《食品化学》教案[001]

《食品化学》教案[001]
《食品化学》教案[001]

《食品化学》教案

第23~24次课4学时

一、授课题目

第八章维生素和矿物质

二、教学目的和要求

了解维生素结构及降解机理

掌握各维生素的性质、生理功能

掌握食品加工贮藏过程中维生素的变化及维生素损失的原因

了解影响矿物质生物有效性的因素

动植物性食品中的矿物质元素种类及含量

掌握矿物质在食品加工中的变化

三、教学重点和难点

重点:

⑴食品加工贮藏过程中维生素的变化及维生素损失的原因

⑵掌握矿物质在食品加工中的变化,提高矿物质利用率的方法

难点:

食品加工贮藏过程中维生素的变化

四、主要参考资料

《食品化学》,王璋、许时婴、汤坚编,中国轻工业出版社,2007,4;

《食品化学》,刘邻渭主编,中国农业大学出版社,2003,3;

《食品化学》,谢笔钧主编,科学出版社,2006,6;

五、教学过程

教学方法:讲授法

辅导手段:PPT

板书:板书+多媒体

主要内容

⑴水溶性维生素

⑵脂溶性维生素

⑶矿物质

《食品化学》教案

第23~24次课3学时

一、授课题目

第一节维生素

二、教学目的和要求

了解维生素结构及降解机理

掌握各维生素的性质、生理功能

掌握食品加工贮藏过程中维生素的变化及维生素损失的原因

三、教学重点和难点

重点:

食品加工贮藏过程中维生素的变化及维生素损失的原因

难点:

食品加工贮藏过程中维生素的变化

四、主要参考资料

《食品化学》,王璋、许时婴、汤坚编,中国轻工业出版社,2007,4;

《食品化学》,刘邻渭主编,中国农业大学出版社,2003,3;

《食品化学》,谢笔钧主编,科学出版社,2006,6;

五、教学进程

主要内容

⑴水溶性维生素

⑵脂溶性维生素

食品中维生素和矿物质的含量是评价食品营养价值的重要指标之一。人类在长期进化

过程中,不断地发展和完善对营养的需要,在摄取的食物中,不但需要蛋白质、糖类和脂肪,而且需要维生素和矿物质。如果维生素和矿物质供给量不足,就会出现营养缺乏症状或某些疾病,摄入过多也会产生中毒。

维生素是多种不同类型的低相对分子质量有机化合物。其特点:它们有不同的结构和生理功能,是动植物食品的组成成分。人体每日需要量很小,但却是机体维持生命所必需的要素。当供给量不足时,就会出现相应的缺乏症状。

第一节维生素

一、维生素的稳定性

营养素一般条件酸碱空气或氧光热烹饪时损失率

维生素A S U S U U U 40

抗坏血酸U S U U U U 100

生物素S S S S S U 60

胡萝卜素S U S U U U 30

维生素B12 S S S U S S 10

维生素D S S U U U U 40

叶酸U U U U U U 100

维生素K S U U S U S 5

烟酸S S S S S S 75

泛酸S U U S S U 50

维生素B6 S S S S U U 40

核黄素S S U S U U 75

硫胺素U S U U S U 80

维生素E S S S U U U 55

注:S稳定,U不稳定

1、成熟度的影响

有关成熟度对食品中营养素含量的影响的资料不多。目前仅对番茄有较多的研究。番茄中维生素C的含量在其未成熟的某一个时期最高。

2、采后及储存过程中的影响

食品从采收或屠宰到加工这段时间,营养价值会发生明显的变化。因为许多维生素的衍生物是酶的辅助因子,它易受酶,尤其是动植物死后释放出的内原酶所降解。维生素的变化程度与储藏加工过程中的温度高低和时间长短有关。一般而言,维生素的净浓度变化较小,主要是引起生物利用率的变化。相对来说:脂肪氧合酶的氧化作用可以降低许多维生素的浓度,而抗坏血酸氧化酶则专一性地引起抗坏血酸含量损失。

植物组织经过修整或细分均会导致营养素的部分丢失。在修整某蔬菜和水果以及摘去菠菜、花椰菜、绿豆芽、芦笋等蔬菜的部分茎、梗和侧梗时,会造成部分营养素的损失。在一些食品去皮过程中由于使用强烈的化学物质,如碱液处理,将使外层果皮的营养素破坏。

食品在配料中,由于其他原料的加入而带来酶的污染。如加入植物性配料会将抗坏血酸氧化酶带入成品,用海带产品作为配料可带入硫胺素酶。

当食品中的脂质发生氧化时,产生的过氧化氢、氢过氧化物和环氧化物能够氧化类胡萝卜素、生育酚、抗坏血酸等物质,导致维生素活性的损失。此外,糖类中的非酶褐变反

应生成的高活性羰基化合物,它们也能以同样的方式破坏某些维生素。

3、谷类食物在研磨过程中的影响

谷类在研磨过程中,营养素不同程度会受到损失。其损失程度依种子内的胚乳与胚芽同种子外皮分离的难易程度而异,难分离的研磨时间长,损失率高;反之则损失率低。因此研磨对每种种子的影响是不同的,即使同一种子,各种营养素的损失率亦不尽相同。可

素维生素K 止血维生

促进血液凝固菠菜、肝

4、浸提和热烫

食品中水溶性维生素损失的一个主要途径是经由切口或易受破损的表面而流失。此外,在加工过程中洗涤、水槽传送、漂烫、冷却和烹调等也会造成营养素的损失。其损失特性与程度与pH、温度、水分含量、切口表面积、成熟度以及其他因素有关。

热烫通常采用蒸汽或热水两种方法。其方法的选择则依食品种类和以后的加工操作而定。一般来说,蒸汽处理引起的营养素损失最小。食品在工厂加工,如果是在良好的操作条件下进行,其浸提、热烫、烹调造成的营养素损失,一般不会大于家庭操作的平均损失。

5、化学药剂的影响

由于储藏加工的需要,常常向食品中添加一些化学物质,其中有的能引起维生素的损失。例如:面粉中加入漂白剂或改良剂会降低面粉中维生素A、C、E等的含量。二氧化硫及其亚硫酸盐、亚硫酸氢盐和偏亚硫酸盐会破坏硫胺素和维生素B6。亚硝酸盐不但可以与抗坏血酸反应,而且还能破坏类胡萝卜素、硫胺素和叶酸。

二、维生素的每日参考摄入量

在研究维生素的摄入量时,必须考虑维生素的生物利用率和影响生物利用率的因素。维生素的生物利用率与机体的吸收代谢等有关。影响维生素利用率的因素包括:①膳食的组成会影响其在肠道停留的时间、黏度、乳化特性和pH等②维生素的存在形式和状态不同,使之在体内的吸收速率、吸收程度与转变为代谢活性形式的难易程度,或者代谢功能作用的大小等都会有所差别。③维生素和其他食物成分之间的反应会影响维生素在肠道内的吸收。

三、水溶性维生素

1、抗坏血酸(ascorbic acid)

1)结构和化学性质

L-抗坏血酸L-脱氢抗坏血酸

L-抗坏血酸L-异抗坏血酸

抗坏血酸即维生素C,是一种十分重要的生物活性物质。L-抗坏血酸(Vc)是高度水溶性化合物,极性很强,具有酸性和强还原性。抗坏血酸主要以还原型的L-型抗坏血酸存在于水果和蔬菜中,在动物组织和动物加工产品中含量较少。具有生理活性。L-异抗坏血

酸具有与L-抗坏血酸相似的化学性质,但不具有维生素C的活性。在食品中使用时,D-异构体不是作为维生素的用途,而是作为抗氧化剂添加到食品中的。L-异构体可分为氧化型和还原型两种。

2)分析方法

现在常用的分光光度法是用还原性染料对抗坏血酸进行氧化测定,如2,6二氯靛酚。(测定总Vc含量)但该方法没有将脱氢抗坏血酸考虑在内,故测定值中仅有80%抗坏血酸的维生素活性。

另一种常用的方法是利用VC的羟基与苯肼反应生成二苯腙来测定抗坏血酸含量,其缺点是食品中含有无维生素活性的羰基物质也可发生同样反应,从而引起测定误差。

HPLC法现常被用来测定抗坏血酸的总量,而且也可同时测定L-抗坏血酸和还原型抗坏血酸的含量。

3)稳定性

多种因素影响抗坏血酸的降解。如温度、盐和糖浓度、pH、氧、酶、金属催化剂(特别是Cu2+、Fe3+)、水分活度、抗坏血酸的初始浓度以及抗坏血酸与脱氢抗坏血酸的比例等因素的影响。

抗坏血酸易氧化形成脱氢抗坏血酸,脱氢抗坏血酸又易经温和的还原反应再生成抗坏血酸。脱氢抗坏血酸的氧化是不可逆的,尤其在碱性介质中,可使内酯水解形成2,3-二酮基古洛糖酸(DKG),只是在这时才引起维生素活性的损失。

非催化氧化降解反应速率与pH之间是非线性关系,其两者的相关性曲线呈S形。当pH>6时,曲线趋向平坦。

在厌氧反应条件下,抗坏血酸是氧化速率在pH4时达到最大,pH为2时降到最小,然后随着酸度的增加而增加。

4)加工的影响

抗坏血酸具有强的还原性,因而在食品中是一种常用的抗氧化剂。可有效抑制酶促褐变,作为面包改良剂;保护叶酸等易被氧化的物质;清除单重态氧;还原以氧和碳为中心的自由基,使其他抗氧化剂(如生育酚自由基)再生。

富集抗坏血酸的食品,通常由于非酶褐变引起维生素的损失和颜色变化。水分活度非常低时,抗坏血酸仍可发生降解,只是转化速度非常缓慢。抗坏血酸的稳定性随温度降低而大大提高。食品在加热浸提时,其抗坏血酸损失远比其他加工步骤带来的损失大。

为减少抗坏血酸的损失,常用SO2处理食品,可减少在加工储藏过程中抗坏血酸的损失。此外糖和醇也能保护抗坏血酸免受氧化降解。

5)生理功能

促进胶原的生物合成,有利于组织创伤的愈合;

促进骨骼和牙齿生长,增强毛细血管壁的强度,避免骨骼和牙齿周围出现渗血现象。

促进酪氨酸和色氨酸的代谢,加速蛋白质或肽类的脱氨基代谢作用。

影响脂肪和类脂的代谢

改善对铁、钙和叶酸的作用

作为一种自由基清除剂

增加机体对外界环境的应激能力。

2、硫胺素(thiamin)

1)结构和化学性质

它由一个嘧啶分子和一个噻唑分子通过一个亚甲基连接而成。它广泛分布于植物和动物体中,在α-酮基酸和糖类的中间代谢中起着十分重要的作用。

硫胺素因为含有一个季氮原子,故具有强碱性。在食品的整个正常pH范围内,都是完全离子化的。

2)分析方法

常用的方法是荧光法和HPLC 法。硫胺素在稀酸的条件下从加热的食物匀浆中提取出来,用磷酸酯酶水解磷酸化硫胺素,然后层析去除非硫胺素的荧光成分,再用氧化剂反它转化成强荧光的脱氢硫胺素,用荧光分光光度计来检测。或者用磷酸酯酶处理后,用HPLC 法测定总硫胺素的含量也可以。

