大学物理复习资料
大学物理 期末复习知识点总结

f (v的) 意义:
v0 N v N dv
表示一定量的气体,在温度为T 的平衡状态下,速率
在v 附近单位速率区间内的分子数占总数的百分比。
f (v) 的表达式: f (v) 4π(
m
) e v 3 2
mv2 2kT
2
2πkT
——麦克斯韦速率分布函数
式中,T — 气体的热力学温度
m — 一个气体分子的质量
N — v ~ v 的v 分子占总分子数的百分比
N
N — v 附近单位速率区间的分子数占总分子数 N v 的百分比
lim N —只与v 有关,
v0 N v
lim N f (v) 1 dN
v0 N v
N dv
上页
下页
速率分布函数: f (v) lim N 1 dN
T 是气体分子平均平动动能的量度,而不是总能量的量度。
2)对于一定量的给定的气体,ν、i 确定:E = E(T)
3)理想气体内能增量 : dE i R dT 2
ν一定,dT =1℃ :dE ∝i
i 大的气体比热大。
上页
下页
例1 两种气体自由度数目不同,温度相同,摩尔数相同, 下面哪种叙述正确;
2)v p v v2
3)三种速率用途不同:
vp 讨论速率分布 v 讨论分子碰撞
v2 讨论平均平动动能
上页
下页
例1 麦克斯韦速率分布中最概然速率 v的p 概念下面
哪种表述正确?
(A) vp 是气体分子中大部分分子所具有的速率. (B) vp是速率最大的速度值. (C) vp是麦克斯韦速率分布函数的最大值. (D) 速率大小与 vp相近的气体分子的比率最大.
《大学物理》复习题及答案

《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。
3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。
速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。
如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。
25:一质点沿半径为米的圆周运动,其转动方程为??2?t。
质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。
大学物理(上)复习要点及重点试题

刚体复习重点(一)要点质点运动位置矢量(运动方程) r = r (t ) = x (t )i + y (t )j + z (t )k ,速度v = d r/d t = (d x /d t )i +(d y /d t )j + (d z /d t )k ,动量 P=m v加速度 a=d v/d t=(d v x /d t )i +(d v y /d t )j +(d v z /d t )k曲线运动切向加速度 a t = d v /d t , 法向加速度 a n = v 2/r .圆周运动及刚体定轴转动的角量描述 θ=θ(t ), ω=d θ/d t , β= d ω/d t =d 2θ/d t 2,角量与线量的关系 △l=r △θ, v=r ω (v= ω×r ),a t =r β, a n =r ω2力矩 M r F 转动惯量 2i i J r m =∆∑, 2d mJ r m =⎰ 转动定律 t d L M =M J α= 角动量: 质点p r L ⨯= 刚体L=J ω;角动量定理 ⎰tt 0d M =L -L 0角动量守恒 M=0时, L=恒量; 转动动能2k E J ω= (二) 试题一 选择题(每题3分)1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(答案:C )(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (答案:C )(A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (答案:A )(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.4. 