浅谈强化混凝在给水处理工程中的应用

合集下载

关于强化混凝的研究

关于强化混凝的研究

关于强化混凝的研究混凝过程是水质转化十分显著的影响因素,对水体颗粒物及有害物质的转移,转化与归属起着十分重要的作用,作为水与废水处理的重要方法之一,混凝技术得以广泛的应用于各种水处理工艺流程中。

随着环境污染问题的日益严重以及水质标准越来越严格化,常规混凝技术显然已经不能满足人们对水质安全的要求,而强化混凝在现有的水处理设施基础上进行改进和提高的同时,兼顾前后续工艺流程的运行状况使水达到深度处理的效果。

一、作用机理强化混凝是指在常规处理工艺流程中在混凝处理时投加过量的混凝剂、新型混凝剂或助凝剂或者其他药剂并控制一定的PH值,通过加强混凝与絮凝作用,从而提高常规水处理中天然有机物的去除效果,最大限度的去除消毒副产物,保证饮用水消毒副产物符合饮用水消毒副产物符合饮用水标准的方法。

强化混凝的作用机理包括沉淀作用和固体物质表面的吸附沉淀作用:一方面带正电荷的金属离子及其水解聚合物同有机物所带的官能团反应,生成不溶性腐植酸盐或配合物,然后发生沉淀,另一方面,有机物还可能混合到金属其氧化物矾花之中或水中所含粘土矿物之中,被吸附而发生共沉淀。

一般认为,在较低混凝剂投加量和较低PH的条件下,第一个机理发挥主导作用,而在较高混凝剂投加量的较高PH值的条件下,第二个机理发挥主导作用。

二、影响强化混凝效果的因素强化混凝去除有机物效果受很多因素的影响,主要包括:混凝剂的种类和性质、混凝剂投加量、投加助凝剂、PH值及进行氧化预处理。

2.1、混凝剂的种类、性质混凝剂的种类很多,目前在给水领域应用最广的是铝盐、铁盐及他们的水解聚合产物和有机高分子聚合物。

混凝剂的发展趋势是从低聚度向高聚度、单一型向复合型,单功能向多功能型发展,通过增加混凝剂的投加量,可以增加颗粒物参与吸附架桥和卷扫网捕作用的机会,有利于胶体聚集稳定性的破坏,从而提高混凝效果。

研究表明:适当增加混凝剂投加量可以使使NOM的去除率大于60% . 对于总有机碳大于5 mg/L的水,强化混凝的去除效果和活性炭、臭氧等高级处理技术的效果相当,而且无机混凝剂的效果好于有机. 这是因为有机阳离子高分子混凝剂在混凝过程中,只能产生电中和作用并参与腐殖酸和富里酸的沉淀,不能吸附有机物;而铝盐和铁盐不但可以起电中和作用使胶粒脱稳,形成腐殖酸和富里酸的铝、铁聚合物以利于沉淀去除,且生成的金属氢氧化物的表面能够提供强烈的吸附作用,同时金属氢氧化物絮体还能网捕卷扫一些胶粒和溶解性有机物以及腐殖酸的聚合物。

