,0,3),BC →=(0,3,0), 所以ME →·BB 1→=0,ME →·BC →=0,所以ME ⊥BB 1,ME ⊥BC.因为BB 1,BC 平面BCC 1B 1,BB 1∩BC =B , 故ME ⊥平面BCC 1B 1.9. 解析:(1) 建立以点C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴的空间直角坐标系.由题意得B(0,1,0),N(1,0,1),所以BN →=(1,-1,1),所以|BN →|=12+(-1)2+12= 3.(2) 由(1)知A 1(1,0,2),C(0,0,0),B 1(0,1,2), 则BA 1→=(1,-1,2),CB 1→=(0,1,2),所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=0-1+46×5=3010.(3) 由题意得M ⎝⎛⎭⎫12,12,2,C 1(0,0,2) 则A 1B →=(-1,1,-2),C 1M →=⎝⎛⎭⎫12,12,0, 所以A 1B →·C 1M →=-12+12+0=0,即A 1B →与C 1M →的夹角为90°,所以A 1B ⊥C 1M.10. 解析:(1) 设正三棱柱的棱长为2,以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系,则A(0,-1,0),B(3,0,0),C(0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2),所以AB →=(3,1,0),CA 1→=(0,-2,2),A 1B →=(3,1,-2). 因为PC ⊥AB ,所以CP →·AB →=0,所以(CA 1→+A 1P →)·AB →=0,即(CA 1→+λA 1B →)·AB →=0, 得λ=-CA 1→·AB →A 1B →·AB→=12.(2) 由(1)知CP →=⎝⎛⎭⎫32,-32,1,AC 1→=(0,2,2),所以cos 〈CP →,AC 1→〉=CP →·AC 1→|CP →||AC 1→|=-3+22×22=-28,所以异面直线PC 与AC 1所成角的余弦值是28.。

(全国通用)高考数学一轮复习第七章立体几何第六节空间直角坐标系、空间向量及其运算习题理【含答案】

(全国通用)高考数学一轮复习第七章立体几何第六节空间直角坐标系、空间向量及其运算习题理【含答案】

第六节空间直角坐标系、空间向量及其运算[基础达标]一、选择题(每小题5分,共25分)1.已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,则DE与D1F的位置关系是()A.平行B.相交且垂直C.异面且垂直D.既不平行也不垂直1.C【解析】建立空间直角坐标系后,求得=0,所以,即DE与D1F垂直且DE与D1F是异面直线.2.两个非零向量a=(x1,y1,z1),b=(x2,y2,z2),则是a∥b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.A【解析】a∥b且一个坐标为0是不能得到,所以必要性不满足,即是a∥b的充分不必要条件.3.已知空间四边形OABC中,点M在线段OA上,且OM=2MA,点N是BC的中点, =a,=b, =c,则=() A. a+b-c B.- a+b+cC. a-b+cD. a+b-c3.B【解析】∵点M在线段OA上,且OM=2MA,点N为BC的中点, +()++()+)=-,∵=a, =b, =c,∴=-a+b+c.4.已知长方体ABCD-A1B1C1D1,下列向量的数量积一定不为0的是()A.B.C.D.4.D【解析】选项A,当四边形ADD1A1为正方形时,可得AD1⊥A1D,而A1D∥B1C,可得AD1⊥B1C,此时有=0;选项B,当四边形ABCD为正方形时,可得AC⊥BD,可得AC⊥平面BB1D1D,故有AC⊥BD1,此时有=0;选项C,由长方体的性质可得AB⊥平面ADD1A1,可得AB⊥AD1,此时必有=0;选项D,由长方体的性质可得BC⊥平面CDD1C1,可得BC⊥CD1,△BCD1为直角三角形,∠BCD1为直角,故BC与BD1不可能垂直,即≠0.5.在边长为1的正方体ABCD-A1B1C1D1中,E,F分别是D1D,BD的中点,点G在棱CD上,且CG=CD,H是C1G的中点,则||为() A.B.C.D.5.D【解析】如图,以D为原点建立空间直角坐标系,则F,C1(0,1,1),G.因为H是C1G的中点,所以H,所以=-,则||=.二、填空题(每小题5分,共15分)6.