直线和圆的方程汇总
直线与圆的所有公式

直线与圆的所有公式
嘿,朋友!咱来聊聊直线与圆的那些公式哈。
先说说点到直线的距离公式,就像你要找到你和电视的距离一样清楚明白!假如直线方程是
Ax+By+C=0,点的坐标是(x0,y0),那距离 d 就等于绝对值(Ax0+By0+C)
除以根号下(A 平方+B 平方)。
比如说,直线是 2x+3y+1=0,点是(1,2),
那你就能算出距离啦!
还有圆的标准方程,哎呀呀,这可重要啦!(x-a)平方+(y-b)平方=r 平方。
这就好比给圆画了个“画像”,(a,b)是圆心的位置,r 是圆的半径呀!比如有个圆的方程是(x-3)平方+(y-4)平方=25,那你不就一下知道圆心是(3,4),半径是 5 嘛!
圆的一般方程呢,就像是圆的另一种“表达方式”,x 平方+y 平方
+Dx+Ey+F=0。
这里面可有大学问嘞!能根据它来判断圆是否存在呢。
咱再说说直线与圆的位置关系公式呀,看它们是相交啦、相切啦还是相离呢?这多有意思呀!朋友,你想想,这直线和圆的故事,是不是很奇妙呀?咱可得好好琢磨琢磨这些公式哦,用处可大着呢!。
直线与圆的方程公式总结

直线与圆的方程公式总结一、直线方程公式直线是平面上的一种基本几何对象,它可以用方程来表示。
下面是几种常见的直线方程公式:1. 斜截式方程斜截式方程是描述直线的一种常见形式,它可以表示为y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。
斜截式方程适用于已知直线斜率和截距的情况。
2. 一般式方程一般式方程是直线的另一种常见形式,它可以表示为Ax+By+C=0,其中A,B,C是常数。
一般式方程适用于已知直线上两点坐标的情况。
3. 点斜式方程点斜式方程是描述直线的一种方便形式,它需要已知直线上的一点和直线的斜率。
点斜式方程可以表示为(y−y1)=m(x−x1),其中(x1,y1)是直线上的已知点,m是直线的斜率。
4. 截距式方程截距式方程是描述直线的一种常用形式,它需要已知直线在x轴和y轴上的截距。
截距式方程可以表示为 $\\frac{x}{a} + \\frac{y}{b} = 1$,其中a是直线在x轴上的截距,b是直线在y轴上的截距。
二、圆的方程公式圆是平面上的一个重要几何对象,它可以用方程来表示。
下面是两种常见的圆的方程公式:1. 标准方程圆的标准方程可以表示为(x−ℎ)2+(y−k)2=r2,其中(ℎ,k)是圆心的坐标,r是圆的半径。
2. 中心半径式圆的中心半径式可以表示为(x−a)2+(y−b)2=r2,其中(a,b)是圆心的坐标,r是圆的半径。
三、直线与圆的关系直线和圆之间有几种可能的关系:1.直线与圆相切:直线与圆正好接触于一个点。
此时,直线与圆的切点坐标满足直线方程和圆的方程。
2.直线与圆相离:直线与圆没有交点。
此时,直线方程和圆的方程无解。
3.直线与圆相交:直线与圆有两个交点。
此时,直线方程和圆的方程有两组解。
4.直线过圆心:直线经过圆的中心点。
此时,直线方程和圆的方程有唯一解。
四、实例下面通过一个实例来展示直线和圆的方程公式的应用。
假设有一个圆的方程为(x−2)2+(y−3)2=4,现在求圆与直线y=2x+1的交点坐标。
直线与圆的方程公式大全

直线与圆的方程公式大全在数学中,直线和圆是两个基本的几何图形。
直线由无数个点构成,而圆则由一个中心点和半径确定。
为了描述和分析直线和圆的性质,我们需要一些方程公式。
本文将为您介绍直线和圆的方程公式大全,以帮助您更好地理解它们的特性和计算方法。
直线的方程公式1. 点斜式方程直线的点斜式方程由直线上一点的坐标和直线的斜率确定。
若直线上一点为P(x1,y1),斜率为k,则直线的点斜式方程为:y−y1=k(x−x1)2. 截距式方程直线的截距式方程由直线在x轴和y轴上的截距确定。
直线与x轴的截距为a,与y轴的截距为b,则直线的截距式方程为:$$\\frac{x}{a} + \\frac{y}{b} = 1$$3. 一般式方程直线的一般式方程表示为Ax+By+C=0,其中A、B、C为常数,且A和B不同时为零。
4. 法线斜截式方程与直线的点斜式方程对应的法线斜截式方程为:$$y-y_1=-\\frac{1}{k}(x-x_1)$$圆的方程公式1. 标准方程圆的标准方程由圆心(ℎ,k)和半径r确定。
圆的标准方程为:(x−ℎ)2+(y−k)2=r22. 一般方程圆的一般方程表示为x2+y2+Dx+Ey+F=0,其中D、E、F为常数。
3. 截距方程如果圆与x轴和y轴分别有截距a和b,则圆的截距方程为:$$\\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1$$4. 参数方程圆的参数方程方程由圆心(ℎ,k)和半径r确定。
设角度 $\\theta$ 是圆心与某点(x,y)所在的连接线与x轴正半轴的夹角,则点(x,y)的参数方程为:$$x = h + r \\cos \\theta$$$$y = k + r \\sin \\theta$$5. 圆的直径方程若圆的两个端点分别为A(x1,y1)和B(x2,y2),则圆的直径方程为:(x−x1)(x−x2)+(y−y1)(y−y2)=0结论本文介绍了直线与圆的方程公式大全,包括直线的点斜式方程、截距式方程、一般式方程和法线斜截式方程,以及圆的标准方程、一般方程、截距方程、参数方程和直径方程。
圆的方程、直线与圆的位置关系题型归纳学生版