3)稳定性

是所有维生素中最不稳定的一种。其稳定性受pH 、温度、离子强度、缓冲液以及其他反应物的影响。

反应硫胺素受热易降解,典型的降解是在两环之间的亚甲基碳上发生亲核取代反应。在低水分活度和室温时,硫胺素相当稳定。亚硝酸盐也能使硫胺素失活。酪蛋白和可溶性淀粉可抑制亚硫酸盐对硫胺素的破坏作用。

硫胺素与硫胺素酶结合后产物的稳定性比游离态差。温度是影响硫胺素稳定性的一个重要因素。此外,pH 对硫胺素降解速

率有重要影响。在pH<6(酸性pH 范围),硫胺素降解较为缓慢,而在pH6-7时,硫胺素降解加快。pH 为8时,体系中已不存在噻唑环,硫胺素经分解或重排生成具有肉香味的含硫化合物(即在中等水分活度及碱性pH 时,硫胺素降解速率最快)。

硫胺素是一种水溶性维生素,在烹调过程中会因浸出而带来损失。此外 ,抗硫胺素因子(非酶)也会使硫胺素损失。 4)加工的影响

可热分解形成具有特殊气味的物质,在烹调的食物中产生“肉”的香味。 5)生理功能

食品中的几乎能被人体完全吸收和利用,可参与糖代谢,能量代谢,并具有维持神经系统和消化系统正常功能,以及促进发育的作用。 3、核黄素(riboflavin) 1)结构和化学性质

是一大类具有生物活性的化合

物,其母体化合物是7,8-二甲基-10

异咯嗪,所有的衍生物均称为黄素。其衍生物有FAD 及FMN 。牛乳和人乳中的FAD 和游离的核黄素含量占总核黄素的80%以上。核黄素中的

10-羟乙基黄素是哺乳类黄素激酶的抑制剂,能抑制组织吸收核黄素。光黄素(luniflavin)是核黄素的拮抗剂。 2)分析方法 核黄素在440-500nm 波长下产生黄绿色荧光,在稀溶液中荧光强度

与核黄素浓度成正比,故可采用荧光法进行检测。也可用于酪乳酸杆菌微生物法或HPLC 法进行测定。

N N

C

NH

N C O O

C

H 3C H 3CH 3

HCOH

HCOH

HCOH H 2C P O OH O O OH O P O

CH 3O OH OH N

N N N NH 2

3)稳定性

核黄素具有热稳定性,不受空气中氧的影响,在酸性溶液中稳定,但在碱性溶液中不稳定,光照射容易分解。在大多数加工或烹调过程中,食品中的核黄素是稳定的。

4、烟酸

1)结构和化学性质尼克酸尼克酰胺

为B族维生素成员之一。包括尼克酸和尼克酰胺,通称为烟酸。它们的天然形式均有同样的烟酸活性。在生物体内,其活性成分为NADP。其广泛存在于蔬菜和动物来源的食品中,高蛋白膳食者对烟酸的需求量减少。其原因:色氨酸可转化为烟酸。咖啡在温和的碱性条件下焙炒,咖啡中的烟酸含量和活性提高30倍。NAD和NADP的还原态,在胃液中不稳定,所以生物利用率很低。玉米在沸水中加热,可从NAD和NADP中释放出游离的烟酰胺。食品中结合态的烟酸含量直接影响烟酸的生物利用率。

2)分析方法

测定烟酸产生需要用硫酸水解食品,使烟酸从结合状态中释放出来。烟酸的吡啶环在溴化氰的作用下开环,形成的裂解产物与磺胺酸结合生成黄色染料,其最大吸收波长为470nm,用来测定含量。如果采用碱萃取,由于释放出游离烟酸而使测定结果远高于生物测定法。此外,也可采用HPLC法测定食品中游离的或结合的烟酸或烟酰胺。

3)稳定性

烟酸是一种最稳定的维生素,对热、光、空气和碱都不敏感,在食品加工中也无热损失。但作为水溶性维生素,如修整和淋洗过程中,也会产生损失。在储藏过程中,由于生化反应也会引起损失。

5、维生素B6(PN、PL、PM)

1)结构和化学性质

这些化合物以磷酸盐形式广泛分布于动植物中。磷酸吡哆醛是许多氨基酸转移酶中的一种辅酶。大多情况下,水果蔬菜和谷类中的维生素B65%-75%以吡哆醇-5’-β-D-葡萄糖苷的形式存在。只有将糖苷水解后才具有营养活性。

2)分析方法

食品中维生素B6含量测定通常采用酸水解样品提取VB6,然后用卡尔斯酵母进行微生物学检测,也可用HPLC法进行测定。

3)稳定性

维生素B6的3种形式都具有热稳定性。遇碱分解。其中吡哆醛最为稳定,通常用来强化食品。VB6在氧存在下,经紫外光照射后即转变为无生物活性的4-吡哆酸。

4)加工的影响

食品在加热、浓缩、脱水等加工过程中,维生素B6的3种形式化合物及其含量必然

会发生变化。如蛋在脱水过程中,吡哆醛含量增加而吡哆胺减少。吡哆醇较稳定。在食品加工过程中,一般食品中的VB6都较易损失。可引起小儿麻痹症。

在非光化学降解中,维生素B6的形式、温度、溶液、pH和其他反应物的存在均影响维生素B6的降解速率。pH>7时,PM损失较大,而pH为5时,PL损失较大。

膳食中的所有维生素B6的形式都能被有效吸收和发挥VB6的功能,即使是转变为席夫碱的VB6在胃酸条件下,仍能降解和显示较高生物利用率。

6、叶酸酯

1)结构和化学性质(四氢叶酸)

叶酸是由α-氨基-4羟基喋呤与对氨基苯甲酸相连接,再以-NH-CO-键与谷氨酸连接组成。在生物体系中,叶酸酯以各种不同的形式存在,只有谷氨酸部分为L-构型和C6为6S构型的叶酸酯和四氢叶酸酯才具有维生素活性。

叶酸是一种暗黄色物质,不易溶解于水,其钠盐溶解度较大。天然存在的最很少,从人体对叶酸的需要量看,叶酸是维生素中需求量最大的维生素。具有维生素活性的只有叶酸和叶酸的多谷氨酸酯衍生物。

2)分析方法

只有完成了多谷氨酸酯衍生物的合成后,测定自然界叶酸酯衍生物的分布才成为合成。食品中叶酸的含量测定,通常用微生物学方法进行。测定前,先将食品中的多谷氨酸酯衍生物在结合酶的作用下裂解生成游离叶酸,此外也可以采用HPLC法。

3)稳定性

叶酸在厌氧条件下对碱稳定。有氧条件下,遇碱会发生水解,水解后的侧链生成氨基苯甲酸-谷氨酸和喋呤-6-羧酸;在酸性条件下水解得到6-甲基喋呤。叶酸酯在碱性条件下隔绝空气水解,可生成叶酸和谷氨酸。

食品加工中,亚硝酸盐和亚硫酸能使食品中的叶酸发生相互作用。食品中叶酸酯主要以5-甲基-四氢叶酸形式存在,经氧化降解。

二氢叶酸和四氢叶酸在空气中容易氧化,对pH也很敏感。在pH为8-12和pH为1-2最稳定。在中性溶液中,FH4和FH2同叶酸一样迅速氧化。在酸性条件下可观察到氨基苯甲酸-谷氨酸的定量解离。当FH4的N5位被取代后,在硫醇、半胱氨酸或抗坏血酸盐存在时,FH4的氧化作用降低。FH4在酸性溶液中比在碱性溶液中氧化更快。FH2比FH4稍稳定,但仍能发生降解。

四氢叶酸几种衍生物稳定性顺序为:5-甲酰基四氢叶酸>5-甲基-四氢叶酸>10-甲基-四氢叶酸>四氢叶酸。叶酸的稳定性取决于喋呤环,与聚合酰胺的链长无关。

7、维生素B12

1)结构和化学性质

维生素B12由几种密切相关的具有相似活性的化合物组成。这些化合物都含有钴,故又称钴胺素。维生素B12为红色结晶状物质,是化学结构最复杂的维生素。

维生素B12主要存在于动物组织中,它是维生素中惟一只能由微生物合成的维生素。维生素B12的合成产品是氰钴胺素,为红色结晶,非常稳定,可用于食品和营养补充。

2)分析方法

其含量测定,通常采用赖氏乳杆菌用微生物学的方法进行检测。各种形态的钴胺素均可用色谱法分离得到。HPLC法不适于钴胺素分析,因为含量过低。

测定时,首先要将食品在缓冲液中匀浆,然后在60℃条件下,用木瓜蛋白酶和氰化物的盐类使之反应,去掉蛋白质转变成氰钴胺素,然后测定其含量。

3)稳定性

氰钴胺素水溶液在

室温并且不暴露在可见

光或紫外光下是稳定

的,最适宜的pH范围是

4-6,在此范围内,即使

高压加热,也仅有少量

损失。在碱性溶液中加

热,能定量地破坏钴胺

素。还原剂(巯基化合物)

低剂量时起保护作用,

高浓度时起破坏作用。

抗坏血酸及亚硫酸盐也

会破坏钴胺素,三价铁

可保护钴胺素,低价铁

将会使钴胺素迅速破

坏。

4)加工的影响

除在碱性溶液中蒸煮外,钴胺素在其他情况下,几乎都不会遭到破坏。

8、泛酸(pantothenic acid)

1)结构和化学性质

是人和动物所必需的,是辅酶A的重要组成部分。在人体代谢中起重要作用。泛酸在pH为4-7的范围内稳定,在酸和碱的溶液中水解,在碱性中水解生成β-丙氨酸和泛解

酸。在酸性溶液中水解成泛解酸的γ-

内酯。

2)分析方法

在天然物质中含量很低,通常用

微生物学的方法进行检测。常用

Saccharomyces Carlsbergensis(检测

10ng)和植物乳杆菌(Lactobacillus

plantarum,检测1ng)作为试验生物

体。

3)加工的影响

在加工中可以导致损失,在pH为

4-6范围内,速率常数随pH降低而

增加。膳食中泛酸在人体内的生物利

用率约为51%,人体内不易缺乏。

9、生物素

1)结构和分布

生物素和硫胺素一样,是一种含硫维生素。生物素和生物胞素是两种天然维生素。

生物素广泛分布于植物和动物体中,在糖类、脂肪和蛋白质代谢中具有重要的作用。主要功能是作为羧基化反应和羧基转移反应的辅酶,以及在脱氨基作用中起辅酶的作用。

2)分析方法

通常采用波依法霉样真菌(Allescheria boydii,检测0.5ng)或阿拉伯糖乳酸杆菌(Lactobacillus arabinosus,检测0.05ng)以微生物学的方法对生物素进行定量分析。