关于刚体对轴的转动惯量,下列说法中正确的是(答案:C )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(答案:D )(A) ω0/3. (B) ()3/1 ω0. (C) 3 ω0. (D) 3ω0.二、填空题1.(本题4分)一飞轮作匀减速运动,在5s 内角速度由40π rad/s 减少到10π rad/s ,则飞轮在这5s内总共转过了 圈,飞轮再经 的时间才能停止转动。
大学物理考试试题复习资料

Am 1m 2BO A r Q 1 Q 2 R 1R 2 OP l Bbav α 重考复习参考题(自动化专业)一、 选择题。
1.如图所示,S 1和S 2是两个半径相同的球面。
P 1和P 2是两球面上的对应点,当点电荷q 1、q 2、q 3从图一的分布状态变为图二的分布状态时,则:[ D ] (A) 1212p p S S E d s=E d s ,E E ⋅⋅=⎰⎰ (B) 1212p p S S E d s=E d s ,E E ⋅⋅≠⎰⎰(C) 1212p p S S E d s E d s ,E =E ⋅≠⋅⎰⎰(D) 1212p p S S E d s E d s ,E E ⋅≠⋅≠⎰⎰2.如图所示,在半径为R1的金属球表面紧贴一个外半径为R2、电容率为ε的介质球壳(不带电),球壳外为真空,P 为介质球壳内一点,距球心O 点的距离为r 。
当金属球带上电量为Q 的电荷、且以无穷远处为电势零点,则P 点的场强大小和电势分别为:[ C ](A) 22Q QEp=,Up=4r 4R πεπε(B)20002Q Q QEp=,Up=4r 4r 4R +πεπεπε (C)2202Q Q 11Q Ep=,Up=4r 4r R 4R ⎛⎫-+⎪πεπεπε⎝⎭ (D)200102Q Q QEp=,Up=4r 4R 4R +πεπεπε3.如图所示,L 1、L 2是两个半径为R 的圆周,电流I 1≠I 2,P 1、P 2为两个圆周上的对应点。
当电流I 1和I 2的位置从图(一)状态变化到图(二)状态时,则:[ B ] (A)1212p p L L B dl B dl ,B B ⋅=⋅≠⎰⎰(B) 1212p p L L B dl B dl ,B B ⋅≠⋅≠⎰⎰(C) 1212p p L L B dl B dl ,B B ⋅=⋅=⎰⎰(D) 1212p p LL B dl B dl ,B B ⋅≠⋅=⎰⎰4.如图所示,AB 是一根无限长载流直导线,通有电流I1,C 、D 是两个材料和尺寸相同的正方形金属线圈,两金属线圈C 、D 与直线AB 共面。
大学物理实验复习资料

大学物理实验复习测量误差与数据处理p51.绝对误差表达式(自我感觉就是全微分)例如的绝对误差表达式为2.相对误差:相对误差=绝对误差被测量。
例如:3.算术平均偏差:对一固定量进行多次测量所得各偏差绝对值的算术平均值称为算术平均偏差,公式略,在p10页4.分光镜的调整和折射率的测定1.测量三棱镜顶角的方法:自准法和劈尖干涉法。
