初一年下册数学人教版填空题难题专练及答案
人教版七年级下册数学期末压轴难题试卷及答案-百度文库

人教版七年级下册数学期末压轴难题试卷及答案-百度文库一、选择题1.如图所示,下列说法正确的是( )A .1∠和2∠是内错角B .1∠和2∠是同旁内角C .1∠和5∠是同位角D .1∠和4∠是内错角2.在以下现象中,属于平移的是( ) ①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A .①②B .②④C .②③D .③④3.平面直角坐标系中,点()1,0A -在( ) A .x 轴的正半轴 B .x 轴的负半轴 C .y 轴的正半轴D .y 轴的负半轴 4.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行 B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角 5.如图,直线//EF MN ,点A ,B 分别是EF ,MN 上的动点,点G 在MN 上,ACB m ∠=︒,AGB ∠和CBN ∠的角平分线交于点D ,若52D ∠=︒,则m 的值为( ).A .70B .74C .76D .806.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 7.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,146∠=︒,则2∠等于( )A .138︒B .157︒C .148︒D .159︒8.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)二、填空题9.36的平方根是______,81的算术平方根是______.10.点()2,3P -关于x 轴对称的点的坐标为_________.11.若(,)A a b 在第一、三象限的角平分线上,a 与b 的关系是_________.12.如图,已知AB //EF ,∠B =40°,∠E =30°,则∠C -∠D 的度数为________________.13.图,直线//AB CD ,直线l 与直线AB ,CD 相交于点E 、F ,点P 是射线EA 上的一个动.点.(不包括端点E ),将EPF 沿PF 折叠,使顶点E 落在点Q 处.若∠PEF =75°,2∠CFQ =∠PFC ,则EFP ∠=________.14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果236x =,那么6x =±.15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.16.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长的速度运动,运动时间为t 秒.若t =2021秒,则点P 所在位置的点的坐标是_____.三、解答题17.计算下列各式的值:(1)237)--(233(3)8318.求下列各式中x 的值:(1)24241x -=;(2)()38127x -=.19.根据下列证明过程填空:已知:如图,AD BC ⊥于点D ,EF BC ⊥于点F ,4C ∠=∠.求证:12∠=∠.证明:∵AD BC ⊥,EF BC ⊥(已知)∴______=90ADC ∠=︒(______________)∴//AD EF (_____________)∴1______∠=(_____________)又∵4C ∠=∠(已知)∴//______AC (_________)∴2______∠=(_________)∴12∠=∠(__________)20.已知点P (﹣3a ﹣4,a +2).(1)若点P 在y 轴上,试求P 点的坐标;(2)若M (5,8),且PM //x 轴,试求P 点的坐标;(3)若点P 到x 轴,y 轴的距离相等,试求P 点的坐标.21.数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用()21-表示它的小数部分”张老师说:“晶晶同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:已知83x y +=+,其中x 是一个整数,且01y <<,请你求出20193(3)x y +-的值.二十二、解答题22.有一块面积为100cm 2的正方形纸片.(1)该正方形纸片的边长为 cm (直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm 2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?二十三、解答题23.已知,//AE BD ,A D ∠=∠.(1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.24.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠ ︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.25.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .26.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵180BDC DBC BCD ∠+∠+∠=︒,(______)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】利用“三线八角”的定义分别判断后即可确定正确的选项.【详解】解:A 、∠1和∠2是同旁内角,故错误;B 、∠1和∠2是同旁内角,正确;C 、∠1和∠5不是同位角,故错误;D 、∠1和∠4不是同旁内角,故错误,故选:B .【点睛】本题考查了同位角、内错角及同旁内角的定义,解题的关键是了解三类角的定义,难度不大.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.B【分析】根据坐标轴上点的坐标特征对点A(-1,0)进行判断.【详解】解:∵点A的纵坐标为0,∴点A在x轴上,∵点A的横坐标为-1,∴点A在x轴负半轴上.故选:B.【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.4.D【分析】根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可.【详解】解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;B:对顶角相等,选项正确,不符合题意;C:互为邻补角的两角和为180°,选项正确,不符合题意;D:相等的两个角不一定是对顶角,选项错误,符合题意;故答案选D.【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键.5.C【分析】先由平行线的性质得到∠ACB=∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m即可.【详解】解:过C作CH∥MN,∴∠6=∠5,∠7=∠1+∠2,∵∠ACB=∠6+∠7,∴∠ACB=∠5+∠1+∠2,∵∠D=52°,∴∠1+∠5+∠3=180°−52°=128°,由题意可得GD为∠AGB的角平分线,BD为∠CBN的角平分线,∴∠1=∠2,∠3=∠4,∴m°=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D=∠1+52°,∴∠3=∠4=∠1+52°,∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m°+52°,∴m°+52°=128°,∴m°=76°.故选:C.【点睛】本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用.6.A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 7.B【分析】根据平行线的性质推出1GEB ∠=∠,GFE FEB ∠=∠,然后结合角平分线的定义求解即可得出GFE ∠,从而得出结论.【详解】解:∵//AB CD ,∴146GEB ∠=∠=︒,GFE FEB ∠=∠,∵GEB ∠的平分线EF 交CD 于点F , ∴1232GEF FEB GEB ∠=∠=∠=︒, ∴23GFE FEB ∠=∠=︒,∴218018023157GFE ∠=︒-∠=︒-︒=︒,故选:B .【点睛】本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键.8.B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0解析:B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0,1),第二次碰撞后的点的坐标为(3,4),第三次碰撞后的点的坐标为(7,0),第四次碰撞后的点的坐标为(8,1),第五次碰撞后的点的坐标为(5,4),第六次碰撞后的点的坐标为(1,0),…,∵2021÷6=336…5,∴小球第2021次碰到球桌边时,小球的位置是(5,4),故选:B.【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.二、填空题9.±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.解析:±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.10.【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点关于轴对称点的坐标为:,故答案为.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.11.a=b .【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.解析:a=b .【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.12.10°【分析】过点C 作CG ∥AB ,过点D 作DH ∥EF ,根据平行线的性质可得AB ∥CG ∥DH ∥EF ,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH ,即可求解.【详解】解析:10°【分析】过点C 作CG ∥AB ,过点D 作DH ∥EF ,根据平行线的性质可得AB ∥CG ∥DH ∥EF ,从而可得∠BCG =∠B =40°,∠EDH =∠E =30°,∠DCG =∠CDH ,即可求解.【详解】解:如图,过点C 作CG ∥AB ,过点D 作DH ∥EF ,∵AB //EF ,∴AB ∥CG ∥DH ∥EF ,∵∠B=40°,∠E=30°,∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°.故答案为:10°.【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键.13.或【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+解析:35︒或63︒【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+∠CFE=180°设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.