2019年全国各地高考文科数学试题分类汇编2:函数
2019高考全国各地数学卷文科解答题分类汇编-函数与导数

2019 高考全国各地数学卷文科解答题分类汇编- 函数与导数1〔. 天津文〕19〔、本小题总分值 14 分〕函数 f (x) 4x 3 3tx 26tx t 1, x R,其中tR、〔Ⅰ〕当 t 1时,求曲线y f ( x) 在点(0, f (0)) 处的切线方程;〔Ⅱ〕当 t 0 时,求 f (x) 的单调区间;〔Ⅲ〕证明:对任意的t (0,), f ( x)在区间(0,1)内均存在零点、【解析】〔 19〕本小题主要观察导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、 解不等式等基础知识,观察运算能力及分类谈论的思想方法, 总分值 14 分。
〔Ⅰ〕解:当 t1时,f ( x)4x 3 3x 26x, f (0)0, f ( x) 12 x 2 6x 6f (0)6. 因此曲线 y f ( x)在点(0, f (0))处的切线方程为y6x. 〔Ⅱ〕解:f ( x) 12 x26tx6t 2,令f ( x)0 ,解得tx t 或 x .2由于 t0 ,以下分两种情况谈论:〔1〕假设t 变化时, f(x), f (x) 的变化情况以下表:t0, 则t,当 x2xttt ,t,,22f ( x) +-+f ( x)因此, f ( x) 的单调递加区间是t, t ,; f ( x) 的单调递减区间是 t。
,, t22〔2〕假设0, 则 t ,当 x 变化时, f ( x), f ( x) 的变化情况以下表:tt2x,tt,tt ,22f ( x)+-+f ( x)因此, f ( x) 的单调递加区间是, t , t,的单调递减区间是t . ; f ( x)t,22〔Ⅲ〕证明:由〔Ⅱ〕可知,当t时,f (x)在0,t内的单调递减,在t , 内单22调递加,以下分两种情况谈论:〔1〕当 t1,即 t2 时, f (x) 在〔 0, 1〕内单调递减,2f (0)t 1 0, f (1)6t 24t 3 6 4 4 2 3 0.因此对任意 t [2, ), f ( x) 在区间〔 0, 1〕内均存在零点。
2019年全国卷 文科数学高考真题(含答案)

,则
C.185 cm
..
..
.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验号学生被抽到,则下面4名学生中被抽到的是
C.A=
1 12A +
的一条渐近线的倾斜角为130°0)
C.
1 sin50︒
(2)若a1>0,求使得S n≥a n的n的取值范围.
19.(12分)
如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
20.(12分)
已知函数f(x)=2sin x-x cos x-x,f ′(x)为f(x)的导数.
(1)证明:f ′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
21.(12分)
已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求⊙M的半径;
(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
.
cos sin 1,()cos x x x g x x x '=+-=时,,所以在π,πx ⎛⎫
∈
⎪()0g x '<()g x。
2019年高考数学试题分类汇编函数附答案详解

2019年高考数学试题分类汇编函数一、选择题.1、(2019年高考全国卷1文理科3)已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b <<C .c a b <<D .b c a <<答案:B解析: 001log 2.0log 22<⇒=<=a a ,112202.0>⇒=>=b b ,1012.02.003.0<<⇒=<=c c ,b c a <<∴,故选B2、(2019年高考全国卷1文理科5)函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .答案:D解析:因为)()(x f x f -=-,所以)(x f 为奇函数又01)(2>-=πππf ,124412)2(22>+=+=πππππf ,故选D 3、(2019年高考全国卷1理科11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③答案:C解析:由)(|sin |||sin |)sin(|||sin )(x f x x x x x f =+=-+-=-,故①正确;),2(ππ∈x 时,x x x x f sin 2sin sin )(=+=,函数递减,故②错误;],0[π∈x 时,x x x x f sin 2sin sin )(=+=,函数有2个零点,0)()0(==πf f ,而],0[π∈x 时0)()0(=-=πf f ,所以函数有且只有3个零点,故③错误;函数为偶函数,只需讨论0>x ,N k k k x ∈+∈),2,2(πππ时,x x x x f sin 2sin sin )(=+=,最大值为2,N k k k x ∈++∈),22,2(ππππ时,0sin sin )(=-=x x x f ,故函数最大值为2,故④正确。
2019高考数学(文)试卷真题分类汇编(WORD版含解析)