3)稳定性

纯生物素对热、光、空气非常稳定。在微碱性或微酸性溶液中也相当稳定。即使在pH为9左右的碱性溶液中,生物素也是稳定的。极端pH条件下,生物素环上的酰胺键可能发生水解。

在谷粒的碾磨过程中生物素有较多的损失。精制的谷粒产品损失多。

在生蛋清中发现一种蛋白质,即抗生物素蛋白,它能与生物素牢固结合形成抗生物素的复合物,它使生物素无法被生物体利用。人体肠道内的细菌可合成相当数量的生物素,故人体一般不缺乏生物素。

四、脂溶性维生素

1、维生素A

1)结构和化学性质

具有维生素A活性的物质包括一系列20个碳和40个碳的不饱和碳氢化合物,它们广泛分布于动植物体中。维生素A醇的羟基可与脂肪酸结合成酯,也可氧化成醛和酸。动物肝脏含维生素A最高,以醇可酯的状态存在。植物和真菌中,以类胡萝卜素形式存在。最有效的维生素A前体是β-胡萝卜素,经水解可以生成两个分子的维生素A。

由于类胡萝卜素主要是由碳氢组成的化合物,类似脂类结构,故不溶于水,而是脂溶性的。只有胡萝卜素与蛋白质结合后才能溶于水。高浓度不饱和的类胡萝卜素体系能产生一系列复杂的紫外和可见光光谱,故呈淡橙色。

2)分析方法

目前,测定食品中维生素A活性的最理想的方法是先将类胡萝卜素进行色谱分离,视黄醇

视黄酸

视黄醛

视黄醇乙酸酯

然后将各种不同立体异构体的活性进行累加。现在多采用HPLC法。

3)稳定性

天然存在的类胡萝卜素都是以全返式构象为主。当食品在热加工时转变为顺式构象,也就失去了维生素A活性。此外,光照、酸化、次氯酸或稀碘溶液都可能导致热异构化。

食品中维生素A和类胡萝卜素发生的氧化降解,存在着两种途径,一种是直接过氧化作用,另一种是脂肪酸氧化产生的自由基导致的间接氧化。β-胡萝卜素和其他类胡萝卜素在低氧分压时显示抗氧化的作用。但是在氧分压较高时可起助氧化剂的作用。

维生素A的损失速率是酶、水分活度、储藏气压和温度的函数。

4)生理功能

维持视觉,促进生长、增强生殖力和清除自由基。

2、维生素K

1)结构和化学性质

是脂溶性萘醌类的衍生物。天然的维生素K有两种形式,维生素K1(叶绿醌或叶绿基甲基萘醌)仅存在于绿色植物中,维生素K2(聚异戊烯甲基萘醌)由许多微生物包括人和其他动物肠道中的细菌合成。

天然存在的维生素K是黄色油状物,人工合成的是黄色结晶。所有K类维生素都抗热和水,易受酸、碱、氧化剂和光的破坏。由于天然维生素K相对稳定,又不溶于水,在正常的烹调过程中损失很少。人体很少有缺乏症出现。VK的主要生理功能是有助于某些凝血因子的产生,参与凝血过程。

3、维生素D

维生素D是甾醇类微生物。食物中有两种:麦角钙化醇(VD2)和胆钙化醇(VD3)。

维生素前体(麦角固醇和7-脱氢胆固醇)经紫外线辐射可产生维生素D2和D3。酵母和真菌含麦角固醇,而7-脱氢胆固醇则是在鱼肝油及人体和其他动物的皮肤里发现的。生命体中维生素D2和D3有几种羟基取代保护物,胆钙化甾醇的1,25-二羟基衍生物是D3具有生理活性的主要形式。肉类与乳制品富含维生素D3及其25-羟基衍生物。7-脱氢胆固醇主要在鱼、蛋黄、奶油中。尤其是海产鱼肝油中含量特别丰富。

维生素D是脂溶性的,对氧和光敏感,一般在加工中不会引起维生素D的损失,但油脂氧化酸败可引起VD破坏。

其生理功能有:促进钙磷的吸收,维持正常血钙水平和磷酸盐水平,促进骨骼和牙齿的生长发育,维持血液中正常的氨基酸浓度,调节柠檬酸的代谢。

4、维生素E

1)结构和化学性质

自然界中发现的生育酚和生育三烯醇,统称为维生素E。分别为α-生育酚、β-生育酚、γ-生育酚、δ-生育酚。α-生育酚具有最高维生素E活性,是天然抗氧化剂。

2)分析方法

其分析步骤包括萃取,皂化及非皂化部分的薄

层和气相色谱分析。HPLC是目前采用最多的分析

方法。

3)稳定性

维生素E在无氧和无氧化存在时显示良好的

稳定性。水分活度影响维生素E的降解。在单分

子水层值时降解速率最小,高于或低于此值,其

降解速率增大。

4)加工的影响

食品在加工、储藏和包装过程中,一般都会造成维生素E的最大损失。通常家庭烘炒或水煮不会大量损失。

5)生理功能

可有效阻止食物和消化道内脂肪酸酸败,保护细胞免受不饱和脂肪酸氧化产生毒性物质的伤害。同硒产生协同效应,可部分代替硒的功能。提高机体免疫功能,保持血红细胞完整性,调节体内化合物的合成,促进细胞呼吸,保护肺组织免遭空气污染。

版书设计

六、作业

简述维生素的分类、性质,综合分析水溶性维生素、脂溶性维生素的生理功能

七、课后记

《食品化学》教案

第24次课1学时

一、授课题目

第二节矿物质

二、教学目的和要求

了解影响矿物质生物有效性的因素

动植物性食品中的矿物质元素种类及含量

掌握矿物质在食品加工中的变化

三、教学重点和难点

重点:

⑴食品加工贮藏过程中维生素的变化及维生素损失的原因

⑵掌握矿物质在食品加工中的变化,提高矿物质利用率的方法

难点:

食品加工贮藏过程中维生素的变化

四、主要参考资料

《食品化学》,王璋、许时婴、汤坚编,中国轻工业出版社,2007,4;

《食品化学》,刘邻渭主编,中国农业大学出版社,2003,3;

《食品化学》,谢笔钧主编,科学出版社,2006,6;

五、教学进程

第二节矿物质

一、概述

食品中的矿物质是由不同种类的元素和离子组成的,其中有许多是人类营养必不可少的。矿物质中参与人体生命代谢的约有25种。其中氮,氢,氧,碳占人体矿物质原子总量的99%,微量元素对人体健康起着重要作用,一旦缺乏将会造成多种疾病。

食品中矿物质含量的变化主要取决于环境因素。化学反应导致食品中矿物质的损失不如物理去除或形成生物不可利用的形式所导致的损失那样严重。

矿物质损失最初是通过水溶性物质的浸出,主要通过植物非食用部分的剔除而损失掉(如谷物碾磨)。

二、物理和化学性质

1、溶解性

矿物质的生物利用率和活性在很大程度上依赖于它们在水中的溶解性。各种价态的矿物质在水中有可能与生命体中的有机质,如蛋白质、氨基酸、有机酸、核酸、核苷酸、肽和糖等形成不同类型的化合物,这有利于矿物质的稳定和在器官间的输送。

2、酸碱性

任何矿物质都有正离子和负离子。但从营养学的角度看,只有氟化物、碘化物和磷酸的负离子才是重要的。各种微量元素参与复杂生物过程,可以利用Lewis的酸碱理论解释,由于不同价态的同一元素,可以通过形成多种复杂物参与不同的生化过程,因而显示不同的营养价值。

3、氧化还原性

碘化物和碘酸盐与食品中其他重要的无机负离子相比是比较强的氧化剂。其他一些金属具有多种氧化态,如锡和铅(+2、+4),汞(+1、+2),铁(+2、+3)、铬(+3、+6)、锰(+2、+3、+4、+6、+7)。这些金属中有许多能形成两性离子,即可作为氧化剂,又可作为还原剂。钼和铁最重要的性质是能催化抗坏血酸和不饱和脂质的氧化。微量元素的这些价态变化和槲皮素转换的平衡反应,都将影响组织和器官的环境特征,如pH、配位体组成、电效应等,从而影响其生理功能。

4、微量元素的浓度

研究表明,微量元素的浓度和存在状态,影响各种生化反应,许多原因不明的疾病都与微量元素相关。

5、螯合效应

许多金属离子可作为有机分子的配位体或螯合剂。金属离子的螯合效应与螯合物的稳定性受其本身结构和环境因素的影响。一般五元环和六元环螯合物比其他更大或更小的环稳定。金属离子的路易斯碱性也会影响其稳定性,一般碱性越强越稳定。带电荷的配位体有利于形成稳定的螯合物。不同的电子供给体所形成的配位健强度不同,对氧来说H2O>ROH>R2O,氮为H3N>RNH2>R3N,硫是R2S>RSH>H2S,此外,分子中的共轭结构和立体位阻有利于螯合物的稳定。

三、功能特性及存在状态

钙在成人体内总含量约为1200g,近99%存在于骨骼内。骨矿物质含有两个物理及化学特性不同的磷酸钙池,即无定型相和疏松结晶相。内钙不断被吸收和沉积,骨组织处于不断更新过程。在儿童和青少年斯,骨钙沉积速率大于吸收速率。在晚年,则吸收速率高于沉积速率。所以,随着年龄增加,钙将逐渐流失。在钙摄入不足或吸收不良时,机体动用骨骼钙,而软组织钙维持恒定。在这种情况下,年轻人不仅骨骼钙化不充分,而且由于脱钙可造成骨强度降低。

磷是骨组织的一种必须成分,其与钙的比值为1:2。成人体内近85%的磷分布于骨骼。磷在软组织中以可溶性磷酸盐离子形式存在,在脂肪、蛋白质和碳水化合物及核酸中以酯类或苷类化合物键合形式存在。磷也在机体许多不同的生化反应中发挥重要作用。代谢过程中所需要的能量大部分来源于三磷酸腺苷、磷酸肌酸盐及类似于化合物的磷酸键。

镁在成人体内含量为20-28g,其中40%分布于肌肉及软组织中,约1%分布于细胞间液,其余则分布于骨骼中。血浆镁的平均浓度为0.85mmol/L。健康人体内镁水平由激素调节而维持恒定,但其平衡机制尚不清楚。许多疾病伴有体内镁水平降低,但只有部分病例表现有镁缺乏症状。

铁是血红蛋白、肌红蛋白以及多种酶的组成成分,因此它是一种人体必需的营养素。除了这些功能形式外,体内约30%的铁以储存形式存在,如铁蛋白和含铁血红素,还有一小部分在血液转铁蛋白中。

锌是许多重要代谢途径的酶的成分之一,是植物、动物和人类共同必需的元素。相当大的一部分锌储存在骨骼和肌肉中,但这些储备不易达到其他部位以满足生理需要。动物实验表明:体内可供利用的锌储备较少,而且很快代谢转化,因此一旦发生锌缺乏,机体