②当点Q在CD下方时,如图2设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=2x,3∴75°+2x+x=180°,3解得x=63°,∴∠EFP=63°.故答案为:35︒或63︒【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.14.②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③解析:②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③两直线平行,同位角相等,故错误,是假命题;④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:∵a//b,∴∠CAE+∠ACF=180°.又AB平分∠CAE,CD平分∠ACF,所以∠1=12∠CAE,∠2=12∠ACF.所以∠1+∠2=12∠CAE+12∠ACF=1 2(∠CAE+∠ACF)=12×180°=90°.又∵△ACG的内角和为180°,∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,∴AB⊥CD.∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;⑤如果236x=,那么6x=±,正确,是真命题.故答案为:②④⑤.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.15.(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.16.(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P 点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2), D(1,-2)∴AB= CD= 2,AD= BC= 3,∴四边形ABCD 的周长= AB+ AD+BC+CD= 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1);(2)【分析】(1)先移项,然后运用直接开平方法,即可求出的值;(2)方程两边同时除以8,然后计算立方根,即可得到答案.【详解】解:(1)∴,∴,∴;(2),∴,∴,解析:(1)52x =±;(2)52x = 【分析】(1)先移项,然后运用直接开平方法,即可求出x 的值;(2)方程两边同时除以8,然后计算立方根,即可得到答案.【详解】解:(1)24241x -=∴2425x =, ∴2254x =, ∴52x =±; (2)()38127x -=,∴()32718x -=, ∴312x -=, ∴52x =; 【点睛】本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题.19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD ;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】解析:FEC ∠;垂直的定义;同位角相等,两直线平行;3∠;两直线平行,同位角相等;GD ;同位角相等,两直线平行;3∠;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】证明:证明:∵AD BC ⊥,EF BC ⊥(已知)∴=90ADC FEC ∠=∠︒(垂直的定义)∴//AD EF (同位角相等,两直线平行)∴13∠=∠(两直线平行,同位角相等)又∵4C ∠=∠(已知)∴//AC GD (同位角相等,两直线平行)∴23∠∠=(两直线平行,内错角相等)∴12∠=∠(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键. 20.(1)P (0,);(2)P (-22,8);(3)P (,)或P (-1,1).【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案; (2)根据平行于x 轴的直线上的点的纵坐标相解析:(1)P (0,23);(2)P (-22,8);(3)P (12,12)或P (-1,1). 【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案;(2)根据平行于x 轴的直线上的点的纵坐标相等列方程求出a 值即可得答案;(3)根据点P 到x 轴,y 轴的距离相等可得|34||2|a a --=+,解方程求出a 值即可得答案.【详解】(1)∵点P 在y 轴上,∴340a --=, ∴43a =-, ∴422233a +=-+= ∴P (0,23). (2)∵PM //x 轴,∴28a +=,∴6a =,此时,3422a --=-,∴P (-22,8)(3)∵若点P 到x 轴,y 轴的距离相等,∴|34||2|a a --=+,∴342a a --=+或34(2)a a --=-+, 解得:32a =-或1a =-, 当32a =-时,﹣3a ﹣4=12,a +2=12, ∴P (12,12),当1a =-时,﹣3a ﹣4=-1,a +2=1,∴P (-1,1),综上所述:P (12,12)或P (-1,1).【点睛】本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.21.26【分析】先估算出的范围,再求出x,y的值,即可解答.【详解】解:∵,∴的整数部分是1,小数部分是∴的整数部分是9,小数部分是,∴x=9,y=,∴=3×9+(-)2019=27+(解析:26【分析】x,y的值,即可解答.【详解】解:∵,∴1∴89,∴x=9,,∴20193(+=3×9+2019=27+(-1)2019=27-1=26.x y【点睛】二十二、解答题22.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;故答案为:10;(2)∵长方形纸片的长宽之比为4:3,∴设长方形纸片的长为4xcm ,则宽为3xcm ,则4x •3x =90,∴12x 2=90,∴x 2=304,解得:x 或x = ∴长方形纸片的长为,∵56,∴10<∴小丽不能用这块纸片裁出符合要求的纸片.【点睛】本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.二十三、解答题23.(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E 作,延长DC 至Q ,过点M 作,根据平行线的性质及等量代换可得出,再根据平角的解析:(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.24.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ -∠EPQ =∠β-∠α.【详解】解:(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠B +∠BPG =180°,∠C +∠CPG =180°,又∵∠PBA =125°,∠PCD =155°,∴∠BPC =360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P 作FD 的平行线PQ ,则DF ∥PQ ∥AC ,∴∠α=∠EPQ ,∠β=∠APQ ,∴∠APE =∠EPQ +∠APQ =∠α+∠β,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.25.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.26.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F , ∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.。
青岛市人教版七年级下册数学期末压轴难题试卷及答案-百度文库

青岛市人教版七年级下册数学期末压轴难题试卷及答案-百度文库一、选择题1.如图所示,下列四个选项中不正确...的是( )A .1∠与2∠是同旁内角B .1∠与4∠是内错角C .3∠与5∠是对顶角D .2∠与3∠是邻补角2.下列哪些图形是通过平移可以得到的( )A .B .C .D .3.下列各点在第二象限的是( )A .()3,4B .()4,3-C .()4,3-D .()3,4--4.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②一个三角形被截成两个三角形,每个三角形的内角和是90度;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个 5.如图所示,12l l //,三角板ABC 如图放置,其中90B ∠=︒,若140∠=︒,则2∠的度数是( )A .40︒B .50︒C .60︒D .306.33x y ,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定7.如图,ABCD 为一长方形纸片,AB ∥CD ,将ABCD 沿E 折叠,A 、D 两点分别与A ′、D ′对应,若∠CFE =2∠CFD ′,则∠AEF 的度数是( )A .60°B .80°C .75°D .72°8.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(0,2)C .(﹣1,﹣2)D .(0,1)二、填空题9.计算:﹣9=_____.10.点()2,3P -关于x 轴对称的点的坐标为_________.11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B =50°,∠C =70°,则∠DAE =_____________°.12.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (C ∠=90°)在直尺的一边上,若2∠=63°,则1∠的度数是__________.13.如图,折叠三角形纸片ABC ,使点B 与点C 重合,折痕为DE ;展平纸片,连接AD .若AB =6cm ,AC =4cm ,则△ABD 与△ACD 的周长之差为____________.14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.15.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.16.如图,一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点()0,0运动到()0,1,然后接着按图中箭头所示方向运动,即()()()()0,00,11,11,0→→→,…,且每秒运动一个单位,到()1,1点用时2秒,到()2,2点用时6秒,到()3,3点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.三、解答题17.计算.(1)()()1278---+; (2)()202231127162⎛⎫-⨯- ⎪⎝⎭18.已知3a b +=,4ab =-,求下列各式的值()21()a b -;()2225a ab b -+19.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别是线段AB 、BC 上的点,AE 平分BAC ∠,BED C ∠=∠,//DF AE ,交BC 于点F .