已知向量a=(-4,2,4),b=(-6,3,-2),则a·b=;|a|=.6.226【解析】a·b=(-4)×(-6)+2×3+4×(-2)=22,|a|==6.7.已知空间四点A(-2,3,1),B(2,-5,3),C(10,0,10),D(8,4,a),如果四边形ABCD为梯形,则实数a的值为.7.9【解析】因为=(4,-8,2), =(8,5,7), =(2,-4,10-a), =(10,1,a-1),四边形ABCD为梯形,则,解得a=9,此时不平行.8.正方体ABCD-A1B1C1D1中,P为A1B1上任意一点,则DP与BC1始终.8.垂直【解析】因为=()·=()·=0,所以,即DP与BC1始终垂直.三、解答题(共20分)9.(10分)如图,正方体ABCD-A1B1C1D1中,E是棱A1D1的中点,H为平面EDB内一点,=(2m,-2m,-m)(m<0),证明:HC1⊥平面EDB.9.【解析】设正方体的棱长为a,则=(a,a,0),所以=(2m,-2m,-m)·=0,=(2m,-2m,-m)·(a,a,0)=0,所以,又DE∩DB=D,所以HC1⊥平面EDB.10.(10分)如图,在四棱锥P-ABCD中,M,N分别是AB,PC的中点,若ABCD是平行四边形.求证:MN∥平面PAD.10.【解析】取DP的中点E,连接AE,EN,则,所以,所以共面,且MN不在平面PAD上,所以MN∥平面PAD.[高考冲关]1.(5分)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(0,0,0),(0,1,1),(1,0,1),(1,1,0),该四面体的体积为()A.B.C.1 D.21.A【解析】在空间直角坐标系中作出四面体的四个顶点,可知该四面体是棱长为的正四面体,所以体积为.2.(5分)设P(2,3,4)在三个坐标平面上的射影分别为P1,P2,P3,则向量:①(6,-3,-4);②(4,-3,-4);③(0,-3,4);④(2,-6,4).其中与平面P1P2P3平行的向量有().A.1个B.2个C.3个D.4个2.C【解析】由题意可知,P1,P2,P3的坐标分别为(2,3,0),(2,0,4),(0,3,4),可以求得平面P1P2P3的一个法向量为(6,4,3),①不与该法向量垂直,所以不与平面P1P2P3平行,②③④与该法向量垂直,所以与平面P1P2P3平行.3.(5分)在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=a,则MN 与平面BB1C1C的位置关系是() A.在平面上B.相交C.平行D.以上都不正确3.C【解析】建立如图所示的空间直角坐标系,则点M a,,N,所以=-,0,-与平面BB1C1C的法向量=(0,a,0)垂直,且MN不在平面BB1C1C上,所以MN与平面BB1C1C的位置关系是平行.4.(5分)已知空间四边形ABCD中, =a-2c, =5a+6b-8c,对角线AC,BD的中点分别为E,F,则=.4.3a+3b-5c【解析】=3a+3b-5c.5.(5分)已知空间图形A-BCD,E,F,G,H,M,N分别是AB,BC,CD,DA,AC,BD的中点,求证:EG,FH,MN交于一点且互相平分.5.【解析】设P1,P2,P3分别为EG,FH,MN的中点,又设=a, =b, =c,则)=)=(a+b+c).同理可证 (a+b+c),(a+b+c),∴P1,P2,P3三点重合.从而原命题得证.6.(10分)已知正方体ABCD-A1B1C1D1的棱长为1,M是棱AA1的中点,点O是对角线BD1的中点.(1)求证:BD1⊥AC;(2)求证:OM是异面直线AA1与BD1的公垂线.6.【解析】(1)以D为原点,DC,DA,DD1所在的直线分别为x,y,z轴,建立空间直角坐标系,则D(0,0,0),C(1,0,0),B(1,1,0),D1(0,0,1),M,O.∴=(-1,-1,1), =(1,-1,0),∴=(-1)×1+(-1)×(-1)+1×0=0,∴,即BD1⊥AC.(2) =(0,0,1), =(-1,-1,1),∵=0, =0,∴OM⊥AA1,OM⊥BD1,即OM是异面直线AA1与BD1的公垂线.7.(10分)已知正三棱柱ABC-A1B1C1的侧棱长为2,底面边长为1,M是BC的中点.在直线CC1上是否存在一点N,使得MN⊥AB1?若存在,请你求出它的位置;若不存在,请说明理由.7.【解析】假设在直线CC1上存在一点N,使得MN⊥AB1.如图,建立空间直角坐标系,有A(0,0,0),B,M,0,N(0,1,z),B1,∴.∵,∴=-+2z=0,解得z=,N,即CN=时,AB1⊥MN.。

