平面向量的公式的知识点总结

平面向量的公式的知识点总结
平面向量的公式的知识点总结

平面向量的公式的知识点总结

定比分点

定比分点公式(向量P1P=λ?向量)

设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数λ,使向量P1P=λ?向量PP2,λ叫做点P分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式

三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式

在△ABC中,若GA +GB +GC=O,则G为△ABC的重心向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

向量垂直的充要条件

a⊥b的充要条件是a?b=0。

a⊥b的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.

设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

3、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)?b=λ(a?b)=(a?λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos 〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a?b=x?x'+y?y'。

向量的数量积的运算律

a?b=b?a(交换律);

(λa)?b=λ(a?b)(关于数乘法的结合律);

(a+b)?c=a?c+b?c(分配律);

向量的数量积的性质

a?a=|a|的平方。

a⊥b〈=〉a?b=0。

|a?b|≤|a|?|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。

2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出 b=c。

3、|a?b|≠|a|?|b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

5、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 当且仅当a、b反向时,左边取等号;

② 当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 当且仅当a、b同向时,左边取等号;

② 当且仅当a、b反向时,右边取等号。

平面向量知识点总结(精华)

必修4 平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别. 向量常用有向线段来表示 . 注意:不能说向量就是有向线段,为什么?提示:向量可以平移. 举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0) 2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位 向量(与u A uu B r共线uuur 的单位向量是u A u B ur ); | AB| 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a r、 b r叫做平行向量,记作:a r∥b r, 规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有r0); ④三点A、B、C 共线u A uu B r、u A u C ur共线. 6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r. 举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相 等的充要条件是它们的起点相同,终点相同 . (3)若u A u B ur u D u C u r,则ABCD是平行四边形 . (4)若ABCD是平行四边形,则u A uu B r u D u C uur. (5)若a r b r,b r c r,则a r c r. (6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5) 二、向量的表示方法

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

高等数学重点总结

高等数学 主要内容有:二重积分、三重积分、曲线积分和曲面积分、无穷级数、常微分方程等。 第十章重积分 教学目标:理解二重积分、三重积分的概念,了解重积分的性质。掌握二重积分的计算方法(直角坐标、极坐标),了解三重积分的计算方法(直角坐标、柱面坐标、球面坐标)。会用重积分求解一些几何量(如体积、曲面面积等)。 重点:二重积分、三重积分的概念和思想,二重积分的计算方法(直角坐标、极坐标),三重积分的计算。 难点:二重积分的计算方法,三重积分的计算方法, CH10重积分 10.1二重积分概念及性质 10.2二重积分计算方法 10.3三重积分的概念及计算 10.4重积分应用 第十一章曲线积分与曲面积分 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。会计算两类曲线积分。掌握格林(Green)公式,会使用平面曲线积分与路径无关的条件。了解两类曲面积分的概念及高斯(Guass)、斯托克斯(Stokes)公式并会计算两类曲面积分。 重点:两类曲线和曲面积分的概念及计算,格林公式,高斯公式。 难点:格林公式,高斯公式。 CH11曲线积分与曲面积分 11.1对弧长的曲线积分

11.2对坐标的曲线积分 11.3格林公式及其应用 11.4对面积的曲面积分 11.5对坐标的曲面积分 11.6高斯公式 11.7斯托克斯公式(*) 第十二章 无穷级数 教学目标:理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。掌握几何级数和p -级数的收敛性。了解正项级数的比较审敛法,掌握正项级数的比值审敛法。了解交错级数的莱布尼兹定理,会估计交错级数的截断误差。了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。了解函数项级数的收敛域及和函数的概念。掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。了解幂级数在其收敛区间内的一些基本性质。了解函数展开为泰勒级数的充分必要条件。会利用,sin ,cos ,ln(1)x e x x x +和()1x μ+的马克劳林(Maclaurin)展开式将一些简单的函数间接展开成幂级数。了解幂级数在近似计算上的简单应用。了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirichlet)条件,会将定义在(,)ππ-和(,)l l -上的函数展开为傅里叶级数,并会将定义在(0,)l 上的函数展开为正弦或余弦级数。 重点:无穷级数收敛、发散以及和的概念,几何级数和p -级数的收敛性,正项级数的比值审敛法,莱布尼兹判别法,比较简单的幂级数的收敛域和和函数的求法,用间接法展开函数为幂级数。 难点:正项级数的比较审敛法,交错级数的莱布尼兹定理,求幂级数的收敛域及和函数,函数展开为泰勒级数,函数展开为