求证:DF 平分BDE ∠.证明:AE ∵平分BAC ∠(已知)12∠∠∴=( )BED C ∠=∠(已知)//AC DE ∴( )13∠∠∴=( )23∴∠=∠(等量代换)//DF AE ( )25∴∠=∠( )34∠=∠( )45∴∠=∠( )DF ∴平分BDE ∠( )20.在平面直角坐标系中有三个点(3,2)A -、B (-5,1)、(2,0)C -,(,)P a b 是ABC 的边AC 上任意一点,ABC 经平移后得到111A B C △,点P 的对应点...为1(6,2)P a b ++,(1)点A 到x 轴的距离是 个单位长度;(2)画出ABC 和111A B C △;(3)求111A B C △的面积.21.在学习《实数》内容时,我们通过“逐步逼近”2的近似值,得出1.4<2<1.5.利用“逐步逼近“法,请回答下列问题:(1)17介于连续的两个整数a和b之间,且a<b,那么a=,b=.(2)x是17+2的小数部分,y是17﹣1的整数部分,求x=,y=.(3)(17﹣x)y的平方根.二十二、解答题22.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.二十三、解答题23.如图,直线HD//GE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学∠=∠∠=∠,请判断光线a与光线b是否平行,并说明理由.知识有12,34(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC的夹角为40︒,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.105BAF∠=︒,DCF∠=︒,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转65动,设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.25.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=1(∠ACD-∠ABD)2∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.26.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)【参考答案】一、选择题1.B解析:B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.【详解】A. 1∠与2∠是同旁内角,故该选项正确,不符合题意;B. 1∠与4∠不是内错角,故该选项不正确,符合题意;C. 3∠与5∠是对顶角,故该选项正确,不符合题意;D. 2∠与3∠是邻补角,故该选项正确,不符合题意;故选B .【点睛】本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.2.B【分析】根据平移、旋转、轴对称的定义逐项判断即可.【详解】A 、通过旋转得到,故本选项错误B 、通过平移得到,故本选项正确C 、通过轴对称得到,故本选项错误D 、通过旋转得到,故本选项错误解析:B【分析】根据平移、旋转、轴对称的定义逐项判断即可.【详解】A 、通过旋转得到,故本选项错误B 、通过平移得到,故本选项正确C 、通过轴对称得到,故本选项错误D 、通过旋转得到,故本选项错误故选:B .【点睛】本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键.3.C【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A .()3,4在第一象限,故本选项不合题意;B .()4,3-在第四象限,故本选项不合题意;C .()4,3-在第二象限,故本选项符合题意.D .()3,4--在第三象限,故本选项不合题意;故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.B【分析】依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可.【详解】解:①如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;②一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;③在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;④两个无理数的和不一定是无理数,是假命题;⑤坐标平面内的点与有序数对是一一对应的,是真命题;其中真命题是①③⑤,个数是3.故选:B.【点睛】本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键.5.B【分析】作BD∥l1,根据平行线的性质得∠1=∠ABD=40°,∠CBD=∠2,利用角的和差即可求解.【详解】解:作BD∥l1,如图所示:∵BD∥l1,∠1=40°,∴∠1=∠ABD=40°,又∵l1∥l2,∴BD∥l2,∴∠CBD=∠2,又∵∠CBA=∠CBD+∠ABD=90°,∴∠CBD=50°,∴∠2=50°.故选:B.【点睛】本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线.6.B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:∵33=0x y,∴33=-x y∴x=-y,即x、y互为相反数,故选B.点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.7.D【分析】先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠EFD′,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB∥CD,∴∠CFE=∠AEF,又∵∠DFE=∠EFD′,∠CFE=2∠CFD′,∴∠DFE=∠EFD′=3∠CFD′,∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,∴∠CFD′=36°,∴∠AEF=∠CFE=2∠CFD′=72°.故选:D.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.8.D【分析】根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解解析:D【分析】根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解】解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2),∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3,∴从A→B→C→D→A一圈的长度为2(AB+BC)=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D.本题考查了坐标规律探索,找到规律是解题的关键.二、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】﹣3.故答案是﹣3.考点:算术平方根.10.【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点关于轴对称点的坐标为:,故答案为.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.11.10【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAD ,根据直角三角形两锐角互余求出∠BAE ,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=1【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°,∵AD是角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵AE是高,∴∠BAE=90°-∠B=90°-50°=40°,∴∠DAE=∠BAE-∠BAD=40°-30°=10°.故答案为:10.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.12.27°【分析】根据直尺的两边是平行的,从而可以得到CD∥EF,然后根据平行线的性质,可以得到∠2和∠DCE的关系,再根据∠ACB=∠1+∠DCE,从而可以求得∠1的度数,本题得以解决.【详解】解析:27°【分析】根据直尺的两边是平行的,从而可以得到CD∥EF,然后根据平行线的性质,可以得到∠2和∠DCE的关系,再根据∠ACB=∠1+∠DCE,从而可以求得∠1的度数,本题得以解决.【详解】解:∵CD//EF,∠2=63°,∴∠2=∠DCE=63°,∵∠DCE+∠1=∠ACB=90°,∴∠1=27°,故答案为:27°.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质和数形结合的思想解答.13.2cm【分析】由折叠的性质可得BD=CD,即可求解.【详解】解:∵折叠三角形纸片ABC,使点B与点C重合,∴BD=CD,∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长解析:2cm【分析】由折叠的性质可得BD=CD,即可求解.【详解】解:∵折叠三角形纸片ABC,使点B与点C重合,∴BD=CD,∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长=AC+AD+CD=4+CD+AD,∴△ABD与△ACD的周长之差=6-4=2cm,故答案为:2cm.【点睛】本题考查了翻折变换,掌握折叠的性质是本题关键.14.【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.2【分析】点在y 轴上,则横坐标为0,可求得a 的值,然后再判断点到x 轴的距离即可.【详解】∵点P(a+3,2a+4)在y 轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P 到x 轴的距离解析:2【分析】点在y 轴上,则横坐标为0,可求得a 的值,然后再判断点到x 轴的距离即可.【详解】∵点P(a +3,2a +4)在y 轴上∴a +3=0,解得:a =-3∴P(0,-2)∴点P 到x 轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.16.【分析】由题目中所给的点运动的特点找出规律,即可解答.由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:()19,20【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.三、解答题17.(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)3 2 -【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.解:(1)原式12783=-++=(2)原式11342⎛⎫=-⨯+- ⎪⎝⎭ 1342=-+- 542=- 32=- 【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键.18.