北方引黄水库水通过强化混凝处理效果分析

北方引黄水库水通过强化混凝处理效果分析

0.078 28.44
0.085 22.02
混凝剂是水处理过中较为关键的工艺手 段,高质量的混凝效果会减轻后续处理的负 荷,也会影响出水水质,为了保障实验效果, 在实验过程中通过混凝优化实验的方式进行 分析。通过混凝优化烧杯实验可以发现。对 于含有不同污染物原水水质。在实践中可以 通过对混凝剂投加量、反应搅拌速度参数进 行调整的方式,提升处理效果。将实验结果 通过G值或GT值进行换算处理。可以为水 处理工程提供理论参考。
关t调:强化混凝;引黄水库;水质变化;水处理效果分析
长城水厂净水工艺主要是将引黄初沉 水库水经过高效絮凝沉淀池加翻板滤池组 合方式处理成生活饮用水。本文基于引黄 水库水为主要研究目标,通过烧杯实验对 强化混凝土对引黄水库水的处理效果进行 了简单的分析论述。
一、强化混凝与优化实验的方法 1.强化混凝 强化混凝在初期主要就是一种为了控 制消毒副产物而提出的概念。在实践中影 响疆化混凝的主要因素就是原水的水质、 混凝剂的种类、投加量、pH数值、水温以 及水力条件等相关因素…。 相对于传统的药来说。无机高分子混 凝剂净水效果显著,在应用过程中产生的 絮体沉淀性能好、具有适应性广的特征。 而本文在研究中主要应用的强化混凝剂为 聚合氯化铝(PAC),助凝剂是聚丙烯酰胺 (PAM)。 2.优化实验设备条件
颗粒的表面上,这样就会形成保护膜,不 仅仅会增加胶体表面的电荷密度,也会在 一定程度上阻碍颗粒之间的结合,进而影 响了混凝剂效果‘21。
2.2实验条件:引黄初沉水库水,浑浊 度是4.86NTU左右、水温40C左右的水 质最难处理。
通过高效沉淀池工艺组合主要就是在 低温低浊时期开展,在实验中综合低温低 浊期的水处理较为困难等因紊,通过基于 强化混凝实验的基础上,不是一味加大投 加量,通过微絮凝实验找到投药量较小的 最佳矾基,在实验中对浊度以及颗粒数的 去除效果明显。

浅述水处理的混凝法

浅述水处理的混凝法

浅述水处理的混凝法浅述水处理的混凝法摘要:混凝法,是一种最常用的水处理物化方法。

这种方法用于处理含油废水、染色废水、洗毛废水等,该法可以独立使用,也可以和其他方法配合使用,一般作为预处理、中间处理和深度处理等。

以下将对这一方法进行简单的介绍。

关键词:水处理;混凝法;强化混凝0 引言混凝法在工业废水和生活废水处理中,是一种很重要的物化处理方法。

这种水处理方法应用广泛,各种污染指标去除率高。

为了取得更好的去除效果,可以调节温度、PH值、水力条件、絮凝剂投加量和性质等,因此产生了强化混凝的方法。

1 混凝法的概念和原理混凝是水处理工艺过程中的一个根本单元,传统意义上,在混凝阶段主要去除的污染物是颗粒物,主要的评价指标是浊度。

混凝是混凝剂、水体颗粒物和其他污染物及水体基质在一定的水力条件下快速反响的过程,其中包括混凝剂水解、聚合,与污染物电中和、粘结架桥形成絮体,污染物的包裹、吸附、沉降等过程,对几乎所有的污染物都有一定的去除作用。

正因为如此,混凝成为传统工艺和现代工艺中几乎是不可替代的一个环节,在全面降低水体污染物水平、控制水污染、实现水质净化、再生等方面发挥着重要的作用。

在全面降低水体污染物水平、控制水污染、实现水质净化、再生等方面发挥着重要的作用。

2 凝聚的作用向水中投加药剂,使胶体失去稳定性而形成微小颗粒,而后这些均匀分散的微小颗粒再进一步形成较大的颗粒,从液体中沉淀下来,这个过程称为凝聚。

凝聚有以下几方面的作用:1〕压缩双电层与电荷的中和作用。

参加电解质,使固体微粒外表形成的双电层有效厚度减小,从而范德华力占优势而到达彼此吸引形成凝聚;或者参加电不同电荷的固体微粒,使不同电荷的粒子由于静电吸引而彼此吸引,最后到达凝聚。