内很快出现生理和生化变化。

碘是人类必需的微量元素之一,它是甲状腺激素-甲状腺素和三碘甲状腺酪原氨酸的主要组成成分。碘在食物和水分子中主要以碘分子形式存在,少量以有机形式与氨基酸结合。碘能完全、迅速地被机体吸收,并被运输到甲状腺用于合成甲状腺激素。碘缺乏可以引起一系列疾病,如伴有智力低下的严重呆小症,以及甲状腺肿大等。

硒是人体必需的元素,其生化基础是它存在于谷胱苷肽过氧化物酶的活性部位。

食品中的矿物质的含量受各种因素影响。以铜为例,土壤中铜含量、地区、季节、水源、化肥、杀虫剂、农药和杀菌剂的使用以及膳食的性质等因素都影响人体对铜的吸收。此外,矿物质在加工过程中作为直接或间接添加剂进入食品,这是一种十分易变的因素。

四、加工过程中的损失与获取

在烹调或热烫过程中由于水的作用而引起的矿物质损失是不可忽视的。矿物质的损失是其溶解度的函数。

食品中的微量元素还能够通过对加工设备,加工使用的水及包装材料的接触而得到。

五、食品中矿物质的利用率和安全性

1、矿物质的利用率

测定被人体可利用的食品中的某一种元素含量具有实用意义。因为某一种矿物质的吸收不仅取决于矿物质的存在形式,而且还取决于影响它们吸收或利用的各种条件。测定矿物质利用率的方法有化学平衡法、生物测定法、体外试验和同位素示踪法(理想方法)。

人体对动物食品利用率高,而谷物食品则最低。另外,维生素能增强铁的吸收,磷酸盐在钙含量很低的情况下,降低铁的吸收,糖也降低铁的吸收。蛋白质、氨基酸和糖类均都影响铁的利用率。饮食铁的吸收与个体或生理因素有关。在缺铁者或缺铁性贫血病人群中,对铁的吸收率提高。妇女对铁的吸收比男人高,儿童随年龄的增大铁的吸收减少。

2、矿物质的安全性

从营养的角度来看,有些矿物质不但没有营养,而且对人体健康有危害,汞和镉就属于这样的物质。同时,所有的矿物质在超过一定量以后,对人体具有毒性。

版书设计

六、作业

1、简述维生素的分类、性质,综合分析水溶性维生素、脂溶性维生素的生理功能

2、影响矿物质生物有效性的因素有哪些?

3、简述矿物质在食品加工中的变化

七、课后记

食品化学复习提纲(回答问题)

二、回答问题 1)试论述水分活度与食品的安全性的关系? 水分活度是控制腐败最重要的因素。总的趋势是,水分活度越小的食物越稳定,较少出现腐败变质现象。具体来说水分活度与食物的安全性的关系可从以下按个方面进行阐述: 1.从微生物活动与食物水分活度的关系来看:各类微生物生长都需要一定的水分活度,大多数细 菌为0.94~0.99,大多数霉菌为0.80~0.94,大多数耐盐菌为0.75,耐干燥霉菌和耐高渗透压酵母为0.60~0.65。当水分活度低于0.60时,绝大多数微生物无法生长。 2.从酶促反应与食物水分活度的关系来看:水分活度对酶促反应的影响是两个方面的综合,一方 面影响酶促反应的底物的可移动性,另一方面影响酶的构象。 3.从水分活度与非酶反应的关系来看:脂质氧化作用:在水分活度较低时食品中的水与氢过氧化 物结合而使其不容易产生氧自由基而导致链氧化的结束,当水分活度大于0.4 水分活度的增 加增大了食物中氧气的溶解。加速了氧化,而当水分活度大于0.8 反应物被稀释, 4.氧化作用降低。Maillard 反应:水分活度大于0.7 时底物被稀释。水解反应:水分是水解反 应的反应物,所以随着水分活度的增大,水解反应的速度不断增大。 2)什么是糖类的吸湿性和保湿性?举例说明在食品中的作用? 糖类含有许多羟基与水分子通过氢键相互作用。具有亲水功能。吸湿性是指糖在较高的空气湿度下吸收水分的性质。表示糖以氢键结合水的数量大小。保湿性指糖在较低空气湿度下保持水分的性质。表示糖与氢键结合力的大小有关,即键的强度大小。软糖果制作则需保持一定水分,即保湿性(避免遇干燥天气而干缩),应用果葡糖浆、淀粉糖浆为宜。蜜饯、面包、糕点制作为控制水分损失、保持松软,必须添加吸湿性较强的糖。 3)多糖在食品中的增稠特性与哪些因素有关? 由于分子间的摩擦力,造成多糖具有增稠特性。多糖的黏度主要是由于多糖分子间氢键相互作用产生,还受到多糖分子质量大小的影响。流变学的基本内容是弹性力学和黏性流体力学。食品的流变学性质和加工中的切断、搅拌、混合、冷却等操作有很大关系,尤其是与黏度的关系极大。 4)环糊精在食品工业中的应用? 利用环糊精的疏水空腔生成包络物的能力,可使食品工业上许多活性成分与环糊精生成复合物,来达到稳定被包络物物化性质,减少氧化、钝化光敏性及热敏性,降低挥发性的目的,因此环糊精可以用来保护芳香物质和保持色素稳定。环糊精还可以脱除异味、去除有害成分。它可以改善食品工艺和品质此外,环糊精还可以用来乳化增泡,防潮保湿,使脱水蔬菜复原等。

《食品化学》教案

《食品化学》教案 轻工与农业学院 食品科学与工程系 山东理工大学

教案编写说明 教案是任课教师的教学实施方案。任课教师应遵循专业教学计划制订的培养目标,以教学大纲为依据,在熟悉教材、了解学生的基础上,结合教学实践经验,提前编写设计好本门课程每次课的全部教学活动。教案编写说明如下: 1、教学课型表示所授课程的类型,请在理论课、实验课、习题课、实践课、技能课及其它栏内选择打“√”。 2、教学内容:是授课的核心。将授课的内容按章、节或主题,有序的进行设计编排,并标以“*”和“#”符号以表示重点和难点。 3、教学方法和教学手段:教学方法指讲授、讨论、示教、指导等。教学手段指板书、多媒体、网络、模型、标本、挂图、音像等教学工具。 4、讨论、思考题和作业:提出若干问题以供讨论,或作为课后复习时思考,亦可要求学生作为作业来完成,以供考核之用。 5、参考资料:列出参考书籍、有关资料。 6、首次开课的青年教师的教案应由导师审核。 7、鼓励教师在教学内容、教学方法和教学手段等方面进行创新与改革。 8、所有开课课程必须按此标准编写教案。

山东理工大学教案

第一章绪论 本章提要 主要内容: 食品化学的概念、研究内容、研究方法、食品化学的发展历史及最新研究进展和动态、食品加工贮藏过程中主要的化学变化及其对食品品质和安全性的影响以及该课程在食品科学中的地位和意义。 重点: 食品化学的概念、研究内容、研究方法、食品加工贮藏过程中主要的化学变化。 难点: 食品中主要的化学变化及其对食品品质和安全性的影响。 1.1 食品化学相关概念 1 相关概念 食品:经特定方式加工后供人类食用的食物。 食物:可供人类食用的物质原料统称为食物。 营养素:指那些能维持人体正常生长发育和新陈代谢所必需的物质。目前已知的有40~50种人体必需的营养素,从化学性质分为6大类,即蛋白质、脂肪、碳水化合物、矿物质、维生素和水,目前也有人提出将膳食纤维列为第七类营养素。 化学:研究物质组成、性质及其功能和变化的科学,包括分析化学、有机化学、物理与胶体化学、分离化学、普通化学和生物化学等。 2 食品化学 用化学的理论和方法研究食品本质的科学,它通过食品营养价值、安全性和风味特征的研究,阐明食品的组成、性质、结构和功能和食物在贮藏、加工和包装过程中可能发生的化学、物理变化和生物化学变化的科学。 食品化学、微生物学、生物学和工程学是是食品科学的四大支柱学科。 食品化学、食品微生物学和食品生物化学是食品科学与工程专业的三大专业基础课。 3 食品化学的分支 食品成分化学:研究食品中各种化学成分的含量和理化性质等。 食品分析化学:研究食品成分分析和食品分析方法的建立。 食品生物化学:研究食品的生理变化。与普通生物化学不同食品生物化学关注的对象是死的或将要死的生物材料。 食品工艺化学:研究食品在加工贮藏过程中的化学变化。 食品功能化学:研究食物成分对人体的作用。 食品风味化学:研究食品风味的形成、消失及食品风味成分的化学。 1.2 食品化学的性质和范畴 食品化学从化学角度和分子水平研究食品的组成、结构、理化性质、生理和生化性质、营养与功能性质以及它们在食品储藏、加工和运销中的变化,是为改善食品品质、开发食品新资源、革新食品加工工艺和储运技术、科学调整膳食结构、改进食品包装、加强食品质量控制及提高食品原材料深加工和综合利用水平奠定理论基础的发展性学科。 根据研究内容的主要范围,食品化学主要包括食品营养化学、食品色家化学、食品风味