圆的方程、直线与圆的关系题型归纳一、学法指导与考点梳理1.圆的方程 (1)圆的方程①标准方程:(x -a )2+(y -b )2=r 2,圆心坐标为(a ,b ),半径为r . ②一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心坐标为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.(2)点与圆的位置关系①几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.②代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r 2(或0)时,点在圆外;等于r 2(或0)时,点在圆上;小于r 2(或0)时,点在圆内. 2.直线与圆的位置关系直线l :Ax +By +C =0(A 2+B 2≠0)与圆:(x -a )2+(y -b )2=r 2(r >0)的位置关系如下表.3.圆与圆的位置关系二、重难点题型突破重难点1 圆的方程求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心. (2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.例1.(1)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0(2)已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13【变式训练1】.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=5【变式训练2】.在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切. (1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程.重难点2 直线与圆的位置关系 判定直线与圆位置关系的常用方法:(1)几何法:根据圆心到直线的距离d 与圆半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组的解的个数判断.(3)直线系法:若动直线过定点P ,则点P 在圆内时,直线与圆相交;当P 在圆上时,直线与圆相切或相交;当P 在圆外时,直线与圆位置关系不确定.例2.(1)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]【变式训练1】.若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A .1 B .-3 C .1或-3D .2【变式训练2】.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.【变式训练3】.在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为(I )求圆心的轨迹方程;(II )若点到直线,求圆的方程. 重难点3 直线、圆方程的综合应用(1)判断或处理直线和圆的位置的问题,一般有两种方法,一是几何法,利用圆的几何性质解题,二是代xOy P x y P P y x P数法,联立圆与直线的方程,利用判别式,根与系数关系来处理,在做题时要用心作图,很多题目要用到数形结合的思想.(2)若,()P x y 是定圆222()()C x a y b r -+-=:上的一动点,则mx ny +和yx这两种形式的最值,一般都有两种求法,分别是几何法和代数法.①几何法.mx ny +的最值:设mx ny t +=,圆心(,)C a b 到直线mx ny t +=的距离为22d m n=+,由d r =即可解得两个t 值,一个为最大值,一个为最小值.y x 的最值:yx即点P 与原点连线的斜率,数形结合可求得斜率的最大值和最小值. ②代数法.mx ny +的最值:设mx ny t +=,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.y x 的最值:设yt x=,则y tx =,与圆的方程联立,化为一元二次方程,由判别式等于0,求得t 的两个值,一个为最大值,一个为最小值.例3.(1)已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6 D .2(2)著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.【变式训练1】.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S .【变式训练2】.在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.三、课堂定时训练(45分钟)1.(2020黑龙江黑河一中高二期中)已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( ) A .(x -1)2+(y +1)2=25 B .(x +1)2+(y -1)2=25 C .(x -1)2+(y +1)2=100 D .