自准直法测三棱镜顶角α原理:平行光线分别垂直入射到三棱镜的AB,AC两个反射面,由原路返回的两反射线的方位为T1,T2则:ф=|T2-T1| 或ф=360°-|T2-T1|顶角α=180°-ф对劈尖干涉法存在疑问!!刚体转动惯量的研究1.扭摆的垂直轴上装上载物圆盘,,测出它的转动周期为,将圆柱体放在载物圆盘上,测出此系统的转动周期为,则圆柱体自身转动周期T为导热系数实验p811.改变样品形状,采取一些措施,能否利用本实验装置测量良导体的导热系数?为什么?2.测A,B的厚度使用游标卡尺,只有三位有效数字,为何不用千分尺?3.试根据计算式中各实验测得值的有效数字的位数,指出产生误差的主要因素是什么?4.室温不同测得的值相同吗?为什么?哪个大?5.在测量不良导体的导热系数时,若上下表面热电偶电动势接近稳定但均在缓慢上升,为了缩短系统达到稳定温度的时间,若用红外灯加热,则红外灯的电压应微微降低。
反之应微微升高。
惠斯通电桥测电阻1.比率选择:千欧级选“1”,百欧级选“0.1”,以此类推。
2.电桥的组成部分是哪些?什么是电桥的平衡条件?密立根油滴实验p2161.本书采用统计方法或统计直方图和最大公约数法两种数据处理方法来得出电荷的量子性和电子电荷的。
2.在实验过程中,平行极板加上某一电压值,有些油滴向上运动,有些油滴向下运动,且运动越来越快,还有些油滴运动状况与未加电压时一样,这是什么原因?3.密立根油滴实验平衡测量法要求油滴做匀速运动。
识别是否满足这一条件的简单办法是测油滴通过中央水平刻线上、下两等间距刻线所需的时间是否相等。
大学物理复习资料(超全)(一)

大学物理复习资料(超全)(一)引言概述:大学物理是大学阶段的一门重要课程,涵盖了广泛的物理知识和原理。
本文档旨在为大学物理的复习提供全面的资料,帮助学生回顾和巩固知识,以便更好地应对考试。
本文档将分为五个大点来详细讲解各个方面的内容。
一、力学1. 牛顿力学的基本原理:包括牛顿三定律和作用力的概念。
2. 运动学的基本概念:包括位移、速度和加速度的定义,以及运动的基本方程。
3. 物体的受力分析:重点介绍平衡、力的合成和分解、摩擦力等。
4. 物体的平衡和动力学:详细解析物体在平衡和运动状态下所受的力和力矩。
5. 力学定律的应用:举例说明力学定律在各种实际问题中的应用,如斜面、弹力等。
二、热学和热力学1. 理想气体的性质:通过理想气体方程和状态方程介绍气体的基本性质。
2. 热量和温度:解释热量和温度的概念,并介绍温标的种类。
3. 热传导和热辐射:详细讲解热传导和热辐射的机制和规律。
4. 热力学定律:介绍热力学第一定律和第二定律,并解析它们的应用。
5. 热力学循环和热效率:介绍热力学循环的种类和热效率的计算方法,以及它们在实际应用中的意义。
三、电学和磁学1. 电荷、电场和电势:介绍电荷的基本性质、电场的概念,以及电势的计算方法。
2. 电场和电势的分析:详细解析电场和电势在不同形状电荷分布下的计算方法。
3. 电流和电路:讲解电流的概念和电路中的串联和并联规律。
4. 磁场和电磁感应:介绍磁场的基本性质和电磁感应的原理。
5. 麦克斯韦方程组:简要介绍麦克斯韦方程组的四个方程,解释它们的意义和应用。
四、光学1. 光的传播和光的性质:解释光的传播方式和光的特性,如反射和折射。
2. 光的干涉和衍射:详细讲解光的干涉和衍射现象的产生机制和规律。
3. 光的色散和偏振:介绍光的色散现象和光的偏振现象的产生原因。
4. 光的透镜和成像:讲解透镜的类型和成像规律,包括凸透镜和凹透镜。
5. 光的波粒二象性和相干性:介绍光的波粒二象性和相干性的基本概念和实验现象。
大学物理下册总复习(可拷)全篇

0
可见光波长范围 3900 ~ 7600 A
干涉
nr为介质中与路程 r 相应的光程。
位相差与光程差: 2
两相干光源同位相,干涉条件
a· b· n
r 介质
k ,
k 0,1,2…加强(明)
(2k 1)
2
杨氏干涉
k 0,1,2…减弱(暗)
分波阵面法
等倾干涉、等厚干涉 分振幅法
杨氏干涉
缺级
单缝衍射 a sin =n
极小条件 n=0,±1, ±2,···