食品化学名词解释及简答题整理

1.水分活度:食品中水分逸出的程度,可以用食品中水的蒸汽压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。 2.吸温等温线:在恒定温度下,食品的水分含量(用每单位干物质质量中水的质量表示)与它的Aw之间的关系图称为吸湿等温线(Moisture sorption isotherms缩写为MSI)。 分子流动性(Mm):是分子的旋转移动和平转移动性的总度量。决定食品Mm值的主要因素是水和食品中占支配地位的非水成分。 3.氨基酸等电点:偶极离子以电中性状态存在时的pH被称为等电点 4. 蛋白质一级结构:指氨基酸通过共价键连接而成的线性序列; 二级结构:氨基酸残基周期性的(有规则的)空间排列; 三级结构:在二级结构进一步折叠成紧密的三维结构。(多肽链的空间排列。) 四级结构:是指含有多于一条多肽链的蛋白质分子的空间排列。 5.蛋白质变性:天然蛋白质分子因环境因素的改变而使其构象发生改变,这一过程称为变性。 6.蛋白质的功能性质:在食品加工、保藏、制备和消费期间影响蛋白质在食品体系中性能的那些蛋白质的物理和化学性质。 7.水合能力:当干蛋白质粉与相对湿度为90-95%的水蒸汽达到平衡时,每克蛋白质所结合的水的克数。 8单糖:指凡不能被水解为更小单位的糖类物质,如葡萄糖、果糖等。 9.低聚糖(寡糖):凡能被水解成为少数,2-6个单糖分子的糖类物质,如蔗糖、乳糖、麦芽糖等。 10.多糖:凡能水解为多个单糖分子的糖类物质,如淀粉、纤维素、半纤维素、果胶等。 11.美拉德反应:凡是羰基与氨基经缩合,聚合生成类黑色素的反应称为羰氨反应。 12.淀粉的糊化:在一定温度下,淀粉粒在水中发生膨胀,形成粘稠的糊状胶体溶液,这一现象称为"淀粉的糊化"。 13.糊化淀粉的老化:已糊化的淀粉溶液,经缓慢冷却或室温下放置,会变成不透明,甚至凝结沉淀。 14改性淀粉:为适应食品加工的需要,将天然淀粉经物理、化学、酶等处理,使淀粉原有的物理性质,如水溶性、粘度、色泽、味道、流动性等发生变化,这样经过处理的淀粉称为变(改)性淀粉。 15同质多晶现象:化学组成相同的物质可以形成不同形态晶体,但融化后生成相同液相的现象叫同质多晶现象,例如由单质碳形成石墨和金刚石两种晶体。 16脂的介晶相(液晶):油脂的液晶态可简单看作油脂处于结晶和熔融之间,也就是液体和固体之间时的状态。此时,分子排列处于有序和无序之间的一种状态,即相互作用力弱的烃链区熔化,而相互作用力大的极性基团区未熔化时的状态。脂类在水中也能形成类似于表面活性物质存在方式的液晶结构。 17油脂的塑性是与油脂的加工和使用特性紧密相关的物理属性。其定义为在一定外力的作用下,表观固体脂肪所具有的抗变性的能力。 18乳化剂:能改善乳浊液各构成相之间的表面张力(界面张力),使之形成均匀、稳定的分散体系的物质。19油脂自动氧化(autoxidation):是活化的含烯底物(如不饱和油脂)与基态氧发生的游离基反应。生成氢过氧化物,氢过氧化物继而分解产生低级醛酮、羧酸。这些物质具有令人不快的气味,从而使油脂发生酸败(蛤败)。 20抗氧化剂:能推迟会自动氧化的物质发生氧化,并能减慢氧化速率的物质。

食品化学

绪论 一、名词解释 1.食品化学:是从化学的角度和分子水平上研究食品成分的结构、理化性质、营养作用、安全性及享受性,以及各种成分在食物生产、食品加工和贮藏期间的变化及其对食品属性影响的科学。 2.营养素:是指能维持人体正常生长发育和新陈代谢所必需的物质。 3.食物或食料:指含有营养素的物料。 4.食品:将食物或食料进行加工以满足人们的营养及感官需要和保障其安全的产品。 水分 一、名词解释 1.离子水合作用:即不具有氢键受体又没有给体的简单无机离子与水相互作用时,仅仅是离子-偶极结合作用。 2.疏水相互作用:水体系中存在多个分离的疏水性基团,疏水基团之间相互聚集,从而使他们雨水的接触面积减小的过程。 3.疏水水合作用:疏水性物质与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强的过程。 4.水分活度:是指食品中水分蒸汽分压与同温度下纯水的饱和蒸汽压之比。定义式为a w=P/P0 5.水分吸着等温线:在恒温条件下,食品的含水量与水分活度aw的关系曲线。 6.单分子层水:和食品中非水物质结合的第一层水。 7.滞后现象:同一种食品按回收法与解析法制作的MSI图形不一致,不相互重叠的现象。 8.状态图:描述不同含水量的食品在不同温度下所处的物理状态(平衡状态和非平衡状态的信息)的图线。 二、问答题 1. 简述食品中水分的存在状态。

食品中的水分一般分为自由水与结合水两种状态。结合水指存在于非水成分附近的、与溶质分子之间通过化学键结合的水;自由水指没有被非水物质化学结合的,而主要通过物理作用而滞留的水。 2.简述食品中结合水和自由水的性质区别。 1)食品中结合水与非水成分缔合强度大,其蒸汽压也比自由水低得多。 2)结合水的冰点比自由水低得多。 3)结合水不能作为溶质的溶剂。 4)自由水能被微生物利用,而结合水不能。 3.简述食品中水分与非水成分的相互作用。 1)水与离子和离子基团的相互作用:离子-偶极的极性结合; 2)水与具有氢键键合能力的中性基团的相互作用:与水通过氢键键合; 3)水与非极性物质的相互作用: 疏水水合作用:疏水基团附近水分子之间氢键键合增强; 疏水相互作用:疏水基团与水的接触面积减小的过程。 4)水与双亲分子的相互作用。 4.论述水分活度与脂质氧化的关系,并分析可能的原因。 1)水分活度与脂质氧化的关系:在水分活度较低时食品中的水与氢过氧化物结 合而使脂质不容易产生氧自由基而导致链氧化结束的过程; 2)当水分活度小于0.35时,脂类氧化反应很迅速; 3)当水分活度为0.35-0.7时,水分活度的增加增大了食物中氧气的溶解,加 速了氧化; 4)当水分活度大于0.7反应物被稀释,脂类氧化反应速率降低。 5.论述冰在食品稳定性中的作用。 1)冷冻对反应速率有两个相反的影响。降低温度使反应变得缓慢,而冷冻所产 生的浓缩效应有时候会导致反应速率的增大。 2)不利:随着食品原料的冻结、细胞内冰晶的形成,将破坏细胞的结构,细胞 壁发生机械损伤,解冻时细胞内的物质会移至细胞外,结合水减少,使一些食物冻结后失去饱满性、膨胀性和脆性,会对食品质量造成不利影响。3)有利:食品冻结后会伴随浓缩效应,这将形成低共熔混合物,水的结构和水

食品化学复习知识点

第二章 一、水的结构 水是唯一的以三种状态存在的物质:气态、液态和固态(冰) (1)气态在气态下,水主要以单个分子的形式存在 (2)液态在液态下,水主要以缔合状态(H2O)n存在,n可变 氢键的特点;键较长且长短不一,键能较小(2-40kj/mol) a.氢键使得水具有特别高的熔点、沸点、表面张力及各种相变热; b.氢键使水分子有序排列,增强了水的介电常数;也使水固体体积增大; c.氢键的动态平衡使得水具有较低的粘度; d.水与其它物质(如糖类、蛋白类)之间形成氢键,会使水的存在形式发生改变,导致固定态、游离态之分。 (3)固态在固体(冰)状态下,水以分子晶体的形式存在;晶格形成的主要形式是水分子之间的规则排列及氢键的形成。由于晶格的不同,冰有11种不同的晶型。 水冷冻时,开始形成冰时的温度低于冰点。把开始出现稳定晶核时的温度称为过冷温度; 结晶温度与水中是否溶解有其它成分有关,溶解成分将使水的结晶温度降低,大多数食品中水的结晶温度在-1.0~-2.0C?。 冻结温度随着冻结量的增加而降低,把水和其溶解物开始共同向固体转化时的温度称为低共熔点,一般食品的低共熔点为-55~-65℃。 水结晶的晶型与冷冻速度有关。 二、食品中的水 1.水与离子、离子基团相互作用

当食品中存在离子或可解离成离子或离子基团的盐类物质时,与水发生静电相互作用,因而可以固定相当数量的水。例如食品中的食盐和水之间的作用 2.水与具有氢键能力的中性基团的相互作用 许多食品成分,如蛋白质、多糖(淀粉或纤维素)、果胶等,其结构中含有大量的极性基团,如羟基、羧基、氨基、羰基等,这些极性基团均可与水分子通过氢键相互结合。因此通常在这些物质的表面总有一定数量的被结合、被相对固定的水。带极性基团的食品分子不但可以通过氢键结合并固定水分子在自己的表面,而且通过静电引力还可吸引一些水分子处于结合水的外围,这些水称为邻近水(尿素例外)。 3.结合水与体相水的主要区别 (1)结合水的量与食品中所含极性物质的量有比较固定的关系,如100g蛋白质大约可结合50g 的水,100g淀粉的持水能力在30~40g;结合水对食品品质和风味有较大的影响,当结合水被强行与食品分离时,食品质量、风味就会改变; (2)蒸汽压比体相水低得多,在一定温度下(100℃)结合水不能从食品中分离出来;(3)结合水不易结冰,由于这种性质使得植物的种子和微生物的孢子得以在很低的温度下保持其生命力;而多汁的组织在冰冻后细胞结构往往被体相水的冰晶所破坏,解冻后组织不同程度的崩溃; (4)结合水不能作为可溶性成分的溶剂,也就是说丧失了溶剂能力; (5)体相水可被微生物所利用,结合水则不能。 食品的含水量,是指其中自由水与结合水的总和。 三、水分活度 1水分活度与微生物之间的关系 水分活度决定微生物在食品中的萌芽、生长速率及死亡率。

食品化学知识点

第一章绪论 1、食品化学:是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、贮存和运销过程中的变化及其对食品品质和食品安全性影响的科学,是为改善食品品质、开发食品新资源、革新食品加工工艺和贮运技术、科学调整膳食结构、改进食品包装、加强食品质量控制及提高食品原料加工和综合利用水平奠定理论基础的学科。 2、食品化学的研究范畴 第二章水 3、在温差相等的情况下,为什么生物组织的冷冻速率比解冻速率更快? 4、净结构破坏效应:一些离子具有净结构破坏效应(net structure-breaking effect),如:K+、Rb+、Cs+、NH4+、Cl- 、I- 、Br- 、NO3- 、BrO3- 、IO3-、ClO4- 等。这些大的正离子和负离子能阻碍水形成网状结构,这类盐溶液的流动性比纯水更大。 净结构形成效应:另外一些离子具有净结构形成效应(net structure-forming effect),这些离子大多是电场强度大、离子半径小的离子或多价离子。它们有助于形成网状结构,因此这类离子的水溶液的流动性比纯水的小,如:Li+、Na+、Ca2+、Ba2+、Mg2+、Al3+、F-、OH-等。 从水的正常结构来看,所有离子对水的结构都起到破坏作用,因为它们都能阻止水在0℃下结冰。

5、水分活度 目前一般采用水分活度表示水与食品成分之间的结合程度。 aw=f/f0 其中:f为溶剂逸度(溶剂从溶液中逸出的趋势);f0为纯溶剂逸度。 相对蒸气压(Relative Vapor Pressure,RVP)是p/p0的另一名称。RVP与产品环境的平衡相对湿度(Equilibrium Relative Humidity,ERH)有关,如下: RVP= p/p0=ERH/100 注意:1)RVP是样品的内在性质,而ERH是当样品中的水蒸气平衡时的大气性质; 2)仅当样品与环境达到平衡时,方程的关系才成立。 6、水分活度与温度的关系: 水分活度与温度的函数可用克劳修斯-克拉贝龙方程来表示: dlnaw/d(1/T)=-ΔH/R lnaw=-ΔH/RT+C 图:马铃薯淀粉的水分活度和温度的克劳修斯-克拉贝龙关系 7、食品在冰点上下水分活度的比较: ①在冰点以上,食品的水分活度是食品组成和温度的函数,并且主要与食品的组成有关;而在冰点以下,水分活度仅与食品的温度有关。 ②就食品而言,冰点以上和冰点以下的水分活度的意义不一样。如在-15℃、水分活度为0.80时微生物不会生长且化学反应缓慢,然而在20℃、水分活度为0.80 时,化学反应快速进行且微生物能较快地生长。 ③不能用食品在冰点以下的水分活度来预测食品在冰点以上的水分活度,同样也不能用食品冰点以上的水分活度来预测食品冰点以下的水分活度。 8、水分吸附等温线 在恒定温度下,用来联系食品中的水分含量(以每单位干物质中的含水量表示)与其水分活度的图,称为水分吸附等温线曲线(moisture sorption isotherm,MSI)。 意义: (1)测定什么样的水分含量能够抑制微生物的生长; (2)预测食品的化学和物理稳定性与水分含量的关系; (3)了解浓缩和干燥过程中样品脱水的难易程度与相对蒸气压(RVP)的关系; (4)配制混合食品必须避免水分在配料之间的转移; (5)对于要求脱水的产品的干燥过程、工艺、货架期和包装要求都有很重要的作用。 9、MSI图形形态