(x +1)2+(y -1)2=1002.(2020山东潍坊三中高二期中)已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.(2020福建莆田一中高二月考)过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是( ) A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-=D .()()22114x y +++=4.(2020邢台市第八中学高二期末)方程220x y Dx Ey F ++++=表示以(2,3)-为圆心,4为半径的圆,则D,E,F 的值分别为( ) A .4,6,3-B .4,6,3-C .4,6,3--D .4,6,3--5.(2020·全国高二课时练习)直线y=x+1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离6.(2020山东泰安实验中学高二期中)0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A 或B .C .-D .-7.(2020全国高二课时练)与圆()22:136C x y -+=同圆心,且面积等于圆C 面积的一半的圆的方程为_________.8.(2020·上海高二课时练习)若圆22(1)(4)5x y -+-=的圆心到直线0x y a -+=的距离为2,则a 的值为_________.9.(2020湖南师大附中高二期中)已知点()()1,2,1,4A B --,求(1)过点A,B 且周长最小的圆的方程; (2)过点A,B 且圆心在直线240x y --=上的圆的方程.10.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.。
直线与圆的方程知识点总结

直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
直线和圆的方程汇总

第1课 直线的方程. 【基础练习】1. 直线x cos α+3y +2=0的倾斜角范围是2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为5.已知直线l 过点P (-5,-4),且与两坐标轴围成的三角形面积为5个平方单位,求直线l 的方程【范例导析】例1.已知两点A (-1,2)、B (m ,3) (1)求直线AB 的斜率k ; (2)求直线AB 的方程; (3)已知实数m 31,313⎡⎤∈---⎢⎥⎣⎦,求直线AB 的倾斜角α的取值范围. 例2.直线l 过点P(2,1),且分别交x 轴、y 轴的正半轴于点A 、B 、O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当|PA|·|PB|取最小值时,求直线l 的方程.例3.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段中点为P (-1,2).求直线l 的方程.练习:1.已知下列四个命题①经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示;②经过任意两个不同点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示;③不经过原点的直线都可以用方程a x +by=1表示;④经过定点A(0,b)的直线都可以用方程y =kx+b 表示,其中正确的是 2.设直线l 的方程为()()232603x k y k k +--+=≠,当直线l 的斜率为-1时,k 值为_,当直线l 在x 轴、y 轴上截距之和等于0时,k 值为3.设直线 a x+b y+c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足的关系式为4.若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是5.若直线4x-3y-12=0被两坐标轴截得的线段长为c1,则c 的值为 6.过点P(1,1)作直线l ,与两坐标轴相交所得三角形面积为10,则直线l 有 条 7.若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b+的值等于 8.若直线(m 2─1)x ─y ─2m +1=0不经过第一象限,则实数m 的取值范围是9.已知直线l 被两直线l 1:4x +y +6=0与l2:3x 一5y 一6=0截得的线段中点为坐标原点,那么直线l 的方程是10.已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1)、Q 2(a 2,b 2)(a 1≠a 2)的直线方程11.在△ABC 中,BC 边上的高所在的直线方程为x-2y+1=0,∠A 的平分线所在直线方程为y=0,若点B 的坐标为(1,2),求点A 和点C 的坐标.12.一条直线经过点P (3,2),并且分别满足下列条件,求直线方程:(1)倾斜角是直线x -4y +3=0的倾斜角的2倍;(2)与x 、y 轴的正半轴交于A 、B 两点,且△AOB 的面积最小(O 为坐标原点)第2课 两条直线的位置关系【基础练习】1.