第一章 化学热力学基础 公式总结

第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V 2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程 .定温可逆时: Wmax=-Wmin= 4.焓定义式 H = U + PV 在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U 在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H 5.摩尔热容 Cm ( J·K-1·mol-1 ): 定容热容 CV (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程 适用对象 : 任意的气体、液体、固体物质 ) 定压热容 Cp ?=?2 1 ,T T m p dT nC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程 适用对象 : 任意的气体、液体、固体物质 ) 单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4R 1 221ln ln P P nRT V V nRT =n C C m = ?=?2 1 ,T T m V dT nC U

Cp,m = Cv,m + R 6.理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结 7.定义:△fHm θ(kJ·mol-1)-- 标准摩尔生成焓 △H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变; △fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。 8.热效应的计算 由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程 △rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1) 10.热机的效率为 对于卡诺热机 12 11Q Q Q Q W R +=- =η dT C p T T ? ?2 1 1 2 1211Q Q Q Q Q Q W +=+=-=η121T T T -=

高考平面向量知识点总结

高考平面向量知识点总结 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为 () 11,x y , () 22,x y ,则 ()1212,x x y y AB =--. 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 20、向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向 b a C B A a b C C -=A -AB =B

2019考研数学知识点总结

2019考研数学三知识点总结 考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度。 2019考研数学三考前必看核心知识点 科目大纲章节知识点题型 高等数学函数、极限、 连续 等价无穷小代换、洛必达法则、泰勒展开式求函数的极限 函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型 一元函数微 分学 导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连 续的关系 函数的单调性、函数的极值讨论函数的单调性、极值 闭区间上连续函数的性质、罗尔定理、拉格 朗日中值定理、柯西中值定理和泰勒定理 微分中值定理及其应用 一元函数积 分学 积分上限的函数及其导数变限积分求导问题 定积分的应用用定积分计算几何量 多元函数微 积分学 隐函数、偏导数、全微分的存在性以及它们 之间的因果关系 函数在一点处极限的存在性,连续 性,偏导数的存在性,全微分存在 性与偏导数的连续性的讨论与它们 之间的因果关系 二重积分的概念、性质及计算二重积分的计算及应用 无穷级数 级数的基本性质及收敛的必要条件,正项级 数的比较判别法、比值判别法和根式判别 法,交错级数的莱布尼茨判别法 数项级数敛散性的判别 常微分方程 一阶线性微分方程、齐次方程,微分方程的 简单应用 用微分方程解决一些应用问题 线性行列式行列式的运算计算抽象矩阵的行列式

代数 矩阵 矩阵的运算求矩阵高次幂等 矩阵的初等变换、初等矩阵与初等变换有关的命题 向量向量组的线性相关及无关的有关性质及判 别法 向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示 线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通 解 矩阵的特征值和特征向 量实对称矩阵特征值和特征向量的性质,化为 相似对角阵的方法 有关实对称矩阵的问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题 二次型 二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵 概率论与数理统计随机事件和 概率 概率的加、减、乘公式事件概率的计算 随机变量及 其分布 常见随机变量的分布及应用常见分布的逆问题 多维随机变 量及其分布 两个随机变量函数的分布二维随机变量函数的分布随机变量的独立性和不相关性随机变量的独立性 随机变量 的数字特征 随机变量的数学期望、方差、标准差及其性 质,常用分布的数字特征 有关数学期望与方差的计算 大数定律和 中心极限定 理 大数定理用大数定理估计、计算概率 数理统计的 基本概念 常用统计量的性质求统计量的数字特征 参数估计点估计、似然估计点估计与似然估计的应用