(整理)食品化学知识点1

名词解释 单糖构型:通常所谓的单糖构型是指分子中离羰基碳最远的那个手性碳原子的构型。如果在投影式中此碳原子上的—OH具有与D(+)-甘油醛C2—OH相同的取向,则称D型糖,反之则为L型糖 α异头物β异头物:异头碳的羟基与最末的手性碳原子的羟基具有相同取向的异构体称α异头物,具有相反取向的称β异头物 转化糖:蔗糖水溶液在氢离子或转化酶的作用下水解为等量的葡萄糖与果糖的混合物,称为转化糖, 轮纹:所有的淀粉颗粒显示出一个裂口,称为淀粉的脐点。它是成核中心,淀粉颗粒围绕着脐点生长。大多数淀粉颗粒在中心脐点的周围显示多少有点独特的层状结构,是淀粉的生长环,称为轮纹 膨润与糊化:β-淀粉在水中经加热后,一部分胶束被溶解而形成空隙,于是水分子浸入内部,与余下的部分淀粉分子进行结合,胶束逐渐被溶解,空隙逐渐扩大,淀粉粒因吸水,体积膨胀数十倍,生淀粉的胶束即行消失,这种现象称为膨润现象。继续加热胶束则全部崩溃,淀粉分子形成单分子,并为水包围,而成为溶液状态,由于淀粉分子是链状或分枝状,彼此牵扯,结果形成具有粘性的糊状溶液。这种现象称为糊化。 必需脂肪酸:人体及哺乳动物能制造多种脂肪酸,但不能向脂肪酸引入超过Δ9的双键,因而不能合成亚油酸和亚麻酸。因为这两种脂肪酸对人体功能是必不可少的,但必须由膳食提供,因此被称为必需

脂肪 油脂的烟点、闪点和着火点:油脂的烟点、闪点和着火点是油脂在接触空气加热时的热稳定性指标。烟点是指在不通风的情况下观察到试样发烟时的温度。闪点是试样挥发的物质能被点燃但不能维持燃烧的温度。着火点是试样挥发的物质能被点燃并能维持燃烧不少于5 s 的温度。 同质多晶现象:化学组成相同的物质,可以有不同的结晶结构,但融化后生成相同的液相(如石墨和金刚石),这种现象称为同质多晶现象。 油脂的氢化:由于天然来源的固体脂很有限,可采用改性的办法将液体油转变为固体或半固体脂。酰基甘油上不饱和脂肪酸的双键在高温和Ni、Pt等的催化作用下,与氢气发生加成反应,不饱和度降低,从而把在室温下呈液态的油变成固态的脂,这种过程称为油脂的氢化蛋白质熔化温度:当蛋白质溶液被逐渐地加热并超过临界温度时,蛋白质将发生从天然状态至变性状态的剧烈转变,转变中点的温度被称为熔化温度Tm或变性温度Td,此时天然和变性状态蛋白质的浓度之比为l。 盐析效应:当盐浓度更高时,由于离子的水化作用争夺了水,导致蛋白质“脱水”,从而降低其溶解度,这叫做盐析效应。 蛋白质胶凝作用:将发生变性的无规聚集反应和蛋白质—蛋白质的相互作用大于蛋白质—溶剂的相互作用引起的聚集反应,定义为凝结作用。凝结反应可形成粗糙的凝块。变性的蛋白质分子聚集并形成有

食品化学

食品化学 ①根据化学结构和化学性质,碳水化合物是属于一类多羟基醛或酮的化合物。 ②糖苷的溶解性能与配体有很大关系。 ③淀粉溶液冻结时形成两相体系,一相为结晶水,另一相是玻璃态。 ④一次摄入大量苦杏仁易引起中毒,是由于苦杏仁苷在体内彻底水解产生氢氰酸,导致中毒。 ⑤多糖分子在溶液中的形状是围绕糖基连接键振动的结果,一般呈无序的无规线团状。 ⑥喷雾或冷冻干燥脱水食品中的碳水化合物随着脱水的进行,使糖-水的相互作用转变成糖-风味 剂的相互作用。 ⑦环糊精由于内部呈非极性环境,能有效地截留非极性的风味成分和其他小分子化合物。 ⑧碳水化合物在非酶褐变过程中除了产生深颜色类黑精色素外,还产生了多种挥发性物质。 ⑨褐变产物除了能使食品产生风味外,它本身可能具有特殊的风味或者增强其他的风味,具有这种 双重作用的焦糖化产物是麦芽酚和乙基麦芽酚。 ⑩糖醇的甜度除了木糖醇的甜度和蔗糖相近外,其他糖醇的甜度均比蔗糖低。 11甲壳低聚糖是一类由N-乙酰-(D)-氨基葡萄糖或D-氨基葡萄糖通过β-1,4 糖苷键连接起来的低聚合度的水溶性氨基葡聚糖。 12卡拉胶形成的凝胶是热可逆的,即加热凝结融化成溶液,溶液放冷时,又形成凝胶。 13硒化卡拉胶是由亚硒酸钠与卡拉胶反应制得。 14褐藻胶是由糖醛酸结合成的大分子线性聚合物,大多是以钠盐形式存在。 15儿茶素按其结构,至少包括有A、B、C三个核,其母核是α-苯基苯并吡喃衍生物。 16食品中丙烯酰胺主要来源于高温加工过程。 17低聚木糖是由2~7个木糖以β(1→4)糖苷键结合而成。 18马铃薯淀粉在水中加热可形成非常黏的透明溶液。 19淀粉糊化的本质就是淀粉微观结构从有序转变成无序 20N-糖苷在水中不稳定,通过一系列复杂反应产生有色物质,是引起美拉德褐变的主要原因。 21脂肪酸是指天然脂肪水解得到的脂肪族一元羧酸。 22天然脂肪中主要是以三酰基甘油形式存在。 23乳脂的主要脂肪酸是棕榈酸、油酸和硬脂酸。 24花生油和玉米油属于油酸一亚油酸酯。 25海产动物油脂中含大量长链多不饱和脂肪酸,富含维生素A和维生素D。 26种子油脂一般来说不饱和脂肪酸优先占据甘油酯Sn-2位置。 27人造奶油要有良好的涂布性和口感,这就要求人造奶油的晶型为细腻的β’型。 28在动物体内脂肪氧化酶选择性的氧化花生四烯酸,产生前列腺素、凝血素等活性物质。 29脂类的氧化热聚合是在高温下,甘油酯分子在双键的α-碳上均裂产生自由基。 30酶促酯交换是利用脂肪酶作催化剂进行的酯交换。 31自然界中的油脂多为混合三酰基甘油酯,构型为L-型。 32月桂酸酯来源于棕榈植物,其月桂酸含量高,不饱和脂肪酸含量少,熔点较低。 豆油、小麦胚芽油、亚麻籽油和紫苏油属于亚麻酸酯类油脂。 33动物脂肪含有相当多的全饱和的三酰甘油,所以熔点较高。 34精炼后的油脂其烟点一般高于240℃。 35α 型油脂中脂肪酸侧链为无序排列,它的熔点低,密度小,不稳定。 36β型的脂肪酸排列得更有序,是按同一方向排列的,它的熔点高,密度大,稳定性好。 37天然油脂中,大豆油、花生油、橄榄油、椰子油、红花油、可可脂和猪油等容易形成β型晶体38棉子油、棕榈油、菜籽油、乳脂和牛脂易形成稳定的β’型晶体。

食品化学名词解释

食品化学名词解释 1、食品化学:一门将基础学科和工程学的理论用于研究食品基本的物理、化学和生物化学性质以及食品加工原理的学问,是一门主要涉及细菌学、化学、生物学和工程学的综合性学科。它是一门涉及到食品的特性及其变化、保藏和改性原理的科学。 2、结合水:是一个样品在某一个温度和较低的相对湿度下的平衡水分含量 3、疏水水合:热力学上,水与非极性物质,如烃类、稀有气体以及脂肪酸、氨基酸和蛋白质的非极性基团相混合无疑是一个不利的过程(ΔG >0)。ΔG= ΔH- T ΔS ΔG为正是因为ΔS是负的。熵的减少是由于在这些不相容的非极性物质的邻近处形成了特殊的结构。此过程被称为疏水水合。 4、疏水缔合(疏水相互作用):当两个分离的非极性基团存在时,不相容的水环境会促使它们缔合,从而减小了水-非极性界面,这是一个热力学上有利的过程(ΔG<0)。此过程是疏水水合的部分逆转,被称为“疏水相互作用”。R(水合的)+R(水合的)→R2(合的)+H 2O 5、水分活度:AW=f/f0 f:溶剂(水)的逸度。逸度:溶剂从溶液逃脱的趋势f0 :纯溶剂的逸度。 6、相对蒸汽压”(RVP)p/p0 是测定项目,有时不等于A w,因此,使用p/p0 项比A w 更为准确。在少数情况下,由于溶质特殊效应使RVP成为食品稳定和安全的不良指标。 7、吸着等温线:在恒定温度下,食品水分含量(每单位质量干物质中水的质量)对P/P0作图得到水分吸着等温线(moisture sorption isotherms,缩写为MSI)。 8、滞后现象:滞后现象就是样品的吸湿等温线和解吸等温线不完全重叠的现象 9、玻璃化温度(Tg):非晶态食品从玻璃态到橡胶态的转变称玻璃化转变,此时的温度称玻璃化温度 10、美拉德反应(羰氨反应):食品在油炸、焙烤、烘焙等加工或贮藏过程中,还原糖(主要是葡萄糖)同游离氨基酸或蛋白质分子中氨基酸残基的游离氨基发生羰氨反应,这种反应被称为美拉德反应。 11、糊化:当β-淀粉在水中加热到一定温度时,淀粉发生膨胀,体积变大,结晶区消失,双折射消失,原来的悬浮液变成粘稠胶体溶液的过程。

食品化学重点复习资料(2)