已知过点A(-2,m )和B(m ,4)的直线与直线2x +y -1=0平行,则m 的值为2.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为3.若三条直线2380,x y ++=10x y --=和102x ky k +++=相交于一点,则k 的值等于 4.已知点P 1(1,1)、P 2(5,4)到直线l 的距离都等于2.直线l 的方程 为5.已知A (7,8),B (10,4),C (2,-4),求A BC 的面积. 【范例导析】【例1】已知两条直线1l :x +m 2y +6=0, 2l :(m -2)x +3my +2m =0,当m 为何值时, 1l 与2l(1) 相交;(2)平行;(3)重合?分析:利用垂直、平行的充要条件解决.例2.已知直线l 经过点P (3,1),且被两平行直线1l :x +y +1=0和2l :x +y +6=0截得的线段之长为5。
直线与圆的方程
直线与圆的方程方程是数学中重要的概念,是由变量、符号和数字组成的式子,它表示一种规律,可用来描述空间图形的形状和位置关系,其中最基本表示形状的方程是直线和圆的方程。
直线的方程是最基本的平面几何图形,它是两点之间最短的路径,用一元一次方程来表示,例如y=ax+b,其中a和b是实数。
值得注意的是,a是斜率,而b是截距,只有当两个参数都确定,才能确定一条直线,而不确定的参数只能确定一条平行于此直线的直线。
另一种形状的方程是圆的方程。
圆是有界的平面图形,由一个内切圆环和它的内切圆环组成,它的方程是(x-a)2+(y-b)2=r2,其中(a,b)是圆心坐标,r是半径,只有当圆心和半径都确定,才能确定一个圆,而不确定的参数只能确定一个相似的圆。
圆的表示方式又有两种,一种是非积分的极坐标形式,如r=a cos (θ)+b sin(θ),其中a和b是实数,θ代表角度。
另一种是标准形式,其方程为(x-x0)2+(y-y0)2=a2,其中(x0,y0)是圆心坐标,a是半径。
圆和直线这两种方程本质上是不同的,此外,它们在坐标系中表示出来的形状也是不同的,直线是一种平行于坐标轴的线,而圆则是一个有界的圆环,它的中心在坐标原点,其半径为a。
圆和直线的方程极大地丰富了几何图形的表达能力,通过对它们的方程的推导和求解,可以更好地理解图形的性质,从而推动几何学的发展,推动数学的发展。
从定义上讲,直线和圆的方程是可以相互转换的。
比如,可以将一元一次方程y=ax+b换成(x-a)2+(y-b)2=r2,这样,直线就可以转换成圆,圆也可以转换成直线。
另一方面,通过对直线和圆的方程求解,可以用它们来解决复杂的数学问题,比如求两个圆的位置关系,求一条直线与一个圆的位置关系,求一条直线与另一条直线的位置关系等等,这些复杂的数学应用可以用直线和圆的方程来解决。
由此可见,直线和圆的方程是数学中至关重要的概念,它丰富了图形的表达能力,并可用来解决复杂的数学问题,是数学发展的基础。
直线与圆的方程知识点总结
直线与圆的方程知识点总结
直线与圆的方程是解析几何中的基本知识点,下面是关于直线与圆的方程的一些重要知识点总结:
直线方程知识点总结:
1. 直线的点斜式方程:y-y0=k(x-x0),其中 (x0, y0) 为直线上的一点,k 为直线的斜率。
2. 直线的斜截式方程:y=kx+b,其中 k 为直线的斜率,b 为 y 轴上的截距。
3. 直线的两点式方程:(y-y1)/(y2-y1)=(x-x1)/(x2-x1),其中 (x1, y1) 和
(x2, y2) 为直线上的两点。
4. 直线的截距式方程:x/a + y/b = 1,其中 a 和 b 分别为直线在 x 轴和 y 轴上的截距。
5. 直线的一般式方程:Ax + By + C = 0,其中 A、B、C 为常数,且 A 和
B 不为 0。
圆的方程知识点总结:
1. 圆的标准式方程:(x-h)^2 + (y-k)^2 = r^2,其中 (h, k) 为圆心坐标,r 为半径。
2. 圆的参数式方程:x=h+rcosθ, y=k+rsinθ,其中 (h, k) 为圆心坐标,r 为半径,θ 为参数。
3. 圆的极坐标式方程:ρ=r,其中 r 为半径,θ 为极角。
4. 圆的直径式方程:x^2 + y^2 + Dx + Ey + F = 0,其中 D、E、F 为常数。
5. 圆的一般式方程:x^2 + y^2 + Ax + By + C = 0,其中 A、B、C 为常数。
在直线与圆的方程中,还有一些重要的知识点和概念,如直线的法线式和参数式,圆的切线和割线等。
理解和掌握这些概念和公式对于解决几何问题非常重要。
高三总复习直线与圆的方程知识点总结及典型例题
直线与圆的方程一、直线的方程 1、倾斜角:,范围0≤α<π,x l //轴或与x 轴重合时,α=00。
2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在`⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。
当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。
几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b!④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程。