(1)25;(2)37【分析】(1)利用完全平方差公式求解.(2)先配方,再求值.【详解】解:(1)(2)【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解解析:(1)25;(2)37【分析】(1)利用完全平方差公式求解.(2)先配方,再求值.【详解】解:(1)22()()4a b a b ab -=+-()2344=-⨯-25.=(2)2222527a ab b a ab b ab -+=++-2()7a b ab =+-()928=--37.=【点睛】本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键. 19.见解析根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(解析:见解析【分析】根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:AE ∵平分BAC ∠(已知)12∠∠∴=(角平分线的定义)BED C ∠=∠(已知)//AC DE ∴(同位角相等,两直线平行)13∠∠∴=(两直线平行,内错角相等)23∴∠=∠(等量代换)//DF AE (已知)25∴∠=∠(两直线平行,同位角相等)34∠=∠(两直线平行,内错角相等)45∴∠=∠(等量代换)DF ∴平分BDE ∠(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)2;(2)见解析;(3)2.5【分析】(1)根据A 点的纵坐标即可求解;(2)根据网格结构找出点A 、B 、C 的位置,然后顺次连接即可,再根据点P 、P1的坐标确定出变化规律,然后找出点A1、B解析:(1)2;(2)见解析;(3)2.5【分析】(1)根据A 点的纵坐标即可求解;(2)根据网格结构找出点A 、B 、C 的位置,然后顺次连接即可,再根据点P 、P 1的坐标确定出变化规律,然后找出点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)∵(3,2)A -∴点A 到x 轴的距离是2个单位长度故答案为:2;(2)如图,ABC ∆和111A B C ∆为所求作(3)S =11132121213222⨯-⨯⨯-⨯⨯-⨯⨯ =6-1-1-1.5=2.5【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(1)4;5;(2);3;(3)±8.【分析】(1)首先估算出的取值范围,即可得出结论;(2)根据 (1)的结论,得到,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解析:(1)4;5;(2174;3;(3)±8.【分析】(117的取值范围,即可得出结论;(2)根据 (1)的结论4175<<,得到61727<<,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解:(1)∵16<17<25, ∴4175<,∴a =4,b =5.故答案为:4;5(2)∵45<<, ∴627<<,2的整数部分为64, ∴4x =,3y =.4;3(3)当4x ,3y =时,代入,)33)4464y x ⎤===⎦. ∴64的平方根为:8±.【点睛】本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.二十二、解答题22.(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm 2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.【详解】解:(1)两个正方形面积之和为:2×8=16(cm 2),∴拼成的大正方形的面积=16(cm 2),∴大正方形的边长是4cm ;故答案为:4;(2)设长方形纸片的长为2xcm ,宽为xcm ,则2x •x =14,解得:x =2x ,∴不存在长宽之比为2:1且面积为214cm 的长方形纸片.【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键.二十三、解答题23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后∠HAP;理由见解解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣12析.【分析】(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK//HD//GE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=12∠HAP+12∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣12∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣12∠HAP﹣12∠PCG﹣90°+12∠PCG=90°﹣12∠HAP,即:∠N=90°﹣12∠HAP.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.25.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠A n(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=12(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=12∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=12(∠AEC+∠ACE)=12∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-12∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.26.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。
人教版中学七年级数学下册期末解答题难题及答案

人教版中学七年级数学下册期末解答题难题及答案一、解答题1.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?2.如图,用两个边长为103的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?3.如图用两个边长为18cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm2请说明理由.4.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.5.小丽想用一块面积为236cm的正方形纸片,如图所示,沿着边的方向裁出一块面积为220cm的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗为什么?二、解答题6.如图,直线HD//GE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.7.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD 于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=36 时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.8.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.(1)求证:AB //CD ;(2)如图(2),点E 在AB ,CD 之间的直线MN 上,P 、Q 分别在直线AB 、CD 上,连接PE 、EQ ,PF 平分∠BPE ,QF 平分∠EQD ,则∠PEQ 和∠PFQ 之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P 点作PH //EQ 交CD 于点H ,连接PQ ,若PQ 平分∠EPH ,∠QPF :∠EQF =1:5,求∠PHQ 的度数.9.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.10.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.三、解答题11.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论. 12.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.13.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°,求∠APC 的度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质来求∠APC .(1)按小明的思路,易求得∠APC 的度数为 度;(2)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP =∠α,∠BCP =∠β.试判断∠CPD 、∠α、∠β之间有何数量关系?请说明理由; (3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.14.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.15.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______;(2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论.四、解答题16.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.17.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 .拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .18.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.19.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .20.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、解答题1.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.2.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=480,解得:因为片的长宽之比为2:3,且面积为480cm2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.3.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为3:2,且面积为30cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,2+2=36(cm2),所以大正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b所以3b所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.4.