即:
k nab a
光栅主极大 (a+b)sin =k k 就是所缺的级次
k=0,±1, ±2, ···
偏振
I I0 cos2
自然光透过偏振片
1 I 2 I0
起偏角
tgi0
n2 n1
i0
2
载流直导线的磁场:
B
0 I 4a
(cos1
cos2 )
无限长载流直导线:
B 0I 2a
直导线延长线上: 载流圆环 载流圆弧
B0
B 0I
2R B 0I
2R 2
B
R
I
无限长直螺线管内部的磁场
B 0nI
磁通量 磁场中的高斯定理
m
B
dS
B
cos
dS
B dS 0
安培环路定理
磁介质中安培 环路定理
M L1L2
自感磁能 磁场能量
磁场能量密度
W 1 LI 2 2
W 1 BHV 2
w W 1 B2 1 H 2 1 BH
V 2 2
2
任意磁场总能量
W
V
wdV
大学物理1 复习资料

大学物理1 复习资料一、选择题1.电量为q 的粒子在均匀磁场中运动,下列说法正确的是( B )。
(A )只要速度大小相同,所受的洛伦兹力就一定相同;(B )速度相同,带电量符号相反的两个粒子,它们受磁场力的方向相反,大小相等;(C )质量为m ,电量为q 的粒子受洛伦兹力作用,其动能和动量都不变;(D )洛伦兹力总与速度方向垂直,所以带电粒子的运动轨迹必定是圆。
2.载电流为I ,磁矩为P m 的线圈,置于磁感应强度为B 的均匀磁场中, 若P m 与B 方向相同则通过线圈的磁通Φ与线圈所受的磁力矩M 的大小为( B )。
(A )0,==ΦM IBP m ; (B );0,==ΦM IBP m (C )m m BP M IBP ==Φ, ; (D )m m BP M IBP ==Φ, 3.已知空间某区域为匀强电场区,下面说法中正确的是( C )。
(A )该区域内,电势差相等的各等势面距离不等。
(B )该区域内,电势差相等的各等势面距离不一定相等。
(C )该区域内,电势差相等的各等势面距离一定相等。
(D )该区域内,电势差相等的各等势面一定相交。
4.关于高斯定律得出的下述结论正确的是( D )。
(A )闭合面内的电荷代数和为零,则闭合面上任意点的电场强度必为零。
(B )闭合面上各点的电场强度为零,则闭合面内一定没有电荷。
(C )闭合面上各点的电场强度仅有闭合面内的电荷决定。
(D )通过闭合曲面的电通量仅有闭合面内的电荷决定。
5.一带有电荷Q 的肥皂泡在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中( B )。
(A )始终在泡内的点的场强变小;(B )始终在泡外的点的场强不变;(C )被泡面掠过的点的场强变大; (D )以上说法都不对。
6.电荷线密度分别为21,λλ 的两条均匀带电的平行长直导线,相距为d ,则每条导线上单位长度所受的静电力大小为 (D )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分:力学基本要求 一基本概念 1. 位移,速度,加速度, 动量,力,冲量,功,动能,势能,机械能,角动量,力矩;
2. 参考系,坐标系,惯性坐标系,质点, 位置矢量,速率,角速度,角加速度, 法向加速度,切向加速度,转动惯量,冲量矩。
二.基本定律、定理、原理、公式 1. 质点运动学: 位置矢量:在直角坐标系中 , 大小 =
运动方程: ;或 ; ;
位移: = , 大小 = ,一般
速度:
,在直角坐标系中: ;
; ; ;速率:
加速度: ,在直角坐标系中: ; ; ; ;
在自然坐标系中:运动方程: ,速率:
圆周运动角量描述:运动方程: ,角速度:
,角加速度:
切向加速度: , 法向加速度: ,一般曲线运动 加速度: ; ,
直线运动: ;
;
匀变速直线运动: ; ;