②任何一个关于x 、y 的二元一次方程都表示一条直线。
5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) '特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴)(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。
②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。
二、两直线的位置关系(说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则12121tan k k k k •+-=θ(121-≠k k )3、夹角:12121tan kk k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B A d③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是0221=+++C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --':(2)点关于线的对称:设p(a 、b)一般方法:如图:(思路1)设P 点关于L 的对称点为P 0(x 0,y 0) 则Kpp 0﹡K L =-1P , P 0中点满足L 方程:解出P 0(x 0,y 0)(思路2)写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0(x 0,y 0)的坐标。
高中数学《直线和圆的方程》常用公式
高中数学《直线和圆的方程》常用公式1.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 2.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;3. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.4.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).5.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 6.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.7. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).8.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).9. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.10. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分;111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.11.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d = d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.12.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .其中22B A CBb Aa d +++=.13. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.14.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .15.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x x E y y x x y y F ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k的圆的切线方程为y kx =±.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线和圆的方程【方法点拨】1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题.3.熟练运用待定系数法求圆的方程.4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想.6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识.第1课直线的方程【考点导读】理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程.高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考. 【基础练习】1. 直线x cos α+3y +2=0的倾斜角范围是50,,66πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭2.过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是10320-+=-=或x y x y3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为42=-=-+或y x y x4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2)5.已知直线l 过点P (-5,-4),且与两坐标轴围成的三角形面积为5个平方单位,求直线l 的方程2861255=--=--或y x y x【范例导析】例1.已知两点A (-1,2)、B (m ,3) (1)求直线AB 的斜率k ; (2)求直线AB 的方程;(3)已知实数m113⎡⎤∈-⎢⎥⎣⎦,求直线AB 的倾斜角α的取值范围.分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况.解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,11k m =+, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1211y x m -=++. (3)①当m =-1时,2πα=; ②当m ≠-1时,∵(1,13k m ⎫=∈-∞⋃+∞⎪⎢⎪+⎣⎭∴2,,6223ππππα⎡⎫⎛⎤∈⋃⎪ ⎢⎥⎣⎭⎝⎦故综合①、②得,直线AB 的倾斜角2,63ππα⎡⎤∈⎢⎥⎣⎦点拨:本题容易忽视对分母等于0和斜率不存在情况的讨论. 例2.直线l 过点P(2,1),且分别交x 轴、y 轴的正半轴于点A 、B 、O 为坐标原点.(1)当△AOB 的面积最小时,求直线l 的方程; (2)当|PA|²|PB|取最小值时,求直线l 的方程.分析: 引进合适的变量,建立相应的目标函数,通过寻找函数最值的取得条件来求l 的方程.解 (1)设直线l 的方程为y -1=k (x -2),则点A(2-1k,0),B(0,1-2k ),且2-1k>0, 1-2k >0,即k <0.△AOB 的面积S=12(1-2k )(2-1k )=12[(-4k )+1k -+4]≥4,当-4k =1k-,即k =12-时, △AOB 的面积有最小值4,则所求直线方程是x +2y -4=0.(2)解法一:由题设,可令直线方程l 为y -1=k (x -2). 分别令y =0和x =0,得A(2-1k,0),B(0,1-2k ),∴|PA|²4≥,当且仅当k 2=1,即k =±1时, |PA|²|PB|取得最小值4.又k <0, ∴k =-1,这是直线l 的方程是x +y -3=0.解法二:如下图,设∠BAO=θ,由题意得θ∈(0,2π),且|PA|²|PB|=||||44sin cos sin2PE PF θθθ⋅=≥当且仅当θ=4π时, |PA|²|PB|取得最小值4,此时直线l 的斜率为-1, 直线l点评 ①求直线方程的基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量.②在研究最值问题时,可以从几何图形开始,找到取最值时的情形,也可以从代数角度出发,构建目标函数,利用函数的单调性或基本不等式等知识来求最值.例3.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5例2图=0截得的线段中点为P (-1,2).求直线l 的方程. 分析 本题关键是如何使用好中点坐标,对问题进行适当转化.解:解法一 设直线l 交l 1于A (a ,b ),则点(-2-a ,4-b )必在l 2,所以有4303(2)5(4)50a b a b ++=⎧⎨-----=⎩,解得25a b =-⎧⎨=⎩ 直线l 过A(-2,5),P(-1,2),它的方程是3x +y +1=0. 解法二 由已知可设直线l 与l 1的交点为A (-1+m ,2+n ),则直线l 与l 2的交点为B (-1-m ,2-n ),且l 的斜率k =n m,∵A,B 两点分别l 1和l 2上,∴4(1)(2)303(1)5(2)50m n m n -++++=⎧⎨-----=⎩,消去常数项得-3m =n ,所以k =-3,从而直线l 的方程为3x +y +1=0.解法三 设l 1、l 2与l 的交点分别为A,B ,则l 1关于点P (-1,2)对称的直线m 过点B ,利用对称关系可求得m 的方程为4x +y +1=0,因为直线l 过点B ,故直线l 的方程可设为3x -5y -5+λ(4x +y +1)=0.由于直线l 点P (-1,2),所以可求得λ=-18,从而l 的方程为3x -5y -5-18(4x +y +1)=0,即3x +y +1=0.点评 本题主要复习有关线段中点的几种解法,本题也可以先设直线方程,然后求交点,再根据中点坐标求出直线l 的斜率,但这种解法思路清晰,计算量大,解法一和解法二灵活运用中点坐标公式,使计算简化,对解法二还可以用来求已知中点坐标的圆锥曲线的弦所在直线方程,解法三是利用直线系方程求解,对学生的思维层次要求较高。
反馈练习:1.已知下列四个命题①经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示;②经过任意两个不同点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示;③不经过原点的直线都可以用方程ax +by =1表示;④经过定点A(0,b)的直线都可以用方程y =kx+b 表示,其中正确的是①③④ 2.设直线l 的方程为()()232603x k y k k +--+=≠,当直线l 的斜率为-1时,k 值为__5__,当直线l 在x 轴、y 轴上截距之和等于0时,k 值为1或33.设直线 a x+b y+c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足的关系式为0=-b a4.若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是)2,6(ππ5.若直线4x-3y-12=0被两坐标轴截得的线段长为c1,则c 的值为516.过点P(1,1)作直线l ,与两坐标轴相交所得三角形面积为10,则直线l 有4条7.若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b+的值等于12.8.若直线(m 2─1)x ─y ─2m +1=0不经过第一象限,则实数m 的取值范围是112⎛⎫⎪⎝⎭,9.已知直线l 被两直线l 1:4x +y +6=0与l 2:3x 一5y 一6=0截得的线段中点为坐标原点,那么直线l 的方程是 x +6y =0 . 10.已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1)、Q 2(a 2,b 2)(a 1≠a 2)的直线方程 分析:利用点斜式或直线与方程的概念进行解答 解:∵P (2,3)在已知直线上, ∴ 2a 1+3b 1+1=0,2a 2+3b 2+1=0∴2(a 1-a 2)+3(b 1-b 2)=0,即2121a a b b --=-32 ∴所求直线方程为y -b 1=-32(x -a 1) ∴2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0点拨:1.由已知求斜率; 2.运用了整体代入的思想,方法巧妙.11.在△ABC 中,BC 边上的高所在的直线方程为x-2y+1=0,∠A 的平分线所在直线方程为y=0,若点B 的坐标为(1,2),求点A 和点C 的坐标.分析:利用高线与∠A 的平分线求得点A 坐标,然后求出直线AC 与BC 的方程,从而求出C 点坐标.解 A 点既在BC 边的高线上,又在∠A 的平分线上,由2100x y y -+=⎧⎨=⎩得A(-1,0),∴k AB =1,而x 轴是角A 的平分线,∴k AC = –1,∴AC 边所在直线方程为y =-(x +1) ①又k BC = –2, ∴BC 边所在直线方程为y –2=–2(x –1) ② 联立① ②得C 的坐标为(5,–6)点拨: 综合运用三角形和直线有关知识,寻找解题突破口,将问题转化为先求一些直线方程,再求直线的交点.这是解决这一类问题的常用办法.12.一条直线经过点P (3,2),并且分别满足下列条件,求直线方程:(1)倾斜角是直线x -4y +3=0的倾斜角的2倍; (2)与x 、y 轴的正半轴交于A 、B 两点,且△AOB 的面积最小(O 为坐标原点)解:(1)设所求直线倾斜角为θ,已知直线的倾斜角为α,则θ=2α,且tan α=41,tan θ=tan2α=158, 从而方程为8x -15y +6=0(2)设直线方程为a x+b y =1,a >0,b >0, 代入P (3,2),得a 3+b 2=1≥2ab6,得ab ≥24,从而S △AOB =21ab ≥12, 此时a 3=b 2,∴k =-a b =-32点拨:此题(2)也可以转化成关于a 或b 的一元函数后再求其最小值第2课 两条直线的位置关系【考点导读】1.掌握两条直线平行与垂直的条件,能根据直线方程判定两条直线的位置关系,会求两条相交直线的交点,掌握点到直线的距离公式及两平行线间距离公式.2.高考数学卷重点考察两直线平行与垂直的判定和点到直线的距离公式的运用,有时考察单一知识点,有时也和函数三角不等式等结合,题目难度中等偏易. 【基础练习】1.已知过点A(-2,m )和B(m ,4)的直线与直线2x +y -1=0平行,则m 的值为-82.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为2x +y -1=03.若三条直线2380,x y ++=10x y --=和102x ky k +++=相交于一点,则k的值等于12-4.已知点P 1(1,1)、P 2(5,4)到直线l 的距离都等于2.直线l 的方程为 3x-4y+11=0或3x-4y-9=0 或 7x+24y-81=0或x-3=0.5.已知A (7,8),B (10,4),C (2,-4),求 ABC 的面积. 简解:答案为283【范例导析】【例1】已知两条直线1l :x +m 2y +6=0, 2l :(m -2)x +3my +2m =0,当m 为何值时, 1l 与2l(1) 相交;(2)平行;(3)重合? 分析:利用垂直、平行的充要条件解决.解:当m=0时,1l :x +6=0,2l :x =0,∴1l ∥2l ,当m=2时,1l :x +4y +6=0,2l :3y +2=0∴1l 与2l 相交;当m ≠0且m ≠2时,由mm m 3212=-得m =-1或m =3,由mm 2621=-得m =3故(1)当m ≠-1且m ≠3且m ≠0时1l 与2l 相交。