2 论述水分活度与温度的关系。 ⑴当温度处于冰点以上时,水分活度与温度的关系可以用下式来表示: 1ln w H a R T κ?=- 式中T 为绝对温度;R 为气体常数;△H 为样品中水分的等量净吸着热;κ的意义表示为: p p κ-=样品的绝对温度纯水的蒸汽压为时的绝对温度纯水的蒸汽压为时的绝对温度 若以lnαW 对1/T 作图,可以发现其应该是一条直线,即水分含量一定时,在一定的温度范围内,αW 随着温度提高而增加。 ⑵当温度处于冰点以下时,水分活度与温度的关系应用下式来表示: ice ff w 0(SCW)0(SCW)p p p p a == 式中P ff 表示未完全冷冻的食品中水的蒸汽分压;P 0(SCW)表示过冷的纯水蒸汽压;P ice 表示纯冰的蒸汽压。在冰点温度以下的αW 值都是相同的。 4 论述冰在食品稳定性中的作用。 冷冻是保藏大多数食品最理想的方法,其作用主要在于低温,而是因为形成冰。食品冻结后会伴随浓缩效应,这将引起非结冰相的pH 、可滴定酸、离子强度、黏度、冰点等发生明显的变化。此外,还将形成低共熔混合物,溶液中有氧和二氧化碳逸出,水的结构和水与溶质间的相互作用也剧烈改变,同时大分子更加紧密地聚集在一起,使之相互作用的可能性增大。冷冻对反应速率有两个相反的影响,即降低温度使反应变得缓慢,而冷冻所产生的浓缩效应有时候会导致反应速率的增大。随着食品原料的冻结、细胞内冰晶的形成,将破坏细胞的结构,细胞壁发生机械损伤,解冻时细胞内的物质会移至细胞外,致使食品汁液流失,结合水减少,使一些食物冻结后失去饱满性、膨胀性和脆性,会对食品质量造成不利影响。采取速冻、添加抗冷冻剂等方法可降低食品在冻结中的不利影响,更有利于冻结食品保持原有的色、香、味和品质。 1 膳食纤维的理化特性。 (1)溶解性与黏性 膳食纤维分子结构越规则有序,支链越少,成键键合力越强,分子越稳定,其溶解性就越差,反之,溶解性就越好。膳食纤维的黏性和胶凝性也是膳食纤维在胃肠道发挥生理作用的重要原因。 (2)具有很高的持水性 膳食纤维的化学结构中含有许多亲水基团,具有良好的持水性,使其具有吸水功能与预防肠道疾病的作用,而且水溶性膳食纤维持水性高于水不溶性膳食纤维的持水性。 (3)对有机化合物的吸附作用 膳食纤维表面带有很多活性基团而具有吸附肠道中胆汁酸、胆固醇、变异原等有机化合物的功能,从而影响体内胆固醇和胆汁酸类物质的代谢,抑制人体对它们的吸收,并促进它们迅速排出体外。 (4)对阳离子的结合和交换作用 膳食纤维的一部分糖单位具有糖醛酸羧基、羟基和氨基等侧链活性基团。通过氢键作用结合了大量的水,呈现弱酸性阳离子交换树脂的作用和溶解亲水性物质的作用。 (5)改变肠道系统中微生物群系组成 膳食纤维中非淀粉多糖经过食道到达小肠后,由于它不被人体消化酶分解吸收而直接进入大肠,膳食纤在肠内发酵,会繁殖相当多的有益菌,并诱导产生大量的好氧菌群,代替了肠道内存在的厌氧菌群,从而减少厌氧菌群的致癌性和致癌概率。 (6)容积作用 膳食纤维吸水后产生膨胀,体积增大,食用后膳食纤维会对肠胃道产生容积作用而易引起饱腹感。 5 膳食纤维的生理功能。 (1)营养功能 可溶性膳食纤维可增加食物在肠道中的滞留时间,延缓胃排空,减少血液胆固醇水平,减少心脏病、结肠癌发生。不溶性膳食纤维可促进肠道产生机械蠕动,降低食物在肠道中的滞留时间,增加粪便的体积和含水量、防止便秘。 (2)预防肥胖症和肠道疾病 富含膳食纤维的食物易于产生饱腹感而抑制进食量,对肥胖症有较好的调节功能。此外,可降低肠道中消化酶的浓度而降低对过量能量物质的消化吸收;与肠道内致癌物结合后随粪便排出;加快肠腔内毒物的通过,减少致癌物与组织接触的时间。 (3)预防心血管疾病 膳食纤维通过降低胆酸及其盐类的合成与吸收,加速了胆固醇的分解代谢,从而阻

食品化学复习

① 什么是食品化学?它的研究内容是什么? 1. 食品的化学组成及理化性质 2. 是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、储藏和运销中的变化及其对食品品质和安全性影响的学科。 ② 试述食品中主要的化学变化及对食品品质和安全性的影响。 ③ 你希望从这门学科中学到什么以及对这门课程的教学有何建议? 第二章 1. 名词解释:水分活度、水分吸附等温线、结合水、疏水水合作用、疏水相互作用、笼形水合物、滞后现象。 水分活度(water activity)是指食品中水的蒸汽压与该温度下纯水的饱和蒸汽压的比值,可用下式表示: o p p Aw 水分吸附等温线 (Moisture sorption isotherms,MSI)在恒定温度下,使食品吸湿或干燥,所得到的食品水分含量(每克干物质中水的质量)与Aw 的关系曲线。

疏水水合(Hydrophobic hydration):向水中添加疏水物质时,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,使得熵减小,此过程称为疏水水合。 疏水相互作用( Hydrophobic interaction):当水与非极性基团接触时,为减少水与非极性实体的界面面积,疏水基团之间进行缔合,这种作用称为疏水相互作用。 笼形水合物(Clathrate hydrates):是象冰一样的包含化合物,水为“宿主”,它们靠氢键键合形成象笼一样的结构,通过物理方式将非极性物质截留在笼内,被截留的物质称为“客体”。一般“宿主”由20-74个水分子组成,较典型的客体有低分子量烃,稀有气体,卤代烃等。 滞后现象(Hysteresis):回吸与解吸所得的水分吸附等温线不重叠现象即为“滞后现象”(Hysteresis)。 2. 请至少从4个方面分析Aw与食品稳定性的关系。 1.除脂肪氧化在Aw<0.3时有较高反应外,其它反应均是Aw愈小反应速度愈小。也就是说,对多数食品而言,低Aw有利于食品的稳定性。 2.Aw: 0-0.33范围内,水与脂类氧化生成的氢过氧化物以氢键结合,保护氢过氧化物的分解,阻止氧化进行。水与金属离子水合,降低了催化性。随 A w↑,反应速度↓过分干燥,食品稳定性下降 3.Aw:0.33-0.73范围内,水中溶解氧增加,大分子物质肿胀,活性位点暴露加速脂类氧化,催化剂和氧的流动性增加,随Aw↑,反应速度↑ 4.Aw >0.8随Aw↑,反应速度增加很缓慢,原因 : 催化剂和反应物被稀释,阻滞氧化

食品化学简答题

水分 1 简要概括食品中的水分存在状态。 食品中的水分有着多种存在状态,一般可将食品中的水分分为自由水(或称游离水、体相水)和结合水(或称束缚水、固定水)。其中,结合水又可根据被结合的牢固程度,可细分为化合水、邻近水、多层水;自由水可根据这部分水在食品中的物理作用方式也可细分为滞化水、毛细管水、自由流动水。但强调的是上述对食品中的水分划分只是相对的。 2简述食品中结合水和自由水的性质区别 食品中结合水和自由水的性质区别主要在于以下几个方面:⑴食品中结合水与非水成分缔合强度大,其蒸汽压也比自由水低得很多,随着食品中非水成分的不同,结合水的量也不同,要想将结合水从食品中除去,需要的能量比自由水高得多,且如果强行将结合水从食品中除去,食品的风味、质构等性质也将发生不可逆的改变;⑵结合水的冰点比自由水低得多,这也是植物的种子及微生物孢子由于几乎不含自由水,可在较低温度生存的原因之一;而多汁的果蔬,由于自由水较多,冰点相对较高,且易结冰破坏其组织;⑶结合水不能作为溶质的溶剂;⑷自由水能被微生物所利用,结合水则不能,所以自由水较多的食品容易腐败。 3比较冰点以上和冰点以下温度的αW差异。 在比较冰点以上和冰点以下温度的αW时,应注意以下三点:⑴在冰点温度以上,αW 是样品成分和温度的函数,成分是影响αW的主要因素。但在冰点温度以下时,αW与样品的成分无关,只取决于温度,也就是说在有冰相存在时,αW不受体系中所含溶质种类和比例的影响,因此不能根据αW值来准确地预测在冰点以下温度时的体系中溶质的种类及其含量对体系变化所产生的影响。所以,在低于冰点温度时用αW值作为食品体系中可能发生的物理化学和生理变化的指标,远不如在高于冰点温度时更有应用价值;⑵食品冰点温度以上和冰点温度以下时的αW值的大小对食品稳定性的影响是不同的;⑶低于食品冰点温度时的αW不能用来预测冰点温度以上的同一种食品的αW。 4MSI在食品工业上的意义 MSI即水分吸着等温线,其含义为在恒温条件下,食品的含水量(每单位干物质质量中水的质量表示)与αW的关系曲线。它在食品工业上的意义在于:⑴在浓缩和干燥过程中样品脱水的难易程度与αW有关;⑵配制混合食品必须避免水分在配料之间的转移;⑶测定包装材料的阻湿性的必要性;⑷测定什么样的水分含量能够抑制微生物的生长;⑸预测食品的化学和物理稳定性与水分的含量关系。 5滞后现象产生的主要原因。 MSI的制作有两种方法,即采用回吸或解吸的方法绘制的MSI,同一食品按这两种方法制作的MSI图形并不一致,不互相重叠,这种现象称为滞后现象。产生滞后现象的原因主要有:⑴解吸过程中一些水分与非水溶液成分作用而无法放出水分;⑵不规则形状产生毛细管现象的部位,欲填满或抽空水分需不同的蒸汽压;⑶解吸作用时,因组织改变,当再吸水时无法紧密结合水,由此可导致回吸相同水分含量时处于较高的αW;⑷温度、解吸的速度和程度及食品类型等都影响滞后环的形状。 6 简要说明αW比水分含量能更好的反映食品的稳定性的原因。αW比用水分含量能更好地反映食品的稳定性,究其原因与下列因素有关:(1)αW对微生物生长有更为密切的关系;(2)αW与引起食品品质下