化工热力学公式总结

化工热力学(第三版)公式知识总结 vdW 方程 p =RT V?b ?a V 2 RK 方程 p = RT V?b ? a √T ?V(V+b) P R方程 P = RT V?b ? a V (V+b )+b(V?b) 对应态原理 P r = 3 8T r V r ?13??3 V r 2 偏心因子 ω=?1?lgP r s ︱ T r =0.7 普遍化vir ial 方程BP c RT c = B (0)+ωB (1) d U=Td S-p dV dH =Td S+Vdp dA=-Sd T-pdV dG=-Sd T+V dp dZ=MdX+Nd Y (?N ?X )Y =?(?M ?Y )X (?T ?V ) S =?(?P ?S ) V (?S ?P ) T =?(?V ?T ) p 偏离函数定义 M ?M 0ig =M (T,p )?M 0ig (T,p 0) 随状态变化 M (T 2,p 2)?M (T 1,p 1)=[M (T 2,p 2)?M ig (T 2,p 0)]?[M (T 1,p 1)?M ig (T 1,p 0)]+ [M ig (T 2,p 0) ? M ig (T 1,p 0)] G?G 0ig RT ?ln P P 0 = 1RT ∫(V ?RT P )P 0dp 逸度定义 G (T,P )?G 0ig (T,P 0)=RTln f P 0 φ=f P lnφ=ln f p =1RT ∫(V ? RT P )P 0 dp (?lnf ?p )=V RT 饱和蒸汽和液体性质关系M =M sl (1?x )+M sv x 偏摩尔性质 M i ???=(?M t ?n i ) T,p,{n } ≠i 偏摩尔性质表示摩尔性质 M =∑n i n M i ???N i =∑x i M i ???N i 摩尔性质与摩尔性质关系M i ???=M +(1?x)dM dx i M 2????=M ?x 1dM dx i Gi bbs -Duhem 方程在T,p 恒定(∑x i dM i ???N i=1) T,p =0 Leiwis-randa ll 规则 f ?i is =f i X i f ?i is ? =H i,Solvent X i 活度系数 γi =f i ?f i X i lnγi ?=lnγi ?lnγi ∞ 超额性质 G E RT =∑X i lnγi N i ?H =H E =?RT 2∑X i ( ?lnγi ?T ) p,{x }N i

化工热力学公式

第一章绪论 热力学是以热力学第一、第二定律及其他一些基本概 念理论为基础,研究能量、能量转换以及与转换有关的物 质性质相互之间关系的科学。有工程热力学、化学热力学、 化工热力学等重要分支。 化工热力学是将热力学原理应用于化学工程技术领 域。化工热力学主要任务是以热力学第一、第二定律为基 础,研究化工过程中各种能量的相互转化及其有效利用, 研究各种物理和化学变化过程达到平衡的理论极限、条件 和状态。 热力学的研究方法,原则上可采用宏观研究方法和微 观研究方法。以宏观方法研究平衡态体系的热力学称为经 典热力学。 体系与环境:隔离体系,封闭体系,敞开体系 第二章流体的P-V-T关系 在临界点C : 临界点是汽液两相共存的最高温度和最高压力,即临 界温度Tc,临界压力Pc。 纯流体的状态方程(EOS) 是描述流体P-V-T性质的 关系式。由相律可知,对纯流体有: f( P, T, V ) = 0 混合物的状态方程中还包括混合物的组成(通常是摩 尔分数)。 状态方程的应用 (1)用一个状态方程即可精确地代表相当广泛范围内的 P、V、T实验数据,借此可精确地计算所需的P、V、T数 据。 (2)用状态方程可计算不能直接从实验测定的其它热力 学性质。 (3)用状态方程可进行相平衡和化学反应平衡计算。 压缩因子(Z)即:在一定P,T下真实气体的比容与相 同P,T下理想气体的比容的比值. 理想气体方程的应用(1 )在较低压力和较高温度下可用 理想气体方程进行计算。(2 )为真实气体状态方程计算 提供初始值。(3 )判断真实气体状态方程的极限情况的 正确程度,当或者时,任何的状态方程都还原为理想气体 方程。 维里方程式 Virial系数的获取 ( 1 ) 由统计力学进行理论计算目前应用很少 ( 2 ) 由实验测定或者由文献查得精度较高 ( 3 ) 用普遍化关联式计算方便,但精度不如实验测定的 数据 两项维里方程维里方程式Z=PV/RT=1+ B/P (1)用于气相PVT性质计算,对液相不能使用; (2)T2用普遍化B法,直接计算 Vr<2用普遍化Z法,迭代计算 第三章纯流体的热力学性质 四大微分方程: dU=TdS-pdV(3-1) dH=TdS+Vdp(3-2) dA=-SdT-pdV(3-3) dG=-SdT+Vdp(3-4) 斜率 曲率