2〕高分子絮凝剂的吸附架桥作用。

高分子絮凝剂的碳碳单键一般情况下是可以旋转的,再加上聚合度较大,即主链较长,在水介质中主链是弯曲的。

在主链的各个部位吸附了很多固体颗粒,就象是为固体颗粒架了许多桥梁,让这些固体颗粒相对地聚集起来形成大的颗粒。

常规混凝沉淀给水处理工艺的强化

常规混凝沉淀给水处理工艺的强化

常规混凝沉淀给水处理工艺的强化常规混凝沉淀给水处理工艺的强化1强化常规处理工艺的必要性及对策1.1强化常规处理工艺的必要性水资源匮乏、分布不均,原水污染严重,构成了我国给水处理的基本背景。

据统计,全国600多座城市中,有300多座城市缺水,108座城市严重缺水,日均缺水1600万m3/d;按建设部计划,“八五”期间平均每年供水量将递增515万,“九五”规划平均每年将递增710万。

大规模的兴建水厂投资历巨大、周期较长、负担沉重,因而如何强化现有处理工艺,充分发挥已有资源、设施的潜力是一个重要课题。

与此同时,有限的水资源还不断受到水质恶化及水生态系统被破坏的严重威胁,因城市污水排放而污染的水源已占我国水资源总量的8.5%~11.1%,已有1/3的河段,90%的城市水域受到污染。

因而,很多现有工艺需加强完善,以适应原水水质的变化。

另外,随着工业的进步和人民生活水平的提高,对水质的要求也越来越高。

《城市供水行业2000年技术进步发展规划》要求一类水司执行88项指标,浊度指标值为1NTU;二类水司执行51项指标,浊度指标值为2NTU。

现有大多数水厂工艺参数不是按照此要求设计的,因而有必要采取强化措施,以达到国家标准。

针对上述状况,我国水厂建设一般向以下几个方面发展:1.长距离引水、多点输配;2.合理使用高效药剂;3.水厂自动化、管理的最优化;4.常规处理基础上增加预处理及深度处理;5.加强常规处理。

结合当前我国经济实力,要求普遍增加深度处理是不现实的,还是应该在常规处理上多想点办法,某水司的生产试验表明:1.水中浊度与有机物关系十分密切。

将水中浊度降低至0.5NTU,则要机物可减少80%;2.加强常规处理,降低出水浊度,改进加氯点及加氯量,不仅有效地将出厂水中发挥性有机物降低50%,对半发挥性有机物也能降低30%~70%,卫生毒理方面Ames试验致突变活性下降42%~47%,致温血动物细胞染色体畸变活性下降27%~40%。