(完整版)食品化学名词解释

食品化学名词解释 离子水合作用:在水中添加可解离的溶质,会使纯水通过氢键键合形成的四面体排列的正常结构遭到破坏,对于不具有氢键受体和给体的简单无机离子,它们与水的相互作用仅仅是离子-偶极的极性结合。这种作用通常被称为离子水合作用。 疏水水合作用:向水中加入疏水性物质,如烃、脂肪酸等,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,处于这种状态的水与纯水结构相似,甚至比纯水的结构更为有序,使得熵下降,此过程被称为疏水水合作用。 疏水相互作用:如果在水体系中存在多个分离的疏水性基团,那么疏水基团之间相互聚集,从而使它们与水的接触面积减小,此过程被称为疏水相互作用。 笼形水合物:指的是水通过氢键键合形成像笼一样的结构,通过物理作用方式将非极性物质截留在笼中。通常被截留的物质称为“客体”,而水称为“宿主”。 结合水:通常是指存在于溶质或其它非水成分附近的、与溶质分子之间通过化学键结合的那部分水。 化合水:是指那些结合最牢固的、构成非水物质组成的那些水。 状态图:就是描述不同含水量的食品在不同温度下所处的物理状态,它包括了平衡状态和非平衡状态的信息。 玻璃化转变温度:对于低水分食品,其玻璃化转变温度一般大于0℃,称为Tg;对于高水分或中等水分食品,除了极小的食品,降温速率不可能达到很高,因此一般不能实现完全玻璃化,此时玻璃化转变温度指的是最大冻结浓缩溶液发生玻璃化转变时的温度,定义为Tg′。 自由水:又称游离水或体相水,是指那些没有被非水物质化学结合的水,主要是通过一些物理作用而滞留的水。 自由流动水:指的是动物的血浆、植物的导管和细胞内液泡中的水,由于它可以自由流动,所以被称为自由流动水。 水分活度:水分活度能反应水与各种非水成分缔合的强度,其定义可用下式表示: 其中,P为某种食品在密闭容器中达到平衡状态时的水蒸汽分压;P0表示在同一温度下纯水的饱和蒸汽压;ERH是食品样品周围的空气平衡相对湿度。 水分吸着等温线:在恒温条件下,食品的含水量(用每单位干物质质量中水的质量表示)与αW的关系曲线。 解吸等温线:对于高水分食品,通过测定脱水过程中水分含量与αW的关系而得到的吸着等温线,称为解吸等温线。

烹饪化学优选教案.docx

引入新课 :绪论 一、烹饪化学的概念 烹饪是利用传统手工操作对食品进行加工的方法。 烹饪化学是食品化学在烹饪中的应用和发展,是用化学的理论及方法研究烹饪产品(各种菜肴、面点)本质的科学,它构成了烹饪学科的基础。 烹饪化学研究烹饪原料及其在烹制加工中的化学现象与食品品质的关系。 二、烹饪化学研究的内容 1、食品的物质组成、理化性质及与菜肴质量的关系 水分、蛋白质、脂肪、糖类、无机盐和维生素 2、在烹饪加工中食品的物质成分的变化、利用及作用规律 烹饪原料从采摘、清洗、初加工到烹制成菜,成分的变化是复杂多样的,其色、香、味在加工前后有明显的不同,而成分的损失程度也不相同。 (1)蛋白质的变化 (2)糖类的变化 (3)脂肪的变化

(4)无机盐的变化 (5)维生素的变化 (6)色、香、味的变化 三、学习烹饪化学的目的 找到菜肴在加工过程中变化的原因及本质。 对烹饪工作者来说,菜肴质量的好坏,不仅与操作者的烹饪技艺和经验有关,还与食品的加工、储藏等技术密切相关。 四、学习烹饪化学的方法 (1)掌握相关的基本概念及各类化合物的理化性质 (2)注重理论联系实际,善于开动脑筋,能够通过观察来分析发现菜肴在烹饪过程中色、香、味的变化规律,力求提高烹饪工作者的独立分析和解决实际问题的能力。 (3)增强烹饪工作者的创新意识,摆脱传统的完全依靠师傅教徒弟的教学模式,激发烹饪工作者的好奇心,为传统菜肴的创新及发展提供一个必要的科学依据。 课堂小结 : 布置作业:习题册

复习旧课 1、烹饪化学的概念 2、烹饪化学研究的内容 引入新课 第一章水 §1—1 水的基础知识 一切生物都离不开水,没有水就没有生命,水是生物体最重要 的营养素之一。 一、水对生物体的生理功能 1、维持体温的恒定 2、体内化学作用的介质 3、体内物质的运输载体 4、体内摩擦的润滑剂 二、水的重要性质 1、密度 水在 4 度时密度最大,但水结冰的时候,其体积却膨胀了约9%。因此,植物性食物不适宜冷冻保藏。 2、沸点

《食品微生物》教案

一、《食品微生物》教学内容 (一)目的和任务 1.教学的目的 学生在学习了解有关食品微生物基本理论知识(微生物的定义、微生物的分类、微生物的形态结构、微生物的生理生化特性等)的基础上,能熟练掌握微生物的显微镜观察技术、微生物培养基的制作技术和微生物的接种操作技术,进一步掌握利用微生物进行常见发酵食品生产的技术,并能有效进行发酵过程中的质量控制。 2.教学的要求 1)标准的校内小型生产型实训室,面积200㎡,并配备相应的配套设施设备。其中,包括:光学显微镜、不锈钢锅、水浴锅、超净工作台、杀菌锅、恒温培养箱、玻璃器皿(试管、三角瓶、培养皿、移液管等)。 2)配备一名实训指导教师。 3)相关教学软件、影像及图片资料。 4)铅笔、彩色染料笔、图画纸、坐标纸等 (二)实训所需设备设施及实验地点 1、校内生产型实训环境 标准的校内小型生产型实训室,面积200㎡,并配备相应的配套设施设备。其中,包括:光学显微镜、不锈钢锅、水浴锅、超净工作台、杀菌锅、恒温培养箱、玻璃器皿(试管、三角瓶、培养皿、移液管等)。 生产设备先进,配套良好,使用效率高,效果好。 2、校外实训基地: 千禾食品有限公司、苏东坡酒业有限公司、吉香居食品有限公司、蒙牛乳业眉山公司等。 (三)教学项目及学时分配 1

2 (四)考核方式及成绩评定 1、考核实行过程考核和结果考核相结合。其中过程考核占60%,包括平时表现和任务考核;结果考核占40%,主要是期末综合技能考核。 (五)教材及参考资料 1唐艳红,王海伟.《食品微生物》. 2.无锡轻工业学院编写:调味品酿造加工技术 二、附录

(一)《食品微生物》理论教学教案 1、《微生物概论》

食品化学知识点总结

食品化学知识点总结 1、食品剖析的目的包含两方面。一方面是确切了解营养成分,如维生素,蛋白质,氨基酸和糖类;另一方面是对食品中有害成分进行监测,如黄曲霉毒素,农药残余,多核芳烃及各类添加剂等。 2、食品化学是研究食品的组成、性质以及食品在加工、储藏过程中发生的化学变化的一门科学。 3、食品分析与检测的任务:研究食品组成、性质以及食品在贮藏、加工、包装及运销过程中可能发生的化学和物理变化,科学认识食品中各种成分及其变化对人类膳食营养、食品安全性及食品其他质量属性的影响。 4、生物体六大营养物质:蛋白质、脂类、碳水化合物、无机盐、维生素、水 5、蛋白质:催化作用,调节胜利技能,氧的运输,肌肉收缩,支架作用,免疫作用,遗传物质,调节体液和维持酸碱平衡. 蛋白质种类:动物蛋白和植物蛋白。 6、脂肪:提供高浓度的热能和必不的热能储备. 脂类分为两大类,即油脂和类脂油脂:即甘油三脂或称之为脂酰甘油,是油和脂肪的统称。一般把常温下是液体的称作油,而把常温下是固体的称作脂肪类脂:包括磷脂,糖脂和胆固醇三大类。 7、碳水化合物在体内消化吸收较其他产能营养素迅速且解酵。糖也被称为碳水化合物糖类可以分为四大类:单糖(葡萄糖等),低聚糖(蔗糖、乳糖、麦芽糖等等),多糖(淀粉、纤维素等)以及糖化合物(糖蛋白等等)。 8、矿物质又称无机盐.是集体的重要组成部分.维持细胞渗透压与集体的酸碱平衡,保持神经和肌肉的兴奋性,具有特殊生理功能和营养价值. 9、维生素维持人体正常分理功能所必须的有机营养素.人体需要量少但是也不可缺少 . 10、维生素A:防止夜盲症和视力减退,有抗呼吸系统感染作用;有助于免疫系统功能正常;促进发育,强壮骨骼,维护皮肤、头发、牙齿、牙床的健康;有助于对肺气肿、甲状腺机能亢进症的治疗。 11、维生素B1:促进成长;帮助消化。维生素B2:促进发育和细胞的再生;增进视力。维生素B5:有助于伤口痊愈;可制造抗体抵抗传染病。维生素B6:能适当的消化、吸收蛋白质和脂肪。维生素C:具有抗癌作用,预防坏血病。维生素D:提高肌体对钙、磷的吸收;促进生长和骨骼钙化。维生素E:有效的抗衰老营养素;提高肌体免疫力;预防心血管病。 第一章碳水化合物 1、碳水化合物的功能:①供能及节约蛋白质②构成体质③维持神经系统的功能与解毒④有益肠道功能⑤食品加工中重要原、辅材料⑥抗生酮作用 一、单糖、双糖及糖醇 2、单糖:凡不能被水解为更小分子的糖(核糖、葡萄糖)①葡萄糖:来源:淀粉、蔗糖、乳糖等的水解;作用:作为燃料及制备一些重要化合物;脑细胞的唯一能量来源②果糖:来源:淀粉和蔗糖分解、蜂蜜及水果;特点:代谢不受胰岛素控制;通常是糖类中最甜的物质,食品工业中重要的甜味物质。不良反应:大量食用而出现恶心、上腹部疼痛,以及不同血管区的血管扩张现象。 3、双糖:凡能被水解成少数(2-10个)单糖分子的糖。如:蔗糖葡萄糖 + 果糖①蔗糖:来源:植物的根、茎、叶、花、果实和种子内;作用:食品工业中重要的含能甜味物质;与糖尿病、龋齿、动脉硬化等有关②异构蔗糖(异麦芽酮糖)来源:蜂蜜、蔗汁中微量存在;特点:食品工业中重要的含能甜味物质;耐酸性强、甜味约为蔗糖的42%,不致龋。③麦芽糖:来源:淀粉水解、发芽的种子(麦芽);特点:食品工业中重要的糖质原料,温和的甜味剂,甜度约为蔗糖的l/2。④.乳糖:来源:哺乳动物的乳汁;特点:牛乳中的还原性二糖;发酵过程中转化为乳酸;在乳糖酶作用下水解;乳糖不耐症。功能:是婴儿主要食用的碳水化合物。构成乳糖的D—半乳糖除作为乳糖的构成成分外,还参与构成许多重要的糖脂(如脑苷脂、神经节苷酯)和精蛋白,细胞膜中也有含半乳糖的多糖,故在营养上仍有一定意义。 4、糖醇:①山梨糖醇(又称葡萄糖醇):来源:广泛存在于植物中,海藻和果实类如苹果、梨、葡萄等中多有存在;工业上由葡萄糖氢化制得。特点:甜度为蔗糖一样;代谢不受胰

相关文档
最新文档