2020版高考数学一轮复习空间向量及其运算和空间位置关系含解析

课时跟踪检测(四十二) 空间向量及其运算和空间位置关系1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.交点.若AB ―→=2.如图所示,在平行六面体ABCD ­A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→相等的向量是( )A .-12a +12b +c B.12a +12b +cC .-12a -12b +c D.12a -12b +c解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→)=c +12(b -a)=-12a +12b +c.3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(x ,y ,z ∈R),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→,根据共面向量定理知,P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理,设AP ―→=m AB ―→+n AC ―→ (m ,n ∈R),即OP ―→-OA ―→=m (OB ―→-OA ―→)+n (OC ―→-OA ―→),即OP ―→=(1-m -n )OA ―→+m OB ―→+n OC ―→,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.4.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( ) A .9 B .-9 C .-3D .3解析:选B 由题意设c =x a +y b ,则(7,6,λ)=x (2,1,-3)+y (-1,2,3),∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.5.(2019·东营质检)已知A (1,0,0),B (0,-1,1),OA ―→+λOB ―→与OB ―→的夹角为120°,则λ的值为( )A .±66 B .66C .-66D .± 6解析:选C OA ―→+λOB ―→=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-666.在空间四边形ABCD 中,则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→的值为( ) A .-1 B .0 C .1D .2解析:选B 法一:如图,令AB ―→=a ,AC ―→=b ,AD ―→=c , 则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=AB ―→·(AD ―→-AC ―→)+AC ―→·(AB ―→-AD ―→)+AD ―→·(AC ―→-AB ―→)=a ·(c -b)+b ·(a -c)+c ·(b -a) =a ·c -a ·b +b ·a -b ·c +c ·b -c ·a =0.法二:在三棱锥A ­BCD 中,不妨令其各棱长都相等,则正四面体的对棱互相垂直. 所以AB ―→·CD ―→=0,AC ―→·DB ―→=0,AD ―→·BC ―→=0. 所以AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=0.7.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于________. 解析:设AD ―→=λAC ―→,D (x ,y ,z ), 则(x -1,y +1,z -2)=λ(0,4,-3), ∴x =1,y =4λ-1,z =2-3λ, ∴D (1,4λ-1,2-3λ),∴BD ―→=(-4,4λ+5,-3λ), ∴4(4λ+5)-3(-3λ)=0,解得λ=-45,∴BD ―→=⎝ ⎛⎭⎪⎫-4,95,125,∴|BD ―→|= -42+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5. 答案:58.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB ―→=(2,-1,-4),AD ―→=(4,2,0),AP ―→=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ―→是平面ABCD 的法向量;④AP ―→∥BD ―→.其中正确的是________.解析:∵AP ―→·AB ―→=-2-2+4=0, ∴AP ⊥AB ,故①正确;AP ―→·AD ―→=-4+4+0=0,∴AP ⊥AD ,故②正确; 由①②知AP ⊥平面ABCD , 故③正确,④不正确. 答案:①②③9.(2019·南昌调研)已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG ―→=2GN ―→,现用基底{OA ―→,OB ―→,OC ―→}表示向量OG ―→,有OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的值分别为________.解析:∵OG ―→=OM ―→+MG ―→=12OA ―→+23MN ―→=12OA ―→+23(ON ―→-OM ―→) =12OA ―→+23⎣⎢⎡⎦⎥⎤12OB ―→+OC ―→-12OA ―→ =16OA ―→+13OB ―→+13OC ―→, ∴x =16,y =13,z =13.答案:16,13,1310.在长方体ABCD ­A 1B 1C 1D 1中,AB =3,AD =4,AA 1=2.点M 在棱BB 1上,且BM =2MB 1,点S 在DD 1上,且SD 1=2SD ,点N ,R 分别为A 1D 1,BC 的中点.求证:MN ∥平面RSD .M ⎝⎛⎭⎪⎫3,0,43,证明:法一:如图所示,建立空间直角坐标系,根据题意得N (0,2,2),R (3,2,0),S ⎝⎛⎭⎪⎫0,4,23.∴MN ―→=⎝ ⎛⎭⎪⎫-3,2,23,RS ―→=⎝ ⎛⎭⎪⎫-3,2,23,MN ―→=RS ―→.∴MN ―→∥RS ―→.∵M ∉RS .∴MN ∥RS . 又RS ⊂平面RSD ,MN ⊄平面RSD , ∴MN ∥平面RSD .法二:设AB ―→=a ,AD ―→=b ,AA 1―→=c , 则MN ―→=MB 1―→+B 1A 1―→+A 1N ―→=13c -a +12b ,RS ―→=RC ―→+CD ―→+DS ―→=12b -a +13c ,∴MN ―→=RS ―→,∴MN ―→∥RS ―→, 又∵R ∉MN ,∴MN ∥RS .又RS ⊂平面RSD ,MN ⊄平面RSD , ∴MN ∥平面RSD .11.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC ,A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.求证:平面A 1AD ⊥平面BCC 1B 1.证明:如图,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3),∵D 为BC 的中点, ∴D 点坐标为(1,1,0).∴AA 1―→=(0,0,3),AD ―→=(1,1,0), BC ―→=(-2,2,0),CC 1―→=(0,-1,3). 设平面A 1AD 的法向量n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧ n 1·AA 1―→=0,n 1·AD ―→=0,得⎩⎨⎧3z 1=0,x 1+y 1=0.令y 1=-1,则x 1=1,z 1=0,∴n 1=(1,-1,0). 由⎩⎪⎨⎪⎧n 2·BC ―→=0,n 2·CC 1―→=0,得⎩⎨⎧-2x 2+2y 2=0,-y 2+3z 2=0.令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝ ⎛⎭⎪⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2. ∴平面A 1AD ⊥平面BCC 1B 1.12.如图所示,四棱锥S ­ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,点P 为侧棱SD 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.解:(1)证明:连接BD ,设AC 交BD 于点O ,则AC ⊥BD .连接SO ,由题意知SO ⊥平面ABCD .以O 为坐标原点,OB ―→,OC ―→,OS ―→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,OC ―→=⎝ ⎛⎭⎪⎫0,22a ,0,SD ―→=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,则OC ―→·SD ―→=0.故OC ⊥SD .从而AC ⊥SD . (2)棱SC 上存在一点E ,使BE ∥平面PAC .理由如下:由已知条件知DS ―→是平面PAC 的一个法向量,且DS ―→=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS ―→=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC ―→=⎝ ⎛⎭⎪⎫-22a ,22a ,0.设CE ―→=t CS ―→,则BE ―→=BC ―→+CE ―→=BC ―→+t CS ―→=⎝ ⎛⎭⎪⎫-22a ,22a1-t ,62at ,而BE ―→·DS ―→=0⇒t =13.即当SE ∶EC =2∶1时,BE ―→⊥DS ―→. 而BE ⊄平面PAC ,故BE ∥平面PAC。