简述混凝法在水处理中的适用范围

简述混凝法在水处理中的适用范围

简述混凝法在水处理中的适用范围混凝法是一种常见的水处理技术,通过添加混凝剂使水中的悬浮物和胶体物质凝聚成较大的团块,从而使其易于沉降或过滤。

混凝法广泛应用于饮用水、工业用水、污水处理等领域,本文将从以下几个方面介绍混凝法的适用范围。

一、适用于不同水质混凝法适用于不同水质的处理,包括地表水、地下水、河流水、湖泊水等。

不同水质中悬浮物和胶体物质的种类和浓度不同,需要选用不同的混凝剂和工艺条件。

例如,对于含有较高浊度的水,应选用高效的混凝剂和加药方式,以提高混凝效果。

二、适用于不同污染物混凝法可去除水中的有机物、无机物、重金属离子、微生物等污染物,具有广泛的适用性。

其中,有机物和微生物的去除需要与其他处理工艺配合使用,如生物处理或消毒。

三、适用于预处理和后处理混凝法可作为水处理工艺的预处理和后处理环节。

在预处理环节,混凝法主要用于去除水中的悬浮物和胶体物质,减少后续处理工艺的负荷,提高处理效果。

在后处理环节,混凝法可用于去除后处理工艺中产生的悬浮物和胶体物质,以达到更高的出水质量要求。

四、适用于不同处理规模混凝法适用于不同规模的水处理厂,包括小型自来水厂、中型城市供水厂和大型工业水处理厂等。

不同规模的处理厂需要选用不同的混凝剂和工艺参数,以满足不同的处理要求和经济效益。

五、适用于不同的处理目标混凝法可用于不同的处理目标,包括去除浊度、COD、BOD、色度、异味、微生物等。

不同的处理目标需要选用不同的混凝剂和工艺条件,以达到最佳的处理效果。

混凝法在水处理中具有广泛的适用范围,包括不同的水质、污染物、处理规模、处理目标等方面。

然而,混凝法也存在一些局限性,如对于某些难处理的污染物效果不佳,且混凝剂的投加量和副产物的处理也需要考虑。

因此,在实际应用中,应根据具体情况综合考虑,选用合适的工艺组合,以达到最佳的水处理效果。

强化混凝技术研究及应用进展

强化混凝技术研究及应用进展

强化混凝技术研究及应用进展论文作者:刘云洲张明旭2 孙从军2摘要通过综合大量文献,概述了强化混凝概念、机理和影响因素;介绍了强化混凝技术在国内外的应用;总结了强化混凝技术和混凝剂的研究进展情况;提出了强化混凝技术和混凝剂在研究和应用方面有待解决的问题,以供今后研究参考。

关键词强化混凝混凝混凝剂絮凝絮凝剂强化混凝是在常规混凝的基础上,基于新型混凝剂的开发而发展起来的一种水处理工艺,能有效去除污染水体中的悬浮颗粒、胶体杂质、总磷和藻类等污染物质[1]。

关于强化混凝,有强化混凝、化学强化一级处理和强化絮凝等多种提法,本文统称之为强化混凝。

强化混凝技术的概念还没有形成权威的解释,笔者认为,强化混凝技术是对常规混凝中药剂、混合、凝聚和絮凝任一环节或多环节的强化和优化,从而进一步提高对水中污染物,包括低分子溶解性污染物的净化效果。

强化混凝作用机理与常规混凝并无太大差别,主要包括压缩双电层作用、吸附电中和作用、吸附-架桥作用、沉析物网捕作用和特殊混凝作用等。

向污染水体投入混凝剂后,一方面通过压缩双电层和吸附电中和作用,胶体扩散层被压缩,ξ电位降低,胶体脱稳;另一方面通过吸附-架桥和沉析物网捕等作用使脱稳后的胶体相互聚结成大的絮体并沉淀,最终固液分离。

新型高分子混凝剂的使用使以上作用得到强化,它不仅具有以絮凝体吸附水中非溶性大分子有机污染物的物理吸附作用;又能对水中溶解性低分子有机物产生很强的化学吸附和强氧化等多种净化效果,从而可以提高污染物的去除率。

但是,要取得良好的混凝效果还和许多因素有关,其中包括混凝剂品种、混凝剂投加量、水质、水力条件、水温、碱度和pH等。

只有优化这些反应条件,使混凝剂在最佳条件下起作用,才能达到强化混凝提高常规混凝效果的目的。

1 强化混凝技术在国内外的应用在生活污水处理中的应用英国早在1870年就开始应用混凝技术,但很快被生物处理所取代,到了20世纪80年代,随着新型高效混凝剂的不断问世,同时为了进一步提高污水中有机物和磷的去除率,强化混凝技术开始应用于实际工程。

强化混凝工艺生物脱氮处理微污染水源的机理及应用研究

强化混凝工艺生物脱氮处理微污染水源的机理及应用研究

强化混凝工艺生物脱氮处理微污染水源的机理及应用研究近年来,随着工业科技和经济市场的快速发展,大量废水未进行有效处理而直接排放,使众多湖泊、水库等饮用水水源中的氨氮含量超标,成为微污染水源。