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m),4×20=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=300,解得:a,∵3a表示长度,∴a>0,∴a∴这个长方形场地的周长为 2(3a+5a)=16a(m),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.5.不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为x,长为2x,然后依据矩形的面积为20列方程求得x的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为236cm,故边长为6cm设长方形宽为x,则长为2x长方形面积2=⋅==2220x x x∴210x=,解得10x=(负值舍去)长为210cm6cm>即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.二、解答题6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后∠HAP;理由见解解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣12析.【分析】(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK//HD//GE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=12∠HAP+12∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣12∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣12∠HAP﹣12∠PCG﹣90°+12∠PCG=90°﹣12∠HAP,即:∠N=90°﹣12∠HAP.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.7.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y+z﹣x,∵PQ平分∠EPH,∴Z=y+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.9.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n =90°时,∠C =∠CBF =90°,∴BC ⊥DG (EF ),AC ⊥DE (GF );当n =120°时,∴AB ⊥DE (GF ).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.10.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.三、解答题11.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a ,则CP//a//b ,根据平行线的性质求解.(2)作CP//a ,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG +∠NEF =90°;(3)见解析【分析】(1)作CP //a ,则CP //a //b ,根据平行线的性质求解.(2)作CP //a ,由平行线的性质及等量代换得∠AOG +∠NEF =∠ACP +∠PCB =90°.(3)分类讨论点P 在线段GF 上或线段GF 延长线上两种情况,过点P 作a ,b 的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.12.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可.【详解】解:(1)作EI∥PQ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.综上所述,∠BAM的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.13.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠A解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案为110°;(2)∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β-∠α,理由是:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE =∠β-∠α;当P在AB延长线时,∠CPD=∠α-∠β,理由是:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键.14.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠,11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.15.(1)136°;(2)∠AOG+∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ+∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴140°﹣∠POQ =∠OPQ +∠PQF .【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.四、解答题16.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.17.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE=S △BDE ,S △ABE=S △AEC ,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S 1=2S 2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE =S △BDE ,S △ABE =S △AEC ,从而得到结论;拓展延伸:(1)作△ABD 的中线AE ,则有BE =ED =DC ,从而得到△ABE 的面积=△AED 的面积=△ADC 的面积,由此即可得到结论;(2)连接AO .则可得到△BOD 的面积=△BOC 的面积,△AOC 的面积=△AOD 的面积,△EOC 的面积=△BOC 的面积的一半, △AOB 的面积=2△AOE 的面积.设△AOD 的面积=a ,△AOE 的面积=b ,则a +3=2b ,a =b +1.5,求出a 、b 的值,即可得到结论. 试题解析:解:解决问题连接AE .∵点D 、E 分别是边AB 、BC 的中点,∴S △ADE =S △BDE ,S △ABE =S △AEC .∵S △BDE =2,∴S △ADE =2,∴S △ABE =S △AEC =4,∴四边形ADEC 的面积=2+4=6.。
上海松江区第七中学人教版(七年级)初一下册数学期末压轴难题测试题及答案

上海松江区第七中学人教版(七年级)初一下册数学期末压轴难题测试题及答案一、选择题1.如图,已知两直线l1与l2被第三条直线l3所截,则下列说法中不正确的是()A.∠2与∠4是邻补角B.∠2与∠3是对顶角C.∠1与∠4是内错角D.∠1与∠2是同位角2.下列现象中是平移的是()A.翻开书中的每一页纸张B.飞碟的快速转动C.将一张纸沿它的中线折叠D.电梯的上下移动3.平面直角坐标系中,点(a2+1,2020)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列四个命题是真命题的是()A.两条直线被第三条直线所截,同位角相等B.互补的两个角一定是邻补角C.在同一平面内,垂直于同一条直线的两条直线互相平行D.相等的角是对顶角5.将两张长方形纸片按如图所示方式摆放,使其中一张长方形纸片的两个顶点恰好落在另一张长方形纸片的两条边上,则∠1+∠2的度数为()A.120°B.110°C.100°D.90°6.下列说法中正确的是()①1的平方根是1;②5是25的算术平方根;③(﹣4)2的平方根是﹣4;④(﹣4)3的立方根是﹣4;⑤0.01是0.1的一个平方根.A.①④B.②④C.②③D.②⑤7.如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为()A .55°B .45°C .40°D .35°8.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)二、填空题9.16的算术平方根是 _____.10.点(3,0)关于y 轴对称的点的坐标是_______11.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和38,则△EDF 的面积为_____.12.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.13.如图所示,是用一张长方形纸条折成的,如果1128∠=︒,那么2∠=___°.14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.16.如图,动点P 在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0)A ,第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P 的坐标是________.三、解答题17.(1)已知2(1)4x -=,求x 的值;(2)计算:23112(2)8--+-. 18.求下列各式中x 的值:(1)30.008x =;(2)3338x -=; (3)3(1)64x -=.19.如图,∠1+∠2=180°,∠C =∠D .求证:AD //BC .证明:∵∠1+∠2=180°,∠2+∠AED =180°,∴∠1=∠AED ( ),∴AC // ( ),∴∠D =∠DAF ( ).∵∠C =∠D ,∴∠DAF = (等量代换).∴AD //BC ( ).20.如图,三角形ABC 的顶点都在格点上,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:1A ______,1B ______,1C ______;(2)画出平移后三角形111A B C ;(3)求三角形ABC 的面积.21.已知:a 是93+的小数部分,b 是93-的小数部分.(1)求a b 、的值;(2)求445a b ++的平方根.二十二、解答题22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A ,那么点A 表示的数是多少?点A 表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长二十三、解答题23.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.24.如图,直线//PQ MN ,一副三角板(90ABC CDE ∠=∠=︒,30ACB ∠=︒,60,45EAC DCE DEC ∠=︒∠=∠=︒)按如图①放置,其中点E 在直线PQ 上,点,B C 均在直线MN 上,且CE 平分ACN ∠.(1)求DEQ ∠的度数.