预应力钢束的估算及其布置

预应力钢束的估算及其布置
预应力钢束的估算及其布置

目录

第一章、课程设计计算书 (1)

一、预应力钢束的估算及其布置 (1)

1.预应力钢束数量的估算 (1)

2.预应力钢束布置 (2)

二、计算主梁截面几何特性 (7)

1.截面面积及惯性矩计算 (7)

2.截面净距计算 (9)

3.截面几何特性总表 (13)

三、钢筋预应力损失计算 (15)

1.预应力钢束与管道壁间的摩擦损失 (16)

2.由锚具变形、钢束回缩引起的预应力损失 (16)

3.混凝土弹性压缩引起的预应力损失 (17)

4.由钢束应力松弛引起的预应力损失 (18)

5.混凝土收缩和徐变引起的预应力损失 (19)

6.成桥后四分点截面由张拉钢束产生的预加力作用效应计算 (21)

7.预应力损失汇总及预加力计算表 (21)

四、承载力极限状态计算 (24)

1.跨中界面正截面承载力计算 (24)

2.验算最小配筋率(跨中截面) (25)

3.斜截面抗剪承载力计算 (26)

附图

上部结构纵断面预应力钢筋结构图

上部结构横断面预应力钢筋结构图

辽宁工业大学

《桥梁工程》课程设计计算书

开课单位:土木建筑工程学院

2014年3月

一、预应力钢束的估算及其布置

1.预应力钢束数量的估算

对于预应力混凝土桥梁设计,应该满足结构在正常使用极限状态下的应力要求下的应力要求和承载能力极限状态的强度要求。以下就以跨中截面在各种作用效应组合下,对主梁所需的钢束数进行估算。

(1)按正常使用极限状态的应力要求估算钢束数

按正常使用极限状态组合计算时,截面不允许出现拉应力。当截面混凝土不出现拉应力控制时,则得到钢束数n 的估算公式

)

(p s pk p l k

e k

f A C M n +?=

(1.1)

式中 k M ——使用荷载产生的跨中弯矩标准组合值,按任务书取用; l C ——与荷载有关的经验系数,对于公路—II 级,l C 取0.45;

p A ?)——一束715.2?钢绞线截面积,一根钢绞线的截面积是1.42cm ,故 p A ?=9.82cm ;

s k ——大毛截面上核心距,设梁高为h ,s k 可按下式计算 ∑∑-=

)

(s s y h A I

k (1.2)

p e ——预应力钢束重心对大毛截面重心轴的偏心距,p s p p a y h a y e --=-=, p a 可 预先设定,h 为梁高,150h cm =; s y ——大毛截面形心到上缘的距离;

∑I ——大毛截面的抗弯惯性矩.

本梁采用的预应力钢绞线,公称直径为15.20mm ,公称面积2140mm ,标准强度为

Mpa f pk 1860=,设计强度为Mpa f pd 1260=,弹性模量Mpa E p 51095.1?=。

32397.022397.0210k M kN m N m =?=??

∑∑-=

)

(s

s y h A I

k 20699757.2

43.295643(15065.27)

cm =

=?-

假设19p a cm =,则

(15065.2719)65.73p p e y a cm =-=--= (1.3) 钢束数n 可求得为

)(p s pk p l k

e k

f A C M n +?=

3462397.0210 2.680.459.810186010(0.43290.6573)

-?==?????+ (2)按承载能力极限状态估算钢束数

根据极限状态的应力计算图式,受压区混凝土达到极限强度cd f ,应力图式呈矩形,同时预应力钢束也达到设计强度pd f ,则钢束数n 的估算公式为

pd

p d

f A h M n ?=

α

(1.4)

式中 d M ——承载能力极限状态的跨中弯矩组合设计值,按任务书采用; α——经验系数,一般采用77.0~75.0,本梁采用0.77. 估算的钢束数n 为

pd p d f A h M n ?=α3

46

3101.6210 2.170.77 1.59.810126010-?==?????