传统的净水工艺“混凝、沉淀、过滤、消毒”,难以去除这些污染物,出水水质越来越差。

因此,为保障供水水质安全,应对现代水源水污染,需要研发和应用新技术、新工艺。

但结合我国的实际情况,大部分净水厂都是老厂区,再引进新的构筑物、新的工艺,一方面资金投入量较大,同时也会增加相应的运行成本;另一方面,厂区的占地面积有可能会受到限制,同时还会带来管理上的麻烦。

因此,改进和强化传统的水处理工艺是目前控制水厂出水水质最经济最具实效的手段,也是微污染水源处理的一个重要的发展趋势。

本课题基于前期对传统微污染水源的处理方法的调研以及综合了我国的实际情况,以对传统的混凝工艺为改造目标,研究了强化混凝耦合生物脱氮的改造方法。

试验主要研究结果表明:(1)搅拌桨桨板的长短会影响搅拌桨对水体搅拌的剧烈程度,同时会影响水体的富氧能力,搅拌桨桨板长度越长,携氧能力越强。

搅拌桨桨板的长度梯度、间距以及角度,会对水体中的溶解氧浓度梯度产生影响。

当搅拌桨桨板长度梯度为4,桨板长度比为5:3:1,桨板中心间距与池体长度比为1:8,搅拌桨桨板与固定挡板间得夹角为90°时,可以在水体中可以形成最佳的溶解氧浓度梯度。

对于本次试验,桨板长分别为10 cm、6 cm、2 cm,搅拌桨桨板间距为3cm,夹角为90°时,可以取得最佳的试验效果。

(2)通过对方形及圆形絮凝池轴向和各个截面的速度云图及紊动动能图表征,说明新型的机械搅拌桨在轴向和横向均可以形成一定的溶解氧浓度梯度,且方形絮凝池比圆形絮凝池更有利于实际混凝及生物脱氮反应的进行。

(3)通过传统机械搅拌桨和新型机械搅拌桨在处理人工模拟天然微污染源水的对比试验,验证了利用新型机械搅拌桨在絮凝池中进行生物脱氮的可行性。

微污染水源强化混凝水处理技术研究进展(新版)

微污染水源强化混凝水处理技术研究进展(新版)

微污染水源强化混凝水处理技术研究进展(新版)Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.( 安全论文 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改微污染水源强化混凝水处理技术研究进展(新版)摘要:对微污染水源的强化混凝水处理技术进行系统的介绍。

详细阐述强化混凝的主要影响因素,如混凝剂种类及投加量、pH值、温度、碱度和原水水质等,同时介绍了几种常用的强化混凝方法,并对该技术在微污染水源水处理中的应用予以展望和提出建议。

关键词:微污染;强化混凝;粉末活性炭(PAC);高锰酸钾复合药剂(PPC)水源地饮用水污染对给水工程造成了各种损失,给传统净水工艺提出了挑战。

微污染水源指的是水体的物理、化学或微生物指标已不能达到《地表水环境质量标准》中作为生活饮用水源水的水质要求,但通过特殊工艺处理后尚可使用的原水。

水源水质的恶化,一方面势必额外地投加大量的混凝剂,使制水成本大大增加;另一方面水中藻类过避繁殖,使给水产生一定的色度和臭味,水源水的污染加剧了水资源的危机。

此外,由于水源中污染物质的存在,对人类的健康有很大的影响,而靠国内目前普遍使用的常规净化工艺又很难去除掉,尤其是有机物,结果致使城市居民不得不长期饮用这种不安全的水,因而选择一种适合的微污染水源水处理技术方案引起人们的高度重视。

1强化混凝内涵强化混凝是给水常规处理中非常关键的环节,通过强化混凝,可去除原水中绝大部分的浊度、色度,提高常规混凝法处理中天然有机物(NOM)去除效果,最大限度地去除消毒副产物前驱物(DBPFP)等有机物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈强化混凝在给水处理工程中的应用摘要:强化混凝技术目前在给水领域主要应用于控制饮用水中消毒副产物的含量,以求达到更高的饮用水水质要求。