(2)如图②,若将三角形ABC 绕B 点以每秒5︒的速度按逆时针方向旋转(,A C 的对应点分别为,F G ).设旋转时间为t 秒(036)t ≤≤.①在旋转过程中,若边//BG CD ,求t 的值;②若在三角形ABC 绕B 点旋转的同时,三角形CDE 绕E 点以每秒4︒的速度按顺时针方向旋转(,C D 的对应点分别为,H K ).请直接写出当边//BG HK 时t 的值.25.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的32倍,求∠ABO的度数.26.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】1.C解析:C【分析】根据对顶角定义可得B说法正确,根据邻补角定义可得A说法正确,根据同位角定义可得D说法正确,根据内错角定义可得C错误.【详解】解:A、∠2与∠4是邻补角,说法正确;B、∠2与∠3是对顶角,说法正确;C、∠1与∠4是同旁内角,故原说法错误;D、∠1与∠2是同位角,说法正确;故选:C.【点睛】此题主要考查了对顶角、邻补角、同位角、内错角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.A【分析】根据点的横纵坐标的正负判断即可.解:因为a2+1≥1,所以点(a2+1,2020)所在象限是第一象限.故选:A.【点睛】本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键.4.C【分析】根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可.【详解】解:A、两条平行的直线被第三条直线所截,同位角相等,原命题错误,是假命题,不符合题意;B、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意;C、在同一平面内,垂直于同一条直线的两条直线互相平行,原命题正确,是真命题,符合题意;D、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理.5.D【分析】过E作EF∥CD,根据平行线的性质可得∠1=∠BEF,∠2=∠DEF,再由∠BED=90°即可解答.【详解】解:过E作EF∥CD,∵AB∥CD,∴EF∥CD∥AB,∴∠1=∠BEF,∠2=∠DEF,∵∠BEF+∠DEF=∠BED=90°,∴∠1+∠2=90°,故选:D.【点睛】本题考查平行线的判定与性质,熟练掌握平行线的性质是解答的关键.6.B【分析】根据平方根,算术平方根,立方根的概念进行分析,从而作出判断.【详解】解:1的平方根是±1,故说法①错误;5是25的算术平方根,故说法②正确;(-4)2的平方根是±4,故说法③错误;(-4)3的立方根是-4,故说法④正确;0.1是0.01的一个平方根,故说法⑤错误;综上,②④正确,故选:B.【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键.7.D【分析】先根据平行线的性质得到∠3=55°,再结合平角的定义即可得到结论.【详解】解:如图,∵AB//CD,∴∠1=∠3=55°,∵∠2+90°+∠3=180°,∴∠2=35°,故选:D.【点睛】本题考查了平行线的性质,平角的定义,熟记平行线的性质是解题的关键.8.B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0解析:B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0,1),第二次碰撞后的点的坐标为(3,4),第三次碰撞后的点的坐标为(7,0),第四次碰撞后的点的坐标为(8,1),第五次碰撞后的点的坐标为(5,4),第六次碰撞后的点的坐标为(1,0),…,∵2021÷6=336…5,∴小球第2021次碰到球桌边时,小球的位置是(5,4),故选:B.【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.二、填空题9.2【详解】∵,的算术平方根是2,∴的算术平方根是2.【点睛】这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去解析:2【详解】∵16=4,4的算术平方根是2,∴16 2.【点睛】16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错. 10.(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0).故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.6【详解】如图,过点D作DH⊥AC于点H,又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,∴DF=DH,∠AFD=∠ADH=∠DHG=90°,又∵AD=AD,DE=DG,∴△ADF≌解析:6【详解】如图,过点D作DH⊥AC于点H,又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,∴DF=DH,∠AFD=∠ADH=∠DHG=90°,又∵AD=AD,DE=DG,∴△ADF≌△ADH,△DEF≌△DGH,设S△DEF=x,则S△AED+x=S△ADG-x,即38+x=50-x,解得:x=6.∴△EDF的面积为6.12.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.13.64【分析】如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.【详解】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣128°=52°,由翻解析:64【分析】如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.【详解】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣128°=52°,由翻折的性质得,∠212=(180°﹣∠3)12=(180°﹣52°)=64°.故答案为:64.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键.14.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a<﹣,0<b<,故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b﹣a﹣﹣a=﹣2a﹣b解析:﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a30<b3故3b|+|a32a3b﹣(a3a3b﹣a3a=﹣2a﹣b.故答案为:﹣2a﹣b.【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离解析:2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.16.【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:(4042,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),⋯,∴横坐标为运动次数的2倍,经过第2021次运动后,动点P的横坐标为4042,纵坐标为2,0,1,0,每4次一轮,∴经过第2021次运动后,202145051÷=⋅⋅⋅,故动点P的纵坐标为2,∴经过第2021次运动后,动点P的坐标是(4042,2).故答案为:(4042,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(21 2【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x-=;∴12x-=±∴x=3或x=-1(2)原式1122-+ 12=,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2)32;(3)5 【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x -1的值,进而得出x 的值.【详解】解:(1)x 3=0.008,则x =0.2;(2)x 3-3=38则x 3=3+38故x 3=278解得:x =32; (3)(x -1)3=64则x -1=4,解得:x =5.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.19.同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;∠C ;同位角相等,两直线平行.【分析】根据平行线的判定和性质定理即可得到结论.【详解】证明:,,(同角的补角相等),解析:同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;∠C ;同位角相等,两直线平行.【分析】根据平行线的判定和性质定理即可得到结论.【详解】证明:12180∠+∠=︒,2180AED ∠+∠=︒,1AED ∴∠=∠(同角的补角相等),//AC DE ∴(内错角相等,两直线平行),D DAF ∴∠=∠(两直线平行,内错角相等),C D ∠=∠,DAF C ∴∠=∠(等量代换),//AD BC ∴(同位角相等,两直线平行).故答案为:同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;C ∠;同位角相等,两直线平行.【点睛】本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.20.(1),,;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC 补全为长方形解析:(1)()4,7,()1,2,()6,4;(2)见解析;(3)192【分析】 (1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将△ABC 补全为长方形,然后利用作差法求解即可.【详解】解:(1)平移后的三个顶点坐标分别为:()14,7A ,()11,2B ,()16,4C ;(2)画出平移后三角形111A B C ;(3)1519255322ABC ABE GBC AFC EBGF S S S S S =---=---=长方形.【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去.21.(1),;(2)±3.【分析】(1)首先得出1<<2,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】(1)∵1<<2∴10<<11,7<<8∴的整数部分为10,的整数部分为7,解析:(1)31a ,23b =2)±3.【分析】(1)首先得出132,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】(1)∵132∴10<9311,7<938 ∴9310,937,9310,937a b ∴=+=+,31a ∴=,23b = (2)原式()45a b =++415=⨯+9=9∴的平方根为:3±.【点睛】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.二十二、解答题22.(1)5;;(2);;(3)能,.