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

化工热力学B(答案)

2015 至 2016 学年第 1 学期 化工热力学 考试试卷B (答案与评分标准) 考试方式: 闭卷笔试 本试卷考试分数占学生总评成绩的 70 % 一、选择题(本题20分,每题2分) 二、判断题(本题10分,每题1分) 三、填空题(本题10分,每空1分) 1. 8.314,83.14,8.314,1.980 2. 0.243 3. Henry 定律, Lewis-Randall 规则 4. 0.587,0.717 5. 0.334 评分标准:每空1分,除了数字必须完全和以上参考答案相同以外,只要和以上参考答案相近的叙述都可以视为正确答案。 四、计算题(本题50分,每题10分) 1. 一钢瓶的安全工作压力10MPa ,容积为7810cm 3,若装入1000g 的丙烷,且在253.2℃(526.35K )下工作,若钢瓶问是否有危险? (注:以PR 方程计算,PR 方程为:) ()(b V b b V V a b V RT p -++--= ,方程的参数a = 793906.842 6 mol cm MPa ??-;b = 56.293 1 cm mol -?。) 解:1000g 丙烷的物质的量为:100044/g n g mol = (2分) 22.73mol = (1分) 3 781022.73cm V mol -= (2分) 31343.60cm mol --=? (1分)

根据PR 方程,253.2℃(526.35K )下,7810cm 3的钢瓶中装入1000g 的丙烷,其压力应该为: ()()8.314526.35793906.84 343.6056.29343.60(343.6056.29)56.29(343.6056.29)4376.07793906.84793906.8415.23287.31343.60399.8956.29287.31137402.2016172.68RT a p V b V V b b V b = - -++-?=- -?++?-=-=-?+?+ (2分) 10.0610=> (1分) 所以不能安全工作。 (1分) 评分标准:公式和计算方法对但数值略有差错的不扣分;直接代入数据,不写公式且计算正确也得分;仅仅写出公式并罗列数据,但没有计算结果或结果不准确的酌情给分。 2. 三元混合物的各组分摩尔分数分别为0.25,0.3和0.45,在6.585MPa 和348K 下的各组分的逸度系数分别是0.72,0.65和0.91,求混合物的逸度。 解: ?ln ln i i y φφ= ∑ (2分) 0.25ln 0.720.3ln 0.650.45ln 0.910.254=++=- (2分) ()ln ln f P φ= (2分) ln 6.585(0.254) 1.631=+-= (2分) )MPa (109.5=f (2分) 评分标准:公式和计算方法对但数值略有差错的不扣分;直接代入数据,不写公式且计算正确也得分;仅仅写出公式并罗列数据,但没有计算结果或结果不准确的酌情给分。 3. 设已知乙醇(1)-甲苯(2)二元系统在某一气液平衡状态下的实测数据为t = 45℃,p =24.4 kPa ,x 1=0.300,y 1=0.634,并已知组分1和组分2在45℃下的饱和蒸气压为kPa p s 06.231=, kPa p s 05.102=。试采用低压下气液平衡所常用的假设,求: (1) 液相活度系数1γ和2γ; (2) 液相的G E /RT ; 与理想溶液想比,该溶液具有正偏差还是负偏差? 解:(1)由1111γx p py s =,得 (2分)