(完整word版)高三数学空间向量专题复习附答案

一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。

求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。

例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。

zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。

三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。

2023年高考数学一轮复习第七章立体几何与空间向量6空间向量的概念与运算练习含解析

空间向量的概念与运算考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量表示若干空间向量的有向线段所在的直线互相平行或重合的向量(或平行向量)共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a =λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b a1b1+a2b2+a3b3共线a =λb(b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角余弦值 cos 〈a ,b 〉=a ·b|a ||b |(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 234.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 为平面α的法向量. (3)空间位置关系的向量表示位置关系向量表示直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2 n 1∥n 2⇔n 1=λn 2(λ∈R ) l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m ,l ⊄αl ∥α n ⊥m ⇔n ·m =0 l ⊥α n ∥m ⇔n =λm (λ∈R ) 平面α,β的法向量分别为n ,mα∥β n ∥m ⇔n =λm (λ∈R )α⊥βn ⊥m ⇔n ·m =0常用结论1.在平面中,A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.在空间中,P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( × )(3)在空间直角坐标系中,在Oyz 平面上的点的坐标一定是(0,b ,c ).( √ ) (4)若a ·b <0,则〈a ,b 〉是钝角.( × ) 教材改编题1.若{a ,b ,c }为空间向量的一个基底,则下列各项中,能构成空间向量的一个基底的是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 答案 C解析 ∵λa +μb (λ,μ∈R )与a ,b 共面. ∴A,B ,D 不正确.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1—→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 由题意,根据向量运算的几何运算法则, BM →=BB 1—→+B 1M —→=AA 1—→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m =________. 答案 10解析 ∵l 1⊥l 2,∴a ⊥b , ∴a ·b =-6-4+m =0,∴m =10.题型一 空间向量的线性运算例1 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →+NC 1—→. 解 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1—→+A 1P —→=AA 1—→+A 1D 1—→+D 1P —→ =AA 1—→+AD →+12DC →=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点, ∴A 1N —→=A 1A —→+AB →+BN → =-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1—→=NC →+CC 1—→=12BC →+AA 1—→=12AD →+AA 1—→=12c +a .∴MP →+NC 1—→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫12c +a =32a +12b +32c . 教师备选如图,在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示OG →,则下列表示正确的是( )A.14OA →+12OB →+13OC →B.12OA →+12OB →+12OC → C .-16OA →+13OB →+13OC →D.13OA →+13OB →+13OC → 答案 D解析 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →)=12OA →+23⎣⎢⎡⎦⎥⎤12OB →+OC →-OA → =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →.思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)(2022·宁波模拟)如图,在三棱锥O -ABC 中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且PD →=2DQ →,若记OA →=a ,OB →=b ,OC →=c ,则OD →等于( )A.16a +13b +13cB.13a +13b +13cC.13a +16b +13cD.13a +13b +16c 答案 A解析 OD →=OP →+PD →=12OA →+23PQ →=12OA →+23(OQ →-OP →) =12OA →+23OQ →-23OP → =12OA →+23×12(OB →+OC →)-23×12OA → =16OA →+13OB →+13OC → =16a +13b +13c . (2)在正方体ABCD -A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若AF →=xAD →+yAB →+z AA 1—→,则x -y +z 等于( )A.12B .1C.32D .2 答案 B解析 AF →=AD →+DF →=AD →+12(DD 1—→+D 1C 1—→)=AD →+12(AA 1—→+A 1B 1—→)=AD →+12(AA 1—→+AB →)=AD →+12AB →+12AA 1—→,则x =1,y =12,z =12,则x -y +z =1.题型二 空间向量基本定理及其应用例2 已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题知OA →+OB →+OC →=3OM →, 所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)方法一 由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内. 方法二 因为OM →=13(OA →+OB →+OC →)=13OA →+13OB →+13OC →, 又因为13+13+13=1,所以M ,A ,B ,C 四点共面,从而M 在平面ABC 内. 教师备选如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=k AC 1—→,BN →=kBC →(0≤k ≤1).判断向量MN →是否与向量AB →,AA 1—→共面.解 因为AM →=k AC 1—→,BN →=kBC →, 所以MN →=MA →+AB →+BN → =k C 1A —→+AB →+kBC →=k (C 1A —→+BC →)+AB →=k (C 1A —→+B 1C 1—→)+AB → =k B 1A —→+AB →=AB →-k AB 1—→=AB →-k (AA 1—→+AB →) =(1-k )AB →-k AA 1—→,所以由共面向量定理知向量MN →与向量AB →,AA 1—→共面. 思维升华 证明空间四点P ,M ,A ,B 共面的方法 (1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →;(3)对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); (4)PM →∥AB →(或PA →∥MB →或PB →∥AM →).跟踪训练2 (1)(多选)(2022·武汉质检)下列说法中正确的是( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若AB →,CD →共线,则AB ∥CDC .A ,B ,C 三点不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点共面D .若P ,A ,B ,C 为空间四点,且有PA →=λPB →+μPC →(PB →,PC →不共线),则λ+μ=1是A ,B ,C 三点共线的充要条件答案 CD解析 由|a |-|b |=|a +b |,可得向量a ,b 的方向相反,此时向量a ,b 共线,反之,当向量a ,b 同向时,不能得到|a |-|b |=|a +b |,所以A 不正确; 若AB →,CD →共线,则AB ∥CD 或A ,B ,C ,D 四点共线,所以B 不正确; 由A ,B ,C 三点不共线,对空间任意一点O , 若OP →=34OA →+18OB →+18OC →,因为34+18+18=1,可得P ,A ,B ,C 四点共面,故C 正确; 若P ,A ,B ,C 为空间四点,且有PA →=λPB →+μPC →(PB →,PC →不共线), 当λ+μ=1时,即μ=1-λ,可得PA →-PC →=λ(PB →+CP →), 即CA →=λCB →,所以A ,B ,C 三点共线,反之也成立,即λ+μ=1是A ,B ,C 三点共线的充要条件,所以D 正确.(2)已知A ,B ,C 三点不共线,点O 为平面ABC 外任意一点,若点M 满足OM →=15OA →+45OB →+25BC →,则点M ________(填“属于”或“不属于”)平面ABC . 