2019高考数学(文)试卷真题分类汇编(WORD 版含解析)一、选择题1.【来源】2019年高考真题——文科数学(天津卷)已知函数01,()1,1.x f x x x⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为 A. 59,44⎡⎤⎢⎥⎣⎦B. 59,44⎛⎤⎥⎝⎦C. 59,{1}44⎛⎤⎥⎝⎦D. 59,{1}44⎡⎤⎢⎥⎣⎦答案及解析:1. D 【分析】画出()f x 图象及直线14y x a =-+,借助图象分析。
【详解】如图,当直线14y x a =-+位于B 点及其上方且位于A 点及其下方,或者直线14y x a =-+与曲线1y x=相切在第一象限时符合要求。
即1124a ≤-+≤,即5944a ≤≤, 或者2114x -=-,得2x =,12y =,即11224a =-⨯+,得1a =, 所以a 的取值范围是{}59,149⎡⎤⎢⎥⎣⎦。
故选D 。
【点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法。
2.【来源】2019年高考真题——文科数学(天津卷)已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,且f (x )的最小正周期为π,将y = f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A. -2B.D. 2答案及解析:2. C 【分析】只需根据函数性质逐步得出,,A ωϕ值即可。
【详解】()f x 为奇函数,可知(0)sin 0f A ϕ==, 由ϕπ<可得0ϕ=;把其图象上各点的横坐标伸长到原来的2倍,得1()sin 2g x A x ω=, 由()g x 的最小正周期为2π可得2ω=,由()4g π=2A =,所以()2sin 2f x x =,33()2sin 84f ππ==故选C.3.【来源】2019年高考真题——文科数学(天津卷)已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为C. 2答案及解析:3. D 【分析】只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率。
2019年全国各省高考文科数学试题及答案汇总(七份)

2019年全国各省高考文科数学试题及答案汇总(七份)全国卷1 ------------------ 2~ 9 全国卷2 ------------------ 10~16 全国卷3 ------------------ 17~26 北京卷 ------------------- 27~36 天津卷 ------------------- 37~46 江苏卷 ------------------- 47~64 浙江卷 ------------------- 65~762019年高考全国卷1文科数学试题及答案(满分150分,考试时间120分钟)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z =A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12. 若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长 度为26 cm ,则其身高可能是 A .165 cm B .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[-π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A +C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(文科)(新课标ⅱ)

2019年全国统一高考数学试卷(文科)(新课标Ⅱ)题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一、选择题:本一项是符合题目要求的。
1.(5分)已知集合A={x|x>﹣1},B={x|x<2},则A∩B=()A.(﹣1,+∞)B.(﹣∞,2)C.(﹣1,2)D.?2.(5分)设z=i(2+i),则=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)已知向量=(2,3),=(3,2),则|﹣|=()A.B.2C.5D.504.(5分)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机率为()取出3只,则恰有2只测量过该指标的概A.B.C.D.5.(5分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.低的次成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙xf(x)为奇函数,且当x≥0时,f(x)=e﹣1,则当x<0时,f(x)=()6.(5分)设x﹣x﹣x﹣x ﹣﹣1B.e﹣1D.﹣e A.e+1C.﹣e+17.(5分)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.(5分)若x=,x=是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=()A.2B.C.1D.2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()9.(5分)若抛物线yA.2B.3C.4D.810.(5分)曲线y=2sinx+cosx在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0D.x+y﹣π+1=011.(5分)已知α∈(0,),2sin2α=cos2α+1,则sinα=()A.B.C.D.12.(5分)设F为双曲线C:﹣=1(a>0,b>0)的右焦点,O为坐标原点,以222交于P,Q两点.若|PQ|=|OF|,则C的离心率为()=aOF为直径的圆与圆x+yA.B.C.2D.二、填空题:本题共4小题,每小题5分,共20分。
2019年高考试题分类汇编(三角函数)