依据国内外进行过的试验研究及应用,综述了强化混凝技术的研究进展及结果,在此基础上探讨了强化混凝在给水处理工程特别是电站净水系统中的应用前景。

关键词:给水处理强化混凝水质目前严重影响净水水质进一步提高的问题之一是水中有机物的控制与去除。

数十年来,国内外水处理工作者在有机物去除问题上已做过大量研究,探索过多种去除有机物的材料和方法。

近年来美国环境保护局(USEPA)[1~3]为达到饮用水消毒/消毒副产物(D/DBP)第一阶段的控制目标——饮用水中总三卤甲烷(THMs)≤0.08mg/L,卤乙酸(HAAs)≤0.06mg/L,推荐采用的工艺有:强化混凝(enhanced coagulation)、粒状活性炭吸附(GAC adsorption)和膜过滤(membrane filtration),而且将强化混凝列为控制天然有机物(NOM)的最佳方法[2]。

水的混凝处理是常规给水处理系统中最常用的一种工艺,通常其主要作用是去除水中悬浮颗粒和胶体微粒,同时也可以去除水中一部分有机物,但去除有机物的效率不高且波动范围较大,这主要与水中有机物的种类、形态有关。

目前给水处理工艺中常用的混凝剂是Al2(SO4)3、FeCl3、PFS(聚合硫酸铁)、PAC(聚合铝),由于水的pH值直接影响到混凝剂的水解形态和水中微粒的表面特性,进而影响到混凝效果,因此对大多数原水而言,最佳混凝效果并不发生在微粒ζ电位为0时。

事实上,当混凝剂用量低时,获得较好混凝效果所发生的作用机理主要是电性中和、吸附架桥;而当混凝剂用量高时,获得较好混凝效果所发生的作用机理主要是吸附架桥、网捕沉淀[4]。

天然水体中的有机物(通常主要为腐殖酸类有机物,其分子结构上常含有较多的-COOH 和-OH基团),按其在水中存在的形态可分为悬浮态(包括单独存在的有机颗粒和吸附在水中微粒表面的有机质)、胶态和溶解态三种,悬浮态、胶态部分通常是些分子质量较大、溶解度较小的有机物组分,天然水中的有机物有相当一部分被微小固体颗粒所吸附[5]。

混凝、澄清是常规给水处理系统中第一个处理单元,而天然水体中悬浮态、胶态部分有机物的性质与水体中存在的微粒很相似,如通常条件下带有负电荷(有机物在水中有离解趋向),因此在混凝处理过程中,它们的去除机理应该是相似的,即通过电性中和、吸附架桥、网捕沉淀得以去除,而且去除率较高(可达80%~90%)。

而水中分子质量较小、溶解度较大的有机物(主要是腐殖酸类中的富里酸等)[6],在一般混凝条件下去除率很低,主要原因是由于其具有良好的亲水性而不易被混凝剂的水解产物——金属氢氧化物所吸附。

但是,如果通过改善混凝处理条件,即在低pH、高混凝剂用量的强化混凝条件下[7]形成大量金属氢氧化物,改善混凝剂水解产物的形态且使其正电荷密度上升,同时低pH条件会影响有机物离解度和改变水中有机物存在形态,有机物质子化程度提高,电荷密度降低,进而降低其溶解度及亲水性,成为较易被吸附的形态,吸着到大量存在的金属氢氧化物颗粒上共沉淀,这样可提高水中溶解态有机物的去除率,进而提高水中有机物总的去除率。

所以,理论上通过改善混凝条件(强化混凝)是提高给水处理工程中有机物去除率的可行且有效的途径。

强化混凝处理工艺试验研究较多的是美国,而且主要是在饮用水处理行业,其主要目标是提高饮用水中D/DBP先质的去除率。

Thomas R. Hundt等人的研究表明,水中富里酸(FA)类有机物主要通过电性中和沉淀、吸附共沉淀得以去除,且主要与铝盐的水解形态有关;低pH条件,聚合氯化铝对FA的去除效果优于AlCl3。