答案 属于解析 ∵OM →=15OA →+45OB →+25BC →=15OA →+45OB →+25(OC →-OB →)=15OA →+25OB →+25OC →,∵15+25+25=1, ∴M ,A ,B ,C 四点共面. 即点M ∈平面ABC .题型三 空间向量数量积及其应用例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →.(2)求异面直线AG 和CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c . 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a ·c =14. (2)AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=⎝ ⎛⎭⎪⎫12b +12c ·⎝⎛⎭⎪⎫-b +12a ⎝ ⎛⎭⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.教师备选已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM →·PN →的取值范围为( )A.[]0,4B.[]0,2C.[]1,4D.[]1,2 答案 B解析 设正方体内切球的球心为O , 则OM =ON =1,PM →·PN →=()PO →+OM →·()PO →+ON →=PO →2+PO →·()OM →+ON →+OM →·ON →, ∵MN 为球O 的直径, ∴OM →+ON →=0,OM →·ON →=-1, ∴PM →·PN →=PO →2-1, 又P 在正方体表面上移动,∴当P 为正方体顶点时,||PO →最大,最大值为3;当P 为内切球与正方体的切点时,||PO →最小,最小值为1, ∴PO →2-1∈[]0,2,即PM →·PN →的取值范围为[]0,2.思维升华 由向量数量积的定义知,要求a 与b 的数量积,需已知|a |,|b |和〈a ,b 〉,a 与b 的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b 计算准确.跟踪训练3如图所示,在四棱柱ABCDA 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. (1)解 记AB →=a ,AD →=b ,AA 1—→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1—→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6, ∴|AC 1—→|=6,即AC 1的长为 6. (2)证明 ∵AC 1—→=a +b +c ,BD →=b -a , ∴AC 1—→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =0. ∴AC 1—→⊥BD →,∴AC 1⊥BD .(3)解 BD 1—→=b +c -a ,AC →=a +b , ∴|BD 1—→|=2,|AC →|=3, BD 1—→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos〈BD 1—→,AC →〉=BD 1—→·AC →|BD 1—→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.题型四 向量法证明平行、垂直例4 如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面PAD ; (3)平面PCD ⊥平面PAD .证明 依题意,以点A 为坐标原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)BE →=(0,1,1), DC →=(2,0,0),故BE →·DC →=0, 所以BE ⊥DC .(2)因为AB ⊥AD ,又PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以AB ⊥PA ,PA ∩AD =A ,PA ,AD ⊂平面PAD , 所以AB ⊥平面PAD ,所以AB →=(1,0,0)为平面PAD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0, 所以BE ⊥AB , 又BE ⊄平面PAD , 所以BE ∥平面PAD .(3)由(2)知平面PAD 的法向量AB →=(1,0,0), PD →=(0,2,-2), DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0,令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0, 所以n ⊥AB →.所以平面PAD ⊥平面PCD . 教师备选如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1.证明 因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为AA 1⊥平面ABC ,AA 1∥BB 1,所以以过E 作平行于BB 1的垂线为z 轴,EC ,EA 所在直线分别为x 轴、y 轴, 建立如图所示的空间直角坐标系.因为AB =3,BE =5, 所以AE =2,所以E (0,0,0),C (5,0,0),A (0,2,0),B (-5,0,0),B 1(-5,0,27). A 1(0,2,7),则F ⎝⎛⎭⎪⎫52,1,72.(1)EF →=⎝ ⎛⎭⎪⎫52,1,72,AB →=(-5,-2,0),AA 1→=(0,0,7).设平面AA 1B 1B 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AA 1—→=0,所以⎩⎨⎧-5x -2y =0,7z =0,取⎩⎨⎧x =-2,y =5,z =0,所以n =(-2,5,0).因为EF →·n =52×(-2)+1×5+72×0=0,所以EF →⊥n . 又EF ⊄平面A 1B 1BA , 所以EF ∥平面A 1B 1BA . (2)因为EC ⊥平面AEA 1,所以EC →=(5,0,0)为平面AEA 1的一个法向量. 又EA ⊥平面BCB 1,所以EA →=(0,2,0)为平面BCB 1的一个法向量. 因为EC →·EA →=0,所以EC →⊥EA →, 故平面AEA 1⊥平面BCB 1.思维升华 (1)利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).(2)向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理.跟踪训练4 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,设E ,F 分别为PC ,BD 的中点.求证:(1)EF ∥平面PAD ; (2)平面PAB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为PA =PD ,所以PO ⊥AD .又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又四边形ABCD 是正方形, 所以OF ⊥AD . 因为PA =PD =22AD , 所以PA ⊥PD ,OP =OA =a2.如图,以O 为坐标原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫a 2,0,0,F ⎝ ⎛⎭⎪⎫0,a2,0,D ⎝ ⎛⎭⎪⎫-a 2,0,0,P ⎝ ⎛⎭⎪⎫0,0,a 2,B ⎝ ⎛⎭⎪⎫a 2,a ,0,C ⎝ ⎛⎭⎪⎫-a 2,a ,0.因为E 为PC 的中点,所以E ⎝ ⎛⎭⎪⎫-a 4,a 2,a4. 易知平面PAD 的一个法向量为 OF →=⎝⎛⎭⎪⎫0,a 2,0,因为EF →=⎝ ⎛⎭⎪⎫a4,0,-a 4,OF →·EF →=⎝ ⎛⎭⎪⎫0,a 2,0·⎝ ⎛⎭⎪⎫a 4,0,-a 4=0.且EF ⊄平面PAD ,所以EF ∥平面PAD .(2)因为PA →=⎝ ⎛⎭⎪⎫a2,0,-a 2,CD →=(0,-a ,0),所以PA →·CD →=⎝ ⎛⎭⎪⎫a2,0,-a 2·(0,-a ,0)=0,所以PA →⊥CD →, 所以PA ⊥CD .又PA ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC ,所以PA ⊥平面PDC .又PA ⊂平面PAB ,所以平面PAB ⊥平面PDC .课时精练1.已知a =(2,1,-3),b =(0,-3,2),c =(-2,1,2),则a ·(b +c )等于( ) A .18B .-18C .32D .-3 2 答案 B解析 因为b +c =(-2,-2,4), 所以a ·(b +c )=-4-2-12=-18.2.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由x +y +z =1,得P ,A ,B ,C 四点共面,当P ,A ,B ,C 四点共面时,x +y +z =1,显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.3.已知空间向量a =(1,0,1),b =(1,1,n ),且a·b =3,则向量a 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6答案 A解析 由题意,a ·b =1+0+n =3, 解得n =2,又|a |=1+0+1=2,|b |=1+1+4=6,所以cos 〈a ,b 〉=a·b |a ||b |=32×6=32,又〈a ,b 〉∈[0,π], 所以a 与b 的夹角为π6.4.直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2),则( ) A .l ∥α B .l ⊥α C .l ∥α或l ⊂αD .l 与α的位置关系不能判断 答案 B解析 直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2), 显然它们共线,所以l ⊥α.5.(多选)已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3),若AP →∥BC →,且|AP →|=14,则点P 的坐标为( ) A .(4,-2,2) B .(-2,2,4) C .(-4,2,-2) D .