高中数学平面向量知识点总结及常见题型x

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用a,b,c……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB几何表示法AB , a ;坐标表示法a =xi ? yj (x, y).向量 的大小即向量的模(长度),记作| A B |即向量的大小,记作I 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a = 0 = I a I = 0"由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件. (注意与0的区别) ③单位向量:模为1个单位长度的向量向量a0为单位向量二I a0I = 1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量.记作a // b ■由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 亠% =x2 小相等,方向相同(x「yj = (x2, y2)=」 y2 2向量加法 求两个向量和的运算叫做向量的加法t―4 ―4 设AB 二a, BC =b,贝y a + b =AB BC = AC (1)0 a a,0二a ;( 2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则?向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ ? QR二AR,但这时必须“首尾相连” ? 3向量的减法 ①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量 记作-a,零向量的相反向量仍是零向量 关于相反向量有:(i) -(-a)=a ; (ii) a+(-a)=( - a)+ a = 0 ; (iii) 若a、b是互为相反向量, 则a=-b,b = -a,a + b=0 ②向量减法:向量a加上b的相反向量叫做a与b的差, 记作:a - b二a ? (-b)求两个向量差的运算,叫做向量的减法 ③作图法:a -b可以表示为从b的终点指向a的终点的向量(a、b有共同起点) 4实数与向量的积: ①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下: (I) a a ;

考研高数各章重点总结

一、一元函数微分学 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 利用洛比达法则求不定式极限; 讨论函数极值,方程的根,证明函数不等式; 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数; 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 利用导数研究函数性态和描绘函数图形,求曲线渐近线。 二、一元函数积分学 计算题:计算不定积分、定积分及广义积分; 关于变上限积分的题:如求导、求极限等; 有关积分中值定理和积分性质的证明题; 定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等; 综合性试题。 三、函数、极限与连续 求分段函数的复合函数; 求极限或已知极限确定原式中的常数; 讨论函数的连续性,判断间断点的类型; 无穷小阶的比较; 讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。 四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积; 求直线方程,平面方程; 判定平面与直线间平行、垂直的关系,求夹角; 建立旋转面的方程; 与多元函数微分学在几何上的应用或与线性代数相关联的题目。 五、多元函数的微分学 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 求二元、三元函数的方向导数和梯度; 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。 六、多元函数的积分学 二重、三重积分在各种坐标下的计算,累次积分交换次序; 第一型曲线积分、曲面积分计算; 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 第二型(对坐标)曲面积分的计算,高斯公式及其应用; 梯度、散度、旋度的综合计算; 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。 七、无穷级数 判定数项级数的收敛、发散、绝对收敛、条件收敛;

化学热力学知识点梳理.

第一章化学反应的方向和限度 第二节化学反应的程度和化学平衡 一可逆反应和化学平衡 1、可逆反应 在同一条件下,既能向一个方向进行,又能向相反方向进行的反应,称为可逆反应。插入视频文件:可逆反应与化学平衡 .swf 严格地说, 可以认为所有的化学反应都具有一定的可逆性, 从微观的角度来看, 反应物分子可以发生有效碰撞, 结合成产物分子;同时, 产物分子也可以发生碰撞,再结合成反应物分子:反应物?产物。 当反应进行到某一程度,恰好逆正υυ=,反应物和产物的浓度都不再随时间而改变。那么,可逆反应的这种状态,就称为化学平衡。 2、化学平衡 正逆反应速率相等时,反应体系所处的状态,称为化学平衡状态。 特点:(1 逆正υυ= (2动态平衡; (3有条件的、相对的平衡(——条件改变,平衡改变。 大量的实验表明:在一定条件下, 处于化学平衡状态的体系, 各物质浓度之间遵守一定的定量关系。这就是平衡常数关系式。 二平衡常数 1、平衡常数