2019年高考试题分类汇编(三角函数) 2019年高考试题分类汇编(三角函数)考法1 三角函数的图像及性质1.(2019·全国卷Ⅰ·文科)已知tan225= tan(180°+45°)=-tan45°=-1,故选A。
2.(2019·全国卷Ⅱ·文科)由f(x)的定义可知,当x=π/4时,f(x)=sin(πω/4),当x=3π/4时,f(x)=sin(3πω/4)。
因为x1和x2是相邻的极值点,所以f(x1)=f(x2)=0,即sin(πω/4)=sin(3πω/4)=0.因为ω>0,所以πω/4=0或π,3πω/4=π/2或5π/2.解得ω=8或16,故选B。
3.(2019·全国卷Ⅲ·文科)f(x)=2sinx-sin2x=2sinx-2sinxcosx=2sinx(1-cosx),所以f(x)的零点为x=0,π和2π。
故选B。
4.(2019·全国卷Ⅰ·文理科)由于cosx在[-π,π]上单调递减,所以cosx的最小值为cos(-π)=-1,最大值为cos(π)=1.因此,当x=-π或x=π时,f(x)的值最小,为-2/π;当x=0时,f(x)的值最大,为2.故选B。
5.(2019·全国卷Ⅰ·理科)①f(x)是偶函数,③f(x)在[-π,π]上有一个零点,故①和③正确。
当00,即f(x)在(0,π)单调递增,故②正确。
当x=π/2时,f(x)=2,又因为f(x)是偶函数,所以当x=-π/2时,f(x)也等于2,故④正确。
因此,选A。
6.(2019·全国卷Ⅱ·理科)由f(x)的定义可知,f(x+π/2)=cos2x,f(x+π)=cos(2x+π)=-cos2x,f(x+3π/2)=-cos2x,f(x+2π)=cos2x。
因此,f(x)的周期为π,而且f(x)在(0,π)单调递增,故选B。
2019年全国卷Ⅱ文数高考试题文档版(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅2.设z =i(2+i),则z = A .1+2i B .-1+2iC .1-2iD .-1-2i3.已知向量a =(2,3),b =(3,2),则|a -b |= A .2 B .2 C .52D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3 C .4 D .8 10.曲线y =2sin x +cos x 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15B .55 C .33D .25512.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A .2 B .3 C .2D .5二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国各地高考文科数学试题分类汇编2:函数一、选择题1 .(2019年高考重庆卷(文))函数21log (2)yx =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞UD .(2,4)(4,)+∞U【答案】C2 .(2019年高考重庆卷(文))已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4【答案】C3 .(2019年高考大纲卷(文))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 ( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A4 .(2019年高考辽宁卷(文))已知函数())()21ln1931,.lg 2lg 2f x x x f f ⎛⎫=+++= ⎪⎝⎭则 ( )A .1-B .0C .1D .2【答案】D5 .(2019年高考天津卷(文))设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==,则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A6 .(2019年高考陕西卷(文))设全集为R , 函数()1f x x =-M , 则C M R 为( )A .(-∞,1)B .(1, + ∞)C .(,1]-∞D .[1,)+∞【答案】B7 .(2019年上海高考数学试题(文科))函数()()211f x x x =-≥的反函数为()1f x -,则()12f -的值是( )A .3B .3-C .12+D .12-【答案】A8 .(2019年高考湖北卷(文))x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )A .奇函数B .偶函数C .增函数D .周期函数【答案】D9 .(2019年高考四川卷(文))设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是( )A .[1,]eB .[1,1]e +C .[,1]e e +D .[0,1]【答案】A10.(2019年高考辽宁卷(文))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=( )A .2216a a --B .2216a a +-C .16-D .16【答案】C11.(2019年高考北京卷(文))下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是 ( )A .1y x=B .x y e-=C .21y x =-+D .lg ||y x =【答案】C12.(2019年高考福建卷(文))函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .【答案】A13.(2019年高考浙江卷(文))已知函数f(x)=ax 2+bx+c .若f(0)=f(4)>f(1),则( )A .a>0,4a+b=0B .a<0,4a+b=0C .a>0,2a+b=0D .a<0,2a+b=0[【答案】A14.(2019年高考山东卷(文))已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( )A .2B .1C .0D .-2【答案】D15.(2019年高考广东卷(文))函数lg(1)()1x f x x +=-的定义域是( )A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞UD .[1,1)(1,)-+∞U【答案】C16.(2019年高考陕西卷(文))设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 ( )A .·log log log a c c b a b =B .·log lo log g a a a b a b =C .()log ?l g o lo g a a a b c bc =D .()log g og o l l a a a b b c c +=+【答案】B17.(2019年高考山东卷(文))函数1()123x f x x =-++的定义域为 ( )A .(-3,0]B .(-3,1] C.(,3)(3,0]-∞--UD .(,3)(3,1]-∞--U【答案】A18.(2019年高考天津卷(文))已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )A .[1,2]B .10,2⎛⎤⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]【答案】C19.(2019年高考湖南(文))函数f(x)=㏑x 的图像与函数g(x)=x 2-4x+4的图像的交点个数为______( )A .0B .1C .2D .3【答案】C20.(2019年高考课标Ⅰ卷(文))已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D;21.(2019年高考陕西卷(文))设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有( ) A .[-x ] = -[x ] B .[x + 12] = [x ] C .[2x ]=2[x ]D .1[][][2]2x x x ++=【答案】D22.(2019年高考安徽(文))函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,,,n x x x L ,使得1212()()()n nf x f x f x x x x ===L ,则n 的取值范围为 ( )A .{}2,3B .{}2,3,4C .{}3,4D .{}3,4,5【答案】B23.(2019年高考湖北卷(文))小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是【答案】C24.(2019年高考湖南(文))已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于____ ( )A .4B .3C .2D .1【答案】B 二、填空题25.(2019年高考安徽(文))定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.【答案】(1)()2x x f x +=-26.(2019年高考大纲卷(文))设()[)()21,3=f x x f x ∈是以为周期的函数,且当时,____________.【答案】-127.(2019年高考北京卷(文))函数f(x)=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________.【答案】(-∞,2)28.(2019年高考安徽(文))函数21ln(1)1y x x=++-的定义域为_____________. 【答案】(]0,1距学校的距离距学校的距离距学校的距离ABCD时间时间时间时间OOOO距学校的距离。