综合上述两种极限状态所估算的钢束数量在3根左右,故取为3n =。 2.预应力钢束布置

(1)跨中截面及锚固端截面的钢束位置

1)对于跨中截面,在保证布置预留管道构造要求的前提下,应尽可能加大钢束群重心的偏心距,本梁预应力孔道采用内径mm 60,外径mm 67的金属波纹管成孔,管道至梁底和梁侧净距不应小于mm 30及管道直径的一半。另外直线管道的净距不应小于

mm 40,且不宜小于管道直径的0.6倍,跨中截面及端部截面的构造如图1所示,

123N N N 、、号钢筋均需进行平弯。由此求得跨中截面钢束群重心至梁底距离为

12226

16.673

p a cm ?+=

= (1.5)

a) 端部截面 b )跨中截面

图1 钢束布置图(横断面)(单位:mm )

2)本梁将所有钢束都锚固在梁端截面。对于锚固端截面、钢束布置应考虑以下两方面:一是预应力钢束合力重心尽可能靠近截面形心,使截面均匀受压,二是要考虑锚头布置的可能性,以满足张拉操作方便的要求。锚头布置应遵循均与,分散的原则。锚固端截面布置的钢束如图1所示,则端部钢束重心至梁底的距离为

3070120

73.33

p a cm ++=

= (1.6) 下面对钢束群重心位置进行复核,首先需计算锚固端截面的几何特性。图1为计算图式,锚固端截面几何特性计算见表1。

表1 锚固端截面几何特性计算表

其中: 626360

59.2710568

i s i

S y cm A

=

=

=∑∑ (1.7)

15059.2790.73x s y h y cm =-=-= (1.8) 故计算得上核心距为 23825027.16

24.851056890.73

s x

I k cm Ay

=

=

=?∑∑ (1.9)

下核心距为

23825027.16

38.0361056859.27

x s

I k cm Ay

=

=

=?∑∑ (1.10)

52.694115.58x x p x x y k a y k =-<<+=

说明钢束群重心处于截面的核心范围内。

(2)钢束弯起角度及线形的确定

最下(N3)弯起角度为5?,其余2根弯起角度均为7?。为了简化计算和施工,所有钢束布置的线形均为直线加圆弧,具体计算机布置如下。

(3)钢束计算

1)计算钢束起弯点至跨中的距离。

锚固点至支座中心线的水平距离为ni a (见图2)

33030tan527.38n a cm =-?= 23018tan727.79n a cm =-?= 13068tan721.65n a cm =-?=

图3为钢束计算图式,钢束起弯点至跨中的距离1x 列表计算于表2内。

图2 锚固端尺寸图(尺寸单位 :mm ) 图3 钢束计算图式

表2 钢束起弯点至跨中距离计算表

钢束号 弯起高度y/cm y 1/cm y 2/cm L 1/cm x 3/cm 弯起角/(°)

R/cm x 2/cm x 1/cm 3 18 8.7156 9.2844 100 99.619 5

2436.850 212.385 942.876 2 58 36.561 21.439 300 297.764 7 2876.232 350.525 607.001 1

94

60.935

33.065

500

496.271

7

4435.964

540.608

212.271

上表中各参数的计算方法如下:

1L 为靠近锚固端直线段长度,设计人员可根据需要自行设计,y 为钢束锚固点至钢

束起弯点的竖直距离,如图14所示,则根据各量的几何关系,可分别计算如下:

?

??

sin cos sin 21311R x L x L y === ni a x x L x y R y y y +--=-=-=3212122/)

cos 1/(?

式中 ?——钢束弯起角度(°); 1L ——计算跨径(cm );

ni a ——锚固点至支座中心线的水平距离(cm )。 2)控制截面的钢束重心位置计算

①各钢束重心位置计算,由图3所示的几何关系,当计算截面在曲线段时,计算公式为

R

x R a a i 4

0sin ),cos 1(=

-+=αα (1.11)

当计算截面在近锚固点的直线段时,计算公式为

?tan 30x y a a i -+=

(1.12)

式中 i a ——钢束在计算截面处钢束中心到梁底的距离; o a ——钢束起弯前到梁底的距离; R ——钢束弯起半径;

a ——圆弧段起弯点到计算点圆弧长度对应的圆心角。

②计算钢束群重心到梁底的距离p a 见表3,钢束布置图(纵断面)见图4.

表3 各计算截面的钢束位置及钢束群重心位置计算表

3)钢束长度计算:一根钢束的长度为曲线长度,直线长度与两端工作长度(cm 702?)之和,其中钢束曲线长度可按圆弧半径及弯起角度计算,通过每根钢束长度计算,就可以得到一片主梁和一孔桥所需钢束的总长度,用于备料和施工。计算结果见表4.

表4 钢束长度计算表

钢束号半径R 弯起角

曲线长

直线长度L1 有效长度

钢束预留

长度

钢束长度cm rad cm cm cm cm cm cm

3 2436.85 0.0872665 212.