(2,-2,4)答案 AB解析 因为B (-1,1,4),C (2,-1,3), 所以BC →=(3,-2,-1), 因为AP →∥BC →,所以可设AP →=λBC →=(3λ,-2λ,-λ), 因为|AP →|=3λ2+-2λ2+-λ2=14,解得λ=±1,所以AP →=(3,-2,-1)或AP →=(-3,2,1), 设点P (x ,y ,z ),则AP →=(x -1,y ,z -3),所以⎩⎪⎨⎪⎧ x -1=3,y =-2,z -3=-1或⎩⎪⎨⎪⎧ x -1=-3,y =2,z -3=1,解得⎩⎪⎨⎪⎧x =4,y =-2,z =2或⎩⎪⎨⎪⎧x =-2,y =2,z =4.所以点P 的坐标为(4,-2,2)或(-2,2,4).6.(多选)已知空间中三点A (0,1,0),B (2,2,0),C (-1,3,1),则下列结论正确的有( ) A.AB →与AC →是共线向量B .与AB →共线的单位向量是(1,1,0) C.AB →与BC →夹角的余弦值是-5511D .平面ABC 的一个法向量是(1,-2,5) 答案 CD解析 对于A ,AB →=(2,1,0),AC →=(-1,2,1),不存在实数λ,使得AB →=λAC →, 所以AB →与AC →不是共线向量,所以A 错误;对于B ,因为AB →=(2,1,0),所以与AB →共线的单位向量为⎝ ⎛⎭⎪⎫255,55,0或⎝ ⎛⎭⎪⎫-255,-55,0,所以B 错误;对于C ,向量AB →=(2,1,0),BC →=(-3,1,1), 所以cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=-5511,所以C 正确;对于D ,设平面ABC 的法向量是n =(x ,y ,z ), 因为AB →=(2,1,0),AC →=(-1,2,1), 所以⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧2x +y =0,-x +2y +z =0.令x =1,则n =(1,-2,5),所以D 正确.7.已知a =(x ,1,1),b =(-2,2,y ),a ·b =0,则2x -y =________. 答案 2解析 因为a =(x ,1,1),b =(-2,2,y ),a ·b =0,所以-2x +2+y =0,2x -y =2.8.已知点A (-1,1,0),B (1,2,0),C (-2,-1,0),D (3,4,0),则AB →在CD →上的投影向量为________.答案 ⎝ ⎛⎭⎪⎫32,32,0 解析 由已知得AB →=(2,1,0),CD →=(5,5,0), ∴AB →·CD →=2×5+1×5+0=15, 又|CD →|=52,∴AB →在CD →上的投影向量为AB →·CD →|CD →|·CD →|CD →|=1552×CD →52=310CD →=⎝ ⎛⎭⎪⎫32,32,0. 9.如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的长;(2)求cos 〈BA 1—→,CB 1—→〉的值; (3)求证:A 1B ⊥C 1M .(1)解 以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图.B (0,1,0),N (1,0,1),∴BN →=(1,-1,1), ∴|BN →|=12+-12+12= 3.(2)解 ∵A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),∴BA 1—→=(1,-1,2),CB 1—→=(0,1,2),∴BA 1—→·CB 1—→=3,|BA 1—→|=6,|CB 1—→|= 5. ∴cos〈BA 1—→,CB 1—→〉=BA 1—→·CB 1—→|BA 1—→||CB 1—→|=3010.(3)证明 ∵C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2, ∴A 1B —→=(-1,1,-2),C 1M —→=⎝ ⎛⎭⎪⎫12,12,0,∴A 1B —→·C 1M —→=-12+12+0=0.∴A 1B —→⊥C 1M —→, ∴A 1B ⊥C 1M .10.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB .(1)证明 如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝⎛⎭⎪⎫a ,a 2,0,P (0,0,a ), F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).因为EF →·DC →=0,所以EF →⊥DC →,即EF ⊥CD .(2)解 设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2,CB →=(a ,0,0),CP →=(0,-a ,a ),若使GF ⊥平面PCB ,则需FG →·CB →=0,且FG →·CP →=0,由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a2=0,得x =a2,由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a2=0,得z =0.所以G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 为AD 的中点时,GF ⊥平面PCB .11.(多选)(2022·山东百师联盟大联考)下面四个结论正确的是( )A .向量a ,b (a ≠0,b ≠0),若a⊥b ,则a·b =0B .若空间四个点P ,A ,B ,C ,PC →=14PA →+34PB →,则A ,B ,C 三点共线C .已知向量a =(1,1,x ),b =(-3,x ,9),若x <310,则〈a ,b 〉为钝角D .任意向量a ,b ,c 满足(a·b )·c =a·(b·c )答案 AB解析 由向量垂直的充要条件可得A 正确;∵PC →=14PA →+34PB →,∴14PC →-14PA →=34PB →-34PC →,即AC →=3CB →,∴A ,B ,C 三点共线,故B 正确;当x =-3时,两个向量共线,夹角为π,故C 错误;由于向量的数量积运算不满足结合律,故D 错误.12.(多选)(2022·重庆市第七中学月考)给出下列命题,其中为假命题的是( )A .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若n ⊥m ,则l ∥αB .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若〈n ,m 〉=2π3,则l 与α所成角为π6C .若两个不同的平面α,β的法向量分别为u ,v ,且u =(1,2,-2),v =(-2,-4,4),则α∥βD .已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c答案 AD解析 对于A ,由题意可得l ∥α或l ⊂α,故A 错误;对于B ,由图象可得,∠CAD =2π3,则∠DAB =π3,所以∠ADB =π6, 根据线面角的定义可得,l 与α所成角为π6,故B 正确; 对于C ,因为u =-12v =-12(-2,-4,4) =(1,2,-2),所以u ∥v ,故α∥β,故C 正确;对于D ,当空间的三个向量a ,b ,c 不共面时,对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c ,故D 错误.13.(2022·杭州模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为A 1D 1,BB 1的中点,则cos∠EAF =________;EF =________.答案 25 62 解析 如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方体棱长为1,则E ⎝ ⎛⎭⎪⎫0,12,1,F ⎝⎛⎭⎪⎫1,0,12, ∴AE →=⎝ ⎛⎭⎪⎫0,12,1,AF →=⎝⎛⎭⎪⎫1,0,12, EF →=⎝ ⎛⎭⎪⎫1,-12,-12, cos 〈AE →,AF →〉=AE →·AF →|AE →||AF →|=1252×52=25, ∴cos∠EAF =25, EF =|EF →|=12+⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-122=62. 14.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面A 1B 1C 1D 1为平行四边形,E 为棱AB 的中点,AF →=13AD →,AG →=2GA 1—→,AC 1与平面EFG 交于点M ,则AM AC 1=________.答案 213解析 由题图知,设AM →=λAC 1—→(0<λ<1),由已知AC 1—→=AB →+AD →+AA 1—→=2AE →+3AF →+32AG →,所以AM →=2λAE →+3λAF →+3λ2AG →,因为M ,E ,F ,G 四点共面,所以2λ+3λ+3λ2=1, 解得λ=213.15.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是______.答案 ⎝ ⎛⎭⎪⎫43,43,83 解析 因为点Q 在直线OP 上,所以设点Q (λ,λ,2λ),则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23, 此时OQ →=⎝ ⎛⎭⎪⎫43,43,83. 16.(2022·株州模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos60°=3,所以AO 2+A 1O 2=AA 21,所以A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1—→=(0,1,3),AA 1—→·BD →=0×(-23)+1×0+3×0=0,所以BD →⊥AA 1—→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1—→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1—→=0,n 1·DA 1—→=0, 又A 1C 1—→=(0,2,0),DA 1—→=(3,0,3),则⎩⎨⎧ 2y 1=0,3x 1+3z 1=0,取n 1=(1,0,-1),因为BP ∥平面DA 1C 1,所以n 1⊥BP →,即n 1·BP →=-3-3λ=0,解得λ=-1,即点P 在C 1C 的延长线上,且|CP →|=|CC 1—→|.。