Gil Grozes等人[1]对Sacramenta等河水进行的强化混凝试验发现,混凝的pH控制是获得NOM最大去除率的决定因素,在pH ≈6的条件下,强化混凝可增加65%的NOM去除率。

过量加入相近剂量的混凝剂,铁盐对NOM的去除效果明显优于铝盐,其解释是:①铁盐的酸化能力比铝盐强,所以其混凝时pH 值比铝盐低,较低的pH条件会增加腐殖酸类物质的质子化程度,增加混凝剂水解产物上的正电荷密度,减少混凝剂需求量,有利于有机物吸附到金属氢氧化物上;②尽管铝盐水解产物的比表面积[200~400m2/gAl(OH)3]大于铁盐水解产物的比表面积[160~230m2/gFe(OH)3],但相近剂量的铁盐水解产生Fe(OH)3的量是铝盐水解产生Al(OH)3量的2.8倍。

另外还发现了高分子聚合物作混凝剂对溶解态NOM的去除效果较差,这是由于它们不能产生对有机质具有较好吸附作用的水解产物,也说明了水中NOM的混凝去除机理主要是被吸附在混凝剂水解产物(金属氢氧化物)上而从水中分离出来。

F.Julien等人[8]的研究也表明,铁盐对NOM的去除效果优于铝盐,有机物上有一个或没有功能基时,不能同时被典型的混凝—絮凝和吸附在金属氢氧化物絮体上而去除,而含有至少两个相邻功能基(-COOH和-OH)的化合物可同时由混凝—絮凝和吸附去除,有机物的去除取决于其上的功能基-COOH和-OH的多少及分子质量,且有机物最大去除率并不发生在ζ电位为0时。

Joseph G.等人[3]对腐殖酸类物质较多的原水进行混凝试验时,发现混凝剂量与TOC去除率关系曲线上出现突变点,而相对腐殖酸类物质较少的原水,混凝剂量与TOC去除率关系曲线比较平缓,这说明水中NOM的去除主要依靠沉淀和共沉淀。

Joseph G.等人还比较了几个主要的有机物去除工艺特征(见表1),认为强化混凝是去除天然水中有机物较经济、实用的一种工艺。

Eric M.Vrijenhoek等人[9]研究发现,去除THMS先质的最佳pH值为5.5,去除机理可能是:在混凝剂用量低时,形成金属—有机物的复合物;而在混凝剂用量较高时,有机物吸附到金属氢氧化物上而被去除,腐殖酸类成分多的原水,NOM去除率较高。

试验还表明,在低pH条件下能维持原有的浊度去除效果。

表1 主要的有机物去除工艺比较处理工艺NOM去除效果工艺复杂性工艺成本强化混凝较好低或中低GAC吸附好中或高中纳滤极好中中或高丁桓如等人[10]用聚合硫酸铁和聚合氯化铝对黄浦江水进行的混凝试验表明,在最佳pH条件下(聚合硫酸铁为5.6,聚合氯化铝为5.5),聚合硫酸铁和聚合氯化铝混凝剂对水中总的、溶解态的和紫外吸收部分的有机物去除率分别达到70%、52%、55%和70%、52%、33%,去除该水体中有机物的最佳pH范围在5.5~6.5。

铁盐的pH适用范围比铝盐大,在低pH混凝条件下,水体中有机物的去除率明显提高,而且聚合硫酸铁优于聚合氯化铝。

黄廷林[11]用Al2(SO4)3作混凝剂对腐殖酸水样和兴庆湖水样进行的强化混凝试验表明,混合搅拌强度对TOC去除效果有影响,在较低的混合搅拌强度下,通过延长絮凝反应时间可获得稍好的TOC去除效果。

但是,混合强度对TOC去除效果的影响远没有pH和混凝剂用量的影响大,去除TOC的最佳pH值均在5.5左右,TOC去除率分别可达80%和70%以上,且浊度变化不影响DBP先质去除。