可逆反应在一定温度下达到平衡时,产物浓度的系数次方的乘积与反应物浓度的系数次方的乘积之比是一个常数,这个常数就叫做平衡常数。 :平衡浓度 浓度平衡常数— c K c c c c K b a d g c ( (B(A(D(GdD gG bB aA c ??=+=+ 如果是气体反应,可以用平衡时各组分气体的分压来代替浓度,这时,平衡常数叫做压力平衡常数: (B (A(D(Gp b a d g p p p p K ??= (p :平衡分压★注意:K c 、 K p 一般都有单位,但习惯上不写; K c 一般不等于 K p 。 为了统一和计算方便,规定在平衡常数的表达式中,凡是溶液中的浓度都除以标准态浓度:3θdm mol 1-?=c , θc ——相对浓度 ;若是气体分压,都除以标准态压力:Pa 101325θ=p , θp p ——相对分压 ,这样用相对浓度或相对分压表示的平衡常数,叫 标准平衡常数。 2、标准平衡常数一般如果不作说明,我们提到的平衡常数都是指标准平衡常数。 ★注意 :(1平衡浓度、平衡分压 (2 对有纯固体或纯液体参加的反应, 纯固体或纯液体的浓度视为常数 1, 不 出现在平衡常数的表达式中 (3 溶液中的组分一定用相对浓度θc 表示; 气相一定要用相对分压θp p 表

2019年人教版及高中数学平面向量知识点易错点归纳

§5.1 平面向量的概念及线性运算 三角形法则 3.共线向量定理 向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 方法与技巧 1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.可以运用向量共线证明线段平行或三点共线.如AB →∥CD → 且AB 与CD 不共线,则AB ∥CD ; 若AB →∥BC → ,则A 、B 、C 三点共线.

失误与防范 1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性. 2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. §5.2 平面向量基本定理及坐标表示 1.平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2. 其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算 (1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则 a + b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1),|a |=x 21+y 2 1. (2)向量坐标的求法 ①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB → |=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ?x 1y 2-x 2y 1=0. 方法与技巧 1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.平面向量共线的坐标表示 (1)两向量平行的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同. (2)三点共线的判断方法 判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定. 失误与防范 1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况. 2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1 y 2 ,因为x 2,y 2有可能等 于0,所以应表示为x 1y 2-x 2y 1=0.

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

最新物理化学重要概念公式总结

第一章 热力学第一定律 一、基本概念 系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。 二、基本定律 热力学第一定律:ΔU =Q +W 。 焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式 1、体积功的计算 δW = -p e d V 恒外压过程:W = -p e ΔV 可逆过程: W =nRT 1 2 21ln ln p p nRT V V = 2、热效应、焓 等容热:Q V =ΔU (封闭系统不作其 他功) 等压热:Q p =ΔH (封闭系统不作其 他功) 焓的定义:H =U +pV ; d H =d U +d(pV ) 焓与温度的关系:ΔH =?2 1 d p T T T C

3、等压热容与等容热容 热容定义:V V )(T U C ??=;p p )(T H C ??= 定压热容与定容热容的关系: nR C C =-V p 热容与温度的关系:C p =a +bT +c’T 2 四、第一定律的应用 1、理想气体状态变化 等温过程:ΔU =0 ; ΔH =0 ; W =-Q =?-p e d V 等容过程:W =0 ; Q =ΔU =?T C d V ; ΔH =?T C d p 等压过程:W =-p e ΔV ; Q =ΔH =?T C d p ; ΔU =?T C d V 可逆绝热过程: Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2, W =ΔU =?T C d V ;ΔH =?T C d p 不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2, W =ΔU =?T C d V ;ΔH =?T C d p 2、相变化 可逆相变化:ΔH =Q =n Δ_H ; W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W

相关文档
最新文档