匀变速圆周运动: ; ; 抛物体运动。相对运动: , 运动学两类问题:(1) ,求导;(2) ,积分。 2.质点动力学: 牛顿运动三定律。动量 ,力:
,m常数时 ,
牛顿定律解题的基本思路:察明题意,隔离物体,受力分析,列出方 程(一般用分量式),求解、讨论。 力学中常见的几种力: 万有引力:
,重力 ;弹力: ; 摩擦力:(1)滑动磨擦力 ;(2)静摩擦力
动量定理:物体在运动过程中所受合外力的冲量,等于该物体动量的增量。 。其中, 冲量: ,动量:
动量守恒定律: 条件:若 ,结论:
分量:若 ,则:
质点的动能定理:合外力对质点做的功等于质点动能的增量。 功: ,
保守力的功: ,动能:Ek= , 机械能:E=Ek+Ep 势能:万有引力势能:
为零势能参考位置。
重力势能: , h=0处为势能零点。 弹簧弹性势能:
以弹簧的自然长度为势能零点。 功能原理: 。保守力的功:
机械能守恒定律:若 ,则 。 碰撞:弹性碰撞;非弹性碰撞;完全非弹性碰撞。 力矩: (对O点) ;质点的角动量: (对O点) 质点系的角动量定理:
。 质点系的角动量: 质点系的角动守恒定律: 若 ,则 。 3.刚体的定轴转动: 角速度
;角加速度
距转轴r 处质元的线量与角量关系: ; ; 转动惯量: , ,平行轴定理
刚体定轴转动定律:
定轴转动的动能定理:
。 转动动能:
,力矩的功:
机械能守恒定律:只有保守内力做功时,则有 。 刚体的重力势能
为质心相对参考点的高度。 刚体的角动量定理:
式中 刚体的角动量守恒定律: 时,
【六】光的干涉
1. 获得相干光的方法:把一个光源的一点发出的光分为两束,具体有分波阵面法和分振幅法
2. 光程:光程 (光在介质中传播r距离,与光在真空中传播nr距离时对应的相位差相同)
相位差 与光程差 的关系:
在一条光线传播的路径上放置折射率为n,厚度为d的透明介质,引起的光程改变为(n-1)d;介质内 3. 杨氏双缝干涉:分波阵面法,干涉条纹为等间隔的直条纹。(入射光为单色光,光程差Δ=dsinθ)
明条纹:dsinθ=±kλ (中央明纹对应于k=0,θ=0) 中心位置xk =D tgθ≈Dsinθ=±kλ ( k=0,1,2,…) 暗纹:dsinθ=± λ,中心位置xk =Dtgθ≈Dsinθ=± λ ( k=0,1,2,3,…) 相邻明(暗)纹间隔:Δx= λ,相邻两明(或暗)纹对应的光程差为λ, 相邻明、暗纹光程差为λ/2 典型问题:在缝S1上放置透明介质(折射率为n,厚度为 b),求干涉条纹移动方向、移动的条纹数目、条纹移动的距离。
分析: (1)判断中央明纹(Δ=0)的移动。在缝S1上放置透明介质后,上边光路的光程增大(n-1)d,只有下边光路的光程也增
大,由 可知,新的中央明纹在O点上方,因此条纹整体向上移动。(如果在缝S2上放置透明介质则条纹向下移) (2)设新中央明纹的位置在原条纹的k级明纹处,其坐标为xk 。由 (n-1)b=k’λ可求出移动的条纹数k’=(n-1)b/λ;
由(n-1)b=dsin ,可求出中央条纹移动的距离=Dtg≈Dsin = (n-1)bD/d ,也是所有条纹整体移动的距离。
4. 薄膜干涉1――等厚条纹(同一条纹对应的膜厚相等. 包括劈尖膜、牛顿环):光线近于垂直入射到薄膜的上表面,在薄膜上下表面处产生的两反射光发生干涉。
(反射光有一次且只有一次半波损失时才加入 项);
同一条纹处等厚,相邻两明(或暗)纹间隔为 ,对应的厚度差为
牛顿环半径:明纹 ,(k=1,…);暗纹 , (k=0,…) 5. 薄膜干涉2――增透膜、增反膜(均厚介质表面镀膜,光线垂直入射,对特定波长的反射光分别发生
相消、相长干涉,以增加入射光的透射率、反射率) 光程差: (膜的上下两表面中只存在一次半波损失时才加上 )