【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正解析:(1)5;5;(2)51-;(3)能,10.-;15【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等1×1×5=5,边长为5,如图(1)(2)斜边长=222222+=,故点A表示的数为:222-;点A表示的相反数为:222-(3)能,如图拼成的正方形的面积与原面积相等1×1×10=1010考点:1.作图—应用与设计作图;2.图形的剪拼.二十三、解答题23.(1)70°;(2),证明见解析;(3)122°【分析】(1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即;(3)设,则,通过三角形内角和得到,由角平分线解析:(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122°【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠; (3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.理由如下:过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒,180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠=,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒, DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒,1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.24.(1)60°;(2)①6s ;②s 或s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题. ②分两种情形:如图③中,当解析:(1)60°;(2)①6s ;②103s 或703s 【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC =∠DCN =30°,由此构建方程即可解决问题.②分两种情形:如图③中,当BG ∥HK 时,延长KH 交MN 于R .根据∠GBN =∠KRN 构建方程即可解决问题.如图③-1中,当BG ∥HK 时,延长HK 交MN 于R .根据∠GBN +∠KRM =180°构建方程即可解决问题.【详解】解:(1)如图①中,∵∠ACB=30°,∴∠ACN=180°-∠ACB=150°,∵CE平分∠ACN,∠ACN=75°,∴∠ECN=12∵PQ∥MN,∴∠QEC+∠ECN=180°,∴∠QEC=180°-75°=105°,∴∠DEQ=∠QEC-∠CED=105°-45°=60°.(2)①如图②中,∵BG∥CD,∴∠GBC=∠DCN,∵∠DCN=∠ECN-∠ECD=75°-45°=30°,∴∠GBC=30°,∴5t=30,∴t=6s.∴在旋转过程中,若边BG∥CD,t的值为6s.②如图③中,当BG∥HK时,延长KH交MN于R.∵BG∥KR,∴∠GBN=∠KRN,∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,∴∠KRN=90°-(60°+4t)=30°-4t,∴5t=30°-4t,∴t=103s.如图③-1中,当BG∥HK时,延长HK交MN于R.∵BG∥KR,∴∠GBN+∠KRM=180°,∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,∴∠KRM=90°-(180°-60°-4t)=4t-30°,∴5t+4t-30°=180°,∴t=703s.综上所述,满足条件的t的值为103s或703s.【点睛】本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.25.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.26.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;;理由如下:(4)∠N:∠BCD的值不会变化,等于12∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一年下册数学人教版填空题难题专练及答案一、填空题(本大题共20小题,共60.0分)1.如图,CB//OA,∠B=∠A=100∘,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为时,可以使∠OEB=∠OCA.2.如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:∠BAC+∠AGD=180∘证明的过程如下,请将括号内的理由填写完整。
证明:∵AD⊥BC,EF⊥BC(已知)∴∠BDA=∠BFE=90∘(_______________)∴EF//AD(___________________________________)∴∠2=∠3(___________________________________)又∵∠1=∠2(已知)∴∠1=∠3(____________)∴AB//DG(___________________________________)∴∠BAC+∠AGD=180∘(__________________________________)3.(1)单项式−3πx2y25的系数是________.(2)已知3x2−5x+3的值为1,则6x2−10x−7的值是________.(3)如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=58∘,则∠2的度数=________.(4)小明在计划完成寒假数学作业.若他第一天完成m页,从第二天起,每天都比前一次多完成2页,则第5天刚好完成;若他每天都完成m页,则10天刚好完成.则小明的寒假数学作业共有________页.(5)观察下面各式后求值:1 1×2=1−12;12×3=12−13; 13×4=13−14; 13×4=13−14; ……则11×3+13×5+15×7+17×9+⋅⋅⋅+12017×2019=________。
4. 如图:两个正方形面积分别为8和2,通过两个正方形的边长,能得到等式:______________.5. 下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n ≥3,且n 是整数)行从左向右数第5个数是________(用含n 的代数式表示).6. 已知点P(2−a,3a −2)到两坐标轴的距离相等.则点P 的坐标为______.7. 把方程4x +y =15改写成用含x 的式子表示y 的形式,得y =______.8. 若方程组{x +2y =4k 2x +y =2k +1的解满足0<y −x <1,则k 的取值范围是______. 9. 若a +b =−5,a −b =2,则(a +1)2−(b −3)2的值为_______.10. (1)若M(3,y)与N(x,y −1)关于原点对称,则x +y =____.(2)某公司在2017年的盈利额为200万元,预计2019年的盈利额将达到242万元.若每年比上一年盈利额增长的百分率相同,那么该公司在2018年的盈利额为______万元.(3)为了估计水塘中的鱼数,老张从鱼塘中捕获100条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘.过一段时间,他再从鱼塘中随机打捞140条鱼,发现其中35条鱼有记号.则鱼塘中总鱼数大约为______条.(4)一个圆锥的侧面积是100π,母线长为20,则底面半径是____.(5)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出____小分支.(6)如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2m,则水面宽度增加_______m.11.若x4a−3−3y2b+7=6是二元一次方程,则a+b=______.12.如图,一张三角形纸片ABC,∠B=50∘,现将纸片的一角向内折叠,折痕ED//BC,则∠AEB的度数为_____ ∘.13.已知多项式−πx2y m+1+xy2−4x3−8是五次多项式,单项式3x2n y6−m与该多项式的次数相同,则m=______;n=_______14.如图,动点P在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2)第2次运动到点A(4,0),第3次接着运动到点(6,1)……按这样的运动规律,经过第2018次运动后动点P的坐标是______.15.如图,直线AB、CD被直线EF所截,AB//CD,∠BEG=60∘,点P为射线EG上一点,∠PFD=15∘,则∠EPF的度数为_______.16.直线y−32x+3与直线y=32x的交点坐标是________.17.如图,∠AOC=∠BOD=90∘,则∠AOB=∠COD的根据是_______.18.以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?设绳长x尺,井深y尺,可列方程组为_______19.如果一个角与它的余角之比我1:3,则这个角的度数是_____________.20.如图,在△ABC中,AB=AC,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=BC,则∠AED=__________度.初一年下册数学人教版填空题难题专练及答案【答案】1. 60∘2. 垂线定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补3. (2)−11 (3)64∘(4)40 (5)100920194. √8=2√25. √n2−2n+66. (1,1)或(2,−2)7. −4x+158. 12<k<19. −4210. (1)−2.5;(2)220;(3)400;(4)5;(5)7;(6)4√2−4.11. −212. 8013. 2;1214. (4036,0)15. 45∘或75∘16. (1,32)17. 同角的余角相等18. {y=x3−5y=x4−119. 22.5∘20. 54【解析】1. 【分析】本题考查了平行线的性质、角平分线的定义及平移的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.由于BC//OA,∠B=100∘,易求∠AOB,由∠OCA=∠OEB,根据三角形的内角和定理、角平分线的性质可得,∠AOC=∠COF=∠EOF=∠BOE=20∘,从而可求∠OCA的大小.【解答】解:BC//OA,∠B=100∘,得∠AOB=180∘−100∘=80∘,由题意,OE平分∠BOF,则∠EOF=∠BOE,若∠OCA=∠OEB,根据三角形的内角和定理,∠AOC=180∘−∠OCA−∠A=80∘−∠OCA,∠BOE=180∘−∠OEB−∠B=80∘−∠OEB,则∠AOC=∠BOE,又∠FOC=∠AOC,∠EOF=∠BOE,所以∠AOC=∠COF=∠EOF=∠BOE=14×80∘=20∘,从而∠OCA=180∘−100∘−20∘=60∘.即:当∠OCA=60∘时.可以使∠OEB=∠OCA.2. 【分析】本题考查了平行线的判定与性质.掌握平行线的性质定理及判定定理s是解题的关键.根据AD⊥BC,EF⊥BC可得EF//AD,进而可得∠2=∠3,然后证明∠1=∠3可得AB//DG得证.