2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示). 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1D .()1,0,0、()0,0,2、()0,3,0例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1B .2C .3D .4例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)//AC EG . 【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1-例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用a ,b ,c 表示向量BM ;(2)求BM 的长.例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直.(1)求2a c +的模; (2)求向量b 的坐标. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ; (2)平面EFG //平面PBC . 【规律方法】利用空间向量证明平行的方法 1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题 题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c【答案】D 【解析】 【分析】根据空间向量的运算法则和空间向量基本定理相关知识求解即可. 【详解】由题意得,()()1111111111121222112BM BB B D AA A D A B AA AD A b c B a =+=+--+=+-=+.故选:D例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++【答案】B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++故选:B例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示).【答案】111244a b c ++【解析】 【详解】因为在四面体O ABC -中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,()1222OA OD O OE A OD ∴=+=+()111222a OB OC =+⨯+()1111124244a b c a b c =++=++ ,故答案为111244a b c ++. 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1 D .()1,0,0、()0,0,2、()0,3,0【答案】B 【解析】 【分析】利用共面向量的基本定理逐项判断可得出合适的选项. 【详解】对于A 选项,设()()()1,1,00,1,11,0,1m n =+,所以,110n m m n =⎧⎪=⎨⎪+=⎩,无解;对于B 选项,因为()()()2,2,403,0,021,1,2=⋅+,故B 选项中的三个向量共面;对于C 选项,设()()()1,2,31,3,22,3,1x y =+,所以,2133223x y x y x y +=⎧⎪+=⎨⎪+=⎩,无解;对于D 选项,设()()()1,0,00,0,20,3,0a b =+,所以,013020b a =⎧⎪=⎨⎪=⎩,矛盾.故选:B.例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】 【分析】由向量的加减运算对各个选项进行检验即可. 【详解】设E,F 分别为AD 和A 1D 1的中点,①OA +2OD OE =与1OA +12OD OF =不是一对相反向量,错误; ②OB -11OC C B =与OC -11OB B C =不是一对相反向量,错误;③OA 1+OB 1+OC 1+()1OD OC OD OA OB OC OD OA OB =----=-+++是一对相反向量,正确; ④OC -OA AC =与OC 1-111OA AC =不是一对相反向量,是相等向量,错误. 即正确结论的个数为1个故选:A例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A、B、C、D四点共面,E、F、G、H四点共面;AC EG.(2)//【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明出AC、AB、AD为共面向量,结合AC、AB、AD有公共点可证得A、B、C、D四点共面,同理可证得E、F、G、H四点共面;AC EG.(2)证得EG k AC=,再由EG和AC无公共点可证得//【详解】(1)因为AC AD mAB=+,所以,AC、AB、AD为共面向量,因为AC、AB、AD有公共点A,故A、B、C、D四点共面,因为EG EH mEF=+,则EG、EH、EF为共面向量,因为EG、EH、EF有公共点E,故E、F、G、H四点共面;(2)OE kOA=,=,OF kOB=,OH kOD()EG EH mEF OH OE m OF OE=+=-+-()()()=-+-=+=+=,//k OD OA km OB OA k AD kmAB k AD mAB k AC∴,AC EGAC EG.因为AC、EG无公共点,故//【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0- B .()1,1,0- C .()0,1,1- D .()1,0,1-【答案】B 【解析】 【详解】试题分析:对于A 选项中的向量()11,0,1a =-,11111cos ,22a a a a a a ⋅-〈〉===-⋅⋅,则1,120a a 〈〉=;对于B 选项中的向量()21,1,0a =-,22211cos ,22a a a a a a ⋅〈〉===⋅,则2,60a a 〈〉=;对于C 选项中的向量()30,1,1a =-,2321cos ,22a a a a a a ⋅-〈〉===-⋅,则2,120a a 〈〉=;对于D 选项中的向量()41,0,1a =-,此时4a a =-,两向量的夹角为180.故选B.例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP=.(1)试用a ,b ,c 表示向量BM ; (2)求BM 的长.【答案】(1)111222a b c -++;(2)2【解析】 【分析】(1)将AD BC =,BP AP AB =-代入1()2BM BC BP =+中化简即可得到答案;(2)利用22||BM BM =,结合向量数量积运算律计算即可. 【详解】(1)M 是PC 的中点,1()2BM BC BP ∴=+.AD BC =,BP AP AB =-,1[()]2BM AD AP AB ∴=+-,结合AB a =,AD b =,c AP =,得1111[()]2222BM b c a a b c =+-=-++.(2)1AB AD ==,2PA =, ||||1a b ∴==,||2c =.AB AD ⊥,60PAB PAD ∠=∠=︒, 0a b ∴⋅=,21cos601a c b c ⋅=⋅=⨯⨯︒=.由(1)知111222BM a b c =-++,()2222211112222224BM a b c a b c a b a c b c ⎛⎫∴=-++=++-⋅-⋅+⋅⎪⎝⎭13(114022)42=⨯++--+=,6||2BM ∴=即BM 例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直. (1)求2a c +的模;(2)求向量b 的坐标. 【答案】(1)1;(2)(2,1,2)b =-或(2,1,2)b =---. 【解析】 【分析】(1)求出2a c +的坐标,即可求出2a c +的模;(2)设(,,)b x y z =,则由题可知22222190x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩,解出即可得出.【详解】解:(1)∵()2,1,2a =-,()1,0,1c =-, ∴()20,1,0a c +=, 所以21a c += ;(2)设(),,b x y z =,则由题可知222221,9,0,x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩解得2,1,2,x y z =⎧⎪=-⎨⎪=⎩或2,1,2,x y z =-⎧⎪=-⎨⎪=-⎩ 所以()2,1,2b =-或()2,1,2b =---. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析 【解析】 【分析】(1)根据题意得出EF HG =可证;(2)通过证明//HE BD 可得;(3)可得四边形EFGH 为平行四边形,M 为EG 中点,即可证明. 【详解】(1)E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 12EF AC ∴=,12HG AC =,EF HG ∴=,又E ,F ,G ,H 四点不共线,故E ,F ,G ,H 四点共面; (2)E ,H 分别是AB ,AD 的中点, 12HE DB ∴=,//HE DB ∴,//HE BD ∴, HE ⊂平面EFGH ,BD ⊄平面EFGH ,∴//BD 平面EFGH ;(3)由(1)知四边形EFGH 为平行四边形,M ∴为EG 中点, E ,G 分别是AB ,CD 的中点, 11111()()()()22224OM OE OG OA OB OC OD OA OB OC OD ⎡⎤∴=+=+++=+++⎢⎥⎣⎦. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ;(2)平面EFG //平面PBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)平面P AD ⊥平面ABCD ,且ABCD 为正方形,构建空间直角坐标系A -xyz ,并确定A ,B ,C ,D ,P ,E ,F ,G 的坐标,法一:求得(0,1,0),(1,2,1)EF EG ==-,即可确定平面EFG 的一个法向量n ,又0PB n ⋅=有n PB ⊥,则 PB //平面EFG 得证; 法二:由(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-,可知22PB FE FG =+,根据向量共面定理即有PB ,FE 与FG 共面,进而可证PB //平面EFG ;(2)由(1)有(0,1,0),(0,2,0)EF BC ==即2BC EF =,可得BC //EF ,根据线面平行的判定有EF //平面PBC ,GF //平面PBC ,结合面面平行的判定即可证平面EFG //平面PBC .【详解】(1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一:(0,1,0),(1,2,1)EF EG ==- 设平面EFG 的法向量为(,,)n x y z =,则00n EF n EG ⎧⋅=⎨⋅=⎩,即020y x y z =⎧⎨+-=⎩,令z =1,则(1,0,1)n =为平面EFG 的一个法向量, ∵(2,0,2)PB =-,∴0PB n ⋅=,所以n PB ⊥, ∵PB ⊄平面EFG , ∴PB //平面EFG .法二:(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-. 设PB sFE tFG =+,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以202t t s t =⎧⎪-=⎨⎪-=-⎩解得s =t =2.∴22PB FE FG =+,又FE 与FG 不共线,所以PB ,FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .(2)由(1)知:(0,1,0),(0,2,0)EF BC ==,∴2BC EF =,所以BC //EF .又EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF //平面PBC ,同理可证GF //PC ,从而得出GF //平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG ,∴平面EFG //平面PBC .【规律方法】利用空间向量证明平行的方法1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.【答案】(1)见解析(2)【解析】【分析】(1)通过线面垂直证明线线垂直(2)建立空间直角坐标系,根据垂直条件解出圆柱的高(1)连结AC ,可知AC BC ⊥1CC ⊥平面ABC 1CC BC ∴⊥1CC AC C =BC ∴⊥平面1ACC1BC AC ∴⊥(2)如图,以C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系设圆柱的高为h可得1(2,0,0),(0,0,),(2,0,)2h A B C h E1(2,0,),(2,)2h AC h BE =-=-由题意得21402h AC BE ⋅=-+=,解得h =故圆柱的体积2V πr h ==例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【答案】(1)证明见解析;(2)E 为CC 1的中点.【解析】【分析】以D 为原点,DA 、DC 、DD 1为x ,y ,z 轴,建立空间直角坐标系.(1)计算10A E BD →→⋅=即可证明;(2)求出面A 1BD 与面EBD 的法向量,根据法向量垂直计算即可.【详解】以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设正方体的棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)1A E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),1A E BD →→⋅=a 2-a 2+(e -a )·0=0, ∴1A E BD →→⊥,即A 1E ⊥BD ;(2)设平面A 1BD ,平面EBD 的法向量分别为1n →=(x 1,y 1,z 1),2n →=(x 2,y 2,z 2).∵DB →=(a ,a ,0),1DA →=(a ,0,a ),DE →=(0,a ,e )∴10n DB →→⋅=, 110n DA →→⋅=, 20n DB →→⋅=,10n DE →→⋅=. ∴11110,0,ax ay ax az +=⎧⎨+=⎩, 22220,0.ax ay ay ez +=⎧⎨+=⎩ 取x 1=x 2=1,得1n →=(1,-1,-1),2n →=(1,-1,a e).由平面A 1BD ⊥平面EBD 得1n →⊥2n →. ∴2-a e=0,即e =2a . ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】【分析】(1)以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:根据向量的坐标可得11113EF A A AC =-+,由此可证//EF 平面11AAC C ; (2)将问题转化为线段AC 上是否存在一点G ,使EG AC ⊥,则问题不难求解.【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F , 所以22(,,)33EF a =-,1(0,0,)A A a =,11(2,2,0)AC =, 因为11113EF A A AC =-+,所以EF ,1A A ,11AC 共面,又EF 不在平面11AAC C 内, 所以//EF 平面11AAC C(2)线段AC 上存在一点G ,使面EFG ⊥面11AAC C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ===, 所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AAC C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AAC C ,【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届一轮复习人教B版空间向量的运算作业
1.在正方体ABCD-A1B1C1D1中,向量表达式化简后的结果是()
A. B. C. D.
解析:+()=.
答案:A
2.设a,b是两个不共线的向量,λ,μ∈R,若λa+μb=0,则()
A.a=b=0
B.λ=μ=0
C.λ=0,b=0
D.μ=0,a=0
解析:∵a,b是两个不共线的向量,∴a≠0,b≠0,∴只有B正确.
答案:B
3.设空间四点O,A,B,P满足+t,其中0<t<1,则有()
A.点P在线段AB上
B.点P在线段AB的延长线上
C.点P在线段BA的延长线上
D.点P不一定在直线AB上
解析:∵0<t<1,∴点P在线段AB上.
答案:A
4.已知正方体ABCD-A1B1C1D1的中心为O,有下列结论:
①与是一对相反向量;
②与是一对相反向量;
③与是一对相反向量;
④与是一对相反向量.
其中正确的有()
A.1个
B.2个
C.3个
D.4个
解析:∵O为正方体的中心,
∴=-=-,
故=-(),
同理可得=-(),
故=-(),
∴①③正确;
∵,
∴与是两个相等的向量,
∴②不正确;
∵=-,
∴=-(),
∴④正确.
答案:C
5.如图,已知正方体ABCD-A'B'C'D',点E是A'C'的中点,点F是AE的三等分点,且AF=EF,则=()
A.
B.
C.
D.
解析:由条件AF=EF,知EF=2AF,
∴AE=AF+EF=3AF,∴)=)=
.
答案:D
6.在四面体A-BCD中,E,F分别是AB,CD的中点,则与的关系是(填平行、相等或相反).解析:设G是AC的中点,则),
∴2,∴∥().故填平行.
答案:平行
7.若非零向量e1,e2不共线,则使k e1+e2与e1+k e2共线的k值为.
解析:若k e1+e2与e1+k e2共线,则存在实数λ,使k e1+e2=λ(e1+k e2),又e1,e2不共线,所以所以或--
答案:1或-1
8.导学号90074020如图,在平行六面体ABCD-A1B1C1D1中,=2.设=a,=b,=c,试用a,b,c 表示.
解如图,连接AN,则)=)-)=c+(b-c)-(a+b)=-a+b+c.
B组
1.如图,在三棱柱ABC-A1B1C1中,D是CC1的中点,F是A1B的中点,且=α+β,则()
A.α=,β=-1
B.α=-,β=1
C.α=1,β=-
D.α=-1,β=
解析:因为+()+)=,所以α=,β=-1.
答案:A
2.已知空间向量满足||=||+||,则()
A. B.=-
C.与同向
D.与同向
解析:由||=||+||=||+||,知C点在线段AB上,否则与三角形两边之和大于第三边矛盾, 所以与同向.
答案:D
3.如图,已知四面体O-ABC中,M,N分别为OA,BC的中点,点G在线段MN上,且=2.若=x+y+z,则x+y+z=()
A.1
B.0
C. D.
解析:-
,所以x=,y=,z=,所以x+y+z=.
答案:C
4.如图,在三棱锥A-BCD中,若△BCD是正三角形,E为其中心,则化简的结果为.
解析:延长DE交BC于点F,连接AF,则F为BC的中点,,故
=0.
答案:0
5.如图,已知正四棱锥P-ABCD,点O是正方形ABCD的中心,Q是CD的中点.
(1)若+x+y,求x,y的值;
(2)若=m+n,求m,n的值.
解(1)因为)=,所以x=y=-.
(2)因为O为AC的中点,Q为CD的中点,所以=2=2,所以=2=2,所以=2-2,所以m=2,n=-2.
6.
导学号90074021如图,在空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边CB,CD上的点,且
.求证:四边形EFGH是梯形.
证明因为E,H分别是边AB,AD的中点,
所以
)=)=-)=.
所以,且||=|≠||.
又因为点F不在EH上,
所以四边形EFGH是梯形.。

相关文档
最新文档