国内外的试验研究得到了几个较一致的结论:①水中有机物主要依靠吸附共沉淀得以去除;②去除水中有机物的最佳pH值在5.5~6.5,加大混凝剂用量是有利的;③NOM在混凝条件下去除的主要影响因素是pH值和混凝剂;④强化混凝对腐殖酸类有机物的去除特别有效。

化混凝是在常规混凝处理基础上发展起来的去除水中有机物特别是富含腐殖酸类有机物的一种处理工艺,相对其他处理工艺,其成本较低且在原有处理设备上稍作改造就可实施。

国内外的试验研究均表明混凝处理的pH值控制在6左右,并且适当提高混凝剂用量,对大多数源水中的有机物具有较好的去除效果,关键是pH的调节问题。

pH调节可通过加酸、用酸化能力强的混凝剂(如FeCl3)或用离子交换除盐系统中的阳床酸性出水调节,这样的工艺条件在工业给水工程中实施是可行的,特别是在电站给水处理中。

因为一般的电站给水处理系统中都有离子交换除盐系统辅助的酸碱系统,所以混凝的pH调节更易实现,而对含有反渗透(RO)预除盐装置的系统,为降低RO膜的水解率和防止结垢,其进水pH值一般均要调节到酸性范围内,这对实施强化混凝而言,实质上是将pH调节点前移了。

强化混凝主要增加了水处理系统中相关设备的防腐需求、pH调节等费用,但对有机物含量不高的源水可省去GAC吸附设备的投资及运行费用,而对有机物含量较高的源水,通过强化混凝处理也可进一步提高GAC吸附设备的运行效率(降低进水pH值,对GAC吸附去除水中NOM更有效[12]),最根本的是要在较低的成本和充分利用现有工艺的条件下,实现给水质量的明显提高。

因此,对源水进行强化混凝试验以确定去除水中有机物的最佳pH范围及混凝剂用量,进一步研究强化混凝与其他工艺(如GAC吸附处理)的配合使用,这在我国水源水普遍受到微污染的情况下很有现实意义,并相信混凝强化技术在给水处理工程中也有较大的应用推广价值。

参考文献:[1]Gil Grozes,et al.Enhanced Coagulation:Its Effect onNOM Removal and Chemical Costs [J].J AWW A,1995,78-89.[2]Robert C Cheng,et al.Enhanced Coagulation:a Preliminary Evaluation[J].J AWW A,1995,91-103.[3]Joseph G Jacangelo,et al.Selected Processes for Removing NOM:An Overview[J].J AWW A,1995,(1):64-77.[4]Keith E Dennett,et al.Coagulation:Its Effect on Organic Matter[J].J AWW A,1996,(4):129-142.[5]王洪山,等.水中有机物与浊度之相关性[J].中国给水排水,1991,6(2):30-32.[6]Douglas M Owen,et al.NOM Characterization and Treatability[J].J AWW A,1995,(1):46-63.[7]Stuart W Krasner,et al.Jar test Evaluations of Enhanced Coagulation[J].J AWW A,1995,(10):93-107.[8]Julien F,et parison of Organic Compounds Removal by Coagulation Flocculation and by Adsorption onto Preformed Hydroxide Flocs[J].Wat Res,1994,28(12):2574.[9]Eric M Vrijenhoek,et al.Removing Particles and THM Precursorsby Enhanced Coagulation[J].J AWWA,1998,(4):139-150.[10]丁桓如,等.控制pH混凝技术[J].电力设计水处理技术,1994,(2):1-7.[11]黄廷林.强化絮凝法去除水中DBP先质研究[J].环境科学学报,1999,(4):399-404.[12]Kirk O Nowack,et al.Ferric Chloride plus GAC for Removing TOC[J].J AWW A,1999,(2):65-77.。

相关文档
最新文档