【解答】证明:∵AD⊥BC,EF⊥BC(已知),∴∠BDA=∠BFE=90∘(垂线定义),∴EF//AD(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB//DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180∘(内错角相等,两直线平行).故答案为垂线定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补.3. (1)【分析】本题主要考查了单项式,熟练掌握单项式的系数和次数是解题的关键,根据单项式系数的定义即可求解;【解答】解:根据题意可得为系数;故答案为.(2)【分析】本题主要考查了代数式的值,熟练掌握整体代入是解题的关键,首先对代数式进行化简变形,然后整体代入进而求解;【解答】解:由题意可得3x2−5x+3=1,∴原式=2(3x2−5x+3)−13=2−13=−11;故答案为−11.(3)【分析】本题考查了折叠的性质和补角的定义,熟练掌握折叠的性质是解决问题的关键,由折叠的性质和补角的定义得出2∠1+∠2=180∘,即可求出结果;【解答】解:根据题意得:2∠1+∠2=180∘,∴∠2=180∘−2×58∘=64∘;故答案为64∘.(4)【分析】本题主要一元一次方程的应用,熟练掌握一元一次方程是解题的关键,根据题意列出关于m的方程,求解m,进而求解;【解答】解:根据题意得:m+(m+2)+(m+4)+(m+6)+(m+8)=10m,解得:m=4,则小明的寒假数学作业共有10m=40(页);故答案为40.(5)【分析】本题主要考查了数字规律问题,观察出式子的规律是解题的关键,首先观察已知条件找出规律,然后代入即可求解;【解答】解:根据已知算式得出:11×3=12×(1−13),13×5=12×(13−15),15×7=12×(15−17),…,1(n−1)×(n+1)=12(1n−1−1n+1),∴原式=12×(1−13+13−15+15−17+⋯+12017−12019)=12×(1−12019)=10092019;故答案为10092019.4. 【分析】本题考查了正方形的面积和算术平方根的求法,掌握算术平方根的求法是解决问题的关键.【解答】解:因为第一正方形的面积为8,所以第一个正方形的边长为√8,因为第一正方形的面积为2,所以第一个正方形的边长为√2,从图可以看出:√8=2√2.故答案为√8=2√2.相似题合格轻微修改改善不合格5. 【分析】此题考查了算术平方根,数字规律问题,正确理解题意找出规律是关键,先观察数据排列规律,求出前(n−1)行的数据的个数,得到第n(n是整数,且n≥3)行从左到右数第5个数的被开方数,即可得到第n(n是整数,且n≥3)行从左到右数第5个数.【解答】=(n−1)2,解:前(n−1)行的数据的个数为1+3+5+⋯+2n−3=(1+2n−3)(n−1)2∴第n(n是整数,且n≥3)行从左到右数第5个数的被开方数是(n−1)2+5,∴第n(n是整数,且n≥3)行从左到右数第5个数是√(n−1)2+5=√n2−2n+6,故答案为√n2−2n+6.6. 解:∵点P(2−a,3a−2)到两坐标轴的距离相等.∴|2−a|=|3a−2|,∴2−a=3a−2或2−a=−(3a−2),解得a=1或a=0,当a=1时,2−a=2−1=1,3a−2=3−2=1,此时点P的坐标为(1,1),当a=0时,2−a=2−0=2,3a−2=0−2=−2,此时,点P的坐标为(2,−2),综上所述,点P的坐标为(1,1)或(2,−2).故答案为:(1,1)或(2,−2).根据题意列出绝对值方程,然后求解得到a的值,再求解即可.本题考查了点的坐标,读懂题目信息,列出绝对值方程是解题的关键,难点在于将绝对值方程转化为一般方程然后求解.7. 解:∵4x+y=15,∴y=−4x+15,故答案为:−4x+15.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.<k<1.8. 解:①−②可得y−x=2k−1,于是:0<2k−1<1,解得12本题有两种方法:(1)解方程组求出x、y的值,代入0<y−x<1进行计算;(2)①−②可得y−x=2k−1,将y−x看做一个整体来计算.采用整体思想,虽然在认识上有一定难度,但计算量较小,建议同学们提高认识,以提高解题的效率.9. 【分析】本题考查了加减消元法解二元一次方程组和代数式的值,根据题意得到关于a,b的二元一次方程组,通过加减消元法求出a,b的值,代入代数式求值即可.【解答】解:由题意得:{a +b =−5a −b =2,解得:{a =−32b =−72, 把a =−32,b =−72代入代数式,得:(a +1)2−(b −3)2=(−32+1)2−(−72−3)2=14−1694=−42,故答案为−42.10. 【分析】(1)本题考查了关于原点对称的点的坐标,根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”求出x 、y 的值,然后代入代数式进行计算即可得解;(2)此题考查增长率的定义,同学们应加强培养对应用题的理解能力,判断出题干信息,列出一元二次方程去求解;(3)此题考查了用样本估计总体,首先求出有记号的25条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数;(4)考查圆锥的计算;掌握圆锥侧面积计算公式是解决本题的关键.圆锥的底面半径=侧面积÷π÷母线长,把相关数值代入计算即可;(5)此题主要考查了一元二次方程的应用,由题意设每个支干长出的小分支的数目是x 个,每个小分支又长出x 个分支,则又长出x 2个分支,则共有x 2+x +1个分支,即可列方程求得x 的值;(6)此题主要考查了二次函数的应用,根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y =−2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:(1)由题意可知x =−3,y −1=−y ,∴x =−3,y =0.5,∴x +y =−3+0.5=−2.5.故答案为−2.5;(2)设增长率为x ,根据题意得200(x +1)2=242,∴x =0.1或−2.1(不合题意,故舍去),∴200(1+0.1)=220万元.答:该公司在2018年的盈利额为220万元.故答案为220;(3)由题意可得:100÷35140=400(条).答:鱼塘中总鱼数大约为400条.故答案为400;(4)设底面半径是r ,根据题意得:,∴r =5.故答案为5;(5)设每个支干长出x 个小分支,根据题意得:1+x +x ×x =57,(x +8)(x −7)=0,解得x 1=−8(不合题意,舍去),x 2=7.故答案为7;(6)如图,建立如图所示的直角坐标系,可设这条抛物线为y =ax 2,把点(2,−2)代入,得−2=a ×22,∴a =−12, ∴y =−12x 2, 当y =−4时,−12x 2=−4,∴x =±2√2,∴水面下降2m ,水面宽度增加(4√2−4)m .故答案为4√2−4.11. 解:根据题意得到:4a −3=1,2b +7=1,解得a =1,b =−3,则a +b =1−3=−2.故答案是:−2.根据二元一次方程的定义解答.考查了二元一次方程的定义.二元一次方程的定义是含有两个未知数且未知数的次数都为1. 12. 【分析】本题考查了折叠的性质和平行线的性质的知识,解题关键点是熟练掌握这些性质.先由折叠得∠AED =∠FED ,再根据DE//BC ,所以∠FED =∠B ,所以∠AED =∠FED =∠B =50∘,最后由∠AED =180∘−∠AED −∠FED ,即可得出答案.【解答】解:标注折叠前的点A 为点F .由折叠得∠AED =∠FED ,∵DE//BC ,∴∠FED =∠B ,∴∠AED =∠FED =∠B =50∘.∴∠AED =180∘−∠AED −∠FED =180∘−50∘−50∘=80∘.故答案为80.13. 【分析】此题主要考查了多项式与单项式,正确把握多项式次数的定义是解题关键.利用多项式的次数定义得出m 的值,进而利用单项式的次数得出n 的值,即可得出答案.【解答】解:由题意得:{2+m +1=52n +6−m =5,解得m =2,n =12. 故答案为2;12. 14. 解:根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),…,∴横坐标为运动次数的2倍,经过第2018次运动后,动点P 的横坐标为4036,纵坐标为2,0,1,0,每4次一轮,∴经过第2018次运动后,72÷4=18,故动点P 的纵坐标为0,∴经过第2018次运动后,动点P 的坐标是(4036,0).故答案为(4036,0)根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.15. 【分析】本题主要考查平行线的性质,三角形内角和定理,三角形的外角性质以及分类讨论思;本题点P 的位置分两种情况:①在线段EQ 上,②在射线QG 上,对两种情况分别画出图形进行解答即可.【解答】解:①如图所示,点P 在线段EQ 上;∵AB//CD ,∠BEG =60∘,∴∠EQF =∠BEG =60∘,又∵∠PFD =15∘,∴∠EPF =∠EQF +∠PFD =60∘+15∘=75∘;②如图所示,在射线QG 上,∵AB//CD ,∠BEG =60∘,∴∠EQF =∠BEG =60∘,又∵∠PFD =15∘,∴∠EPF =∠EQF −∠PFD =60∘−15∘=45∘.故答案为45∘或75∘.16. 【分析】本题考查了一次函数与二元一次方程组的联系,根据两直线的交点坐标即为这两条直线所对应的一次函数解析式组成的二元一次方程组的解,据此解答即可.【解答】解:由题意得:{y =−32x +3y =32x ,解得:{x =1y =32,∴两直线的交点坐标为(1,32),故答案为(1,32). 17. 【分析】此题考查了同角的余角相等,根据题意可知,两直角中都含有相同的角,哪他们的余角一定相等.【解答】解:根据∠AOC =∠BOD =90∘∴∠AOC −∠BOC =∠BOD −∠BOC∴∠AOB =∠COD(同角的余角相等).故答案为同角的余角相等.18. 【分析】本题主要考查了二元一次方程组的应用,正确理解题意是解题的关键,根据题意列出方程组即可.【解答】解:根据将绳三折测之,绳多五尺,则y =x 3−5,根据将绳四折测之,绳多一尺,则y =x 4−1,∴可列方程组为{y =x 3−5y =x 4−1.故答案为{y =x 3−5y =x 4−1. 19. 【分析】本题考查了余角与补角的定义,熟记“余角的和等于90∘,补角的和等于180∘”是解题的关键.设这个角为x ,根据一个角与它的余角之比为1∶3,表示出这个角的余角为3x ,再根据这个角与余角的和等于90∘列出方程求解即可.【解答】解:设这个角为x 度,则它的余角为3x 度,得x +3x =90解得:x =22.5∘所以这个角为22.5∘.故答案为22.5∘.20. 【分析】本题主要考查了等腰三角形的性质以及折叠的性质,熟练掌握折叠的性质是解题的关键,首先根据翻折的性质得出∠AED =∠CED =x ,∠A =∠ECD =90∘−x ,然后根据等腰三角形得出∠ABC =∠ACB ,∠ABC =∠BEC ,再根据三角形内角和以及平角得出答案.【解答】解:设∠AED =x ,由翻折的性质可知∠AED =∠CED =x ,∠A =∠ECD =90∘−x ,∵AB =AC ,AE =BC∴∠ABC =∠ACB ,∠ABC =∠BEC ,在△ABC 中,由三角形的内角和定理可知:∠ABC +∠ACB +∠A =180∘,∴∠ABC =90∘+x 2, ∴∠BEC =90∘+x 2,又∠AED +∠CED +∠BEC =180∘,即x +x +90∘+x 2=180∘,解得:x =54∘,∴∠AED =54∘,故答案为54.。