6. 迈克尔逊干涉仪:利用分振幅法产生双光束干涉,干涉条纹每移动一条相当于空气膜厚度改变
。 两反射镜到分光点的距离差为h,则Δ=2h;在干涉仪一条光路上放置透明介质(n,b),则光程差的改变量为 2(n-1)b。
薄膜干涉的分析步骤:以膜的上下表面为反射面,判断半波反射,求出光程差,由干涉相长(或相消)条件确定明纹(或暗纹)。
【七】光的衍射 1. 惠更斯—菲涅耳原理:子波,子波干涉 2. 单缝 (半波带法):暗纹 ,明纹dsinθ=± λ,式中k=1,2,3,…(与双缝干涉的暗纹公式不同!) (中央明纹中心对应于θ=0。条纹不等宽,中央宽,其它窄,光强主要集中在中央明纹内) 中央明条纹线宽度:Δx0=2*f*tgθ=2*fsinθ=2fλ/a (衍射反比定律:f、
一定时, )
3. 光栅衍射: 光栅方程(决定主极大位置): (k=0,1,2,…,km 其中d=a+b, a为透光缝宽;(应用——①可见的最高谱线级次:由θ=π/2求kmax =
,kmax 带小数时km取其整数,kmax恰为整数时km= kmax-1。(kmax对应的位置无限远,看不见);②谱线强度受单缝衍射调制,一般有缺级现象。
为整数时,它就是第一缺级;③求单缝衍射明纹或光栅主极大位置x k 的方法与双缝干涉相似,但要注意θ角较大时tgθ≠sinθ;④单缝衍射中央明纹内有(2k-1)条干涉明纹(dsinθ=kλ, asinθ=λ);⑤两种入射光波长不同时,光栅谱线重叠表示对应同一衍射角θ;
(附1)入射光倾斜入射时,Δ=AC+CB=d(sini±sinθ),入射光与衍射光在光轴同侧时取正号,k值正负取决坐标正向。
(附2)双缝干涉——明暗条纹相间且等间隔;单缝衍射——中央明纹亮且宽,其它明纹光强迅速下降。光栅衍射——明纹窄而亮,中央明纹宽度约为双缝干涉的1/N。
(附3)几何光学是波动光学在λ/a→0时的极限情形。 4. 光学仪器分辨本领 仪器的最小分辨角(角分辨率): ,其倒数为分辨率R。 单孔衍射: (θ为中央亮斑半径对圆孔中心的张角,D为透镜直径)
5. X射线衍射 布拉格公式(主极大): φ=kλ k=1,2,…, (掠射角φ:入射光与晶面夹角)
【八】光的偏振 按偏振状态将光分为线偏振光、自然光、部分偏振光。线偏振光也称完全偏振光或平面偏振光。
1. 马吕斯定律:I=I0cos2α (I0为入射的线偏振光强度,α为入射光E振动方向与检偏器偏振化方向的夹角)
偏振化方向即 振动方向。理想情况下,右图中自然光通过三个偏振片,光强
依次为 , ,
2. 布儒斯特定律: io为起偏振角(布儒斯特角),此时反射光为线偏振光,折射光为部分偏振光,且反射光垂直于折射光。 用点或短线表示偏振方向,作图时要标出箭头、角度。(当i=i0时要标明反射光⊥折射光) 3. 双折射现象 光轴:不发生双折射的方向,主平面:光轴与光线构成的平面。 o光(寻常光,⊥主平面)遵从折射定律,e光(非寻常光,在主平面内)。正晶体vo>ve,负晶体vo
[附]几种干涉、衍射公式的比较: 光程差 明 纹 暗 纹 条纹特点
双缝干涉 (分波列) 条纹中心xk =
( k=0,1,2,…) xk =±
( k=0,1,2,…)
等间隔、等宽;明纹k称干涉级,中央明纹k=0 相邻明纹间隔Δx=
λ
薄膜干涉 (分振幅)
或
(n是膜的折射率)
(k=1,2,…) 牛顿环 (k=0,1,2,…)
牛顿环
劈尖顶端e=0,相邻明纹间隔
膜的上下表面有且仅有一次半波反射时
, 否则
单缝衍射 (k=1,2,…) (k=1,2,…)
条纹不等宽,中央明纹是其它明纹两倍宽;宽度
式右对应的明暗纹与其它不同 光栅衍射 (d=a+b) (a+b) sinθ (垂直入射 (k=0,1,2,…) 不作要求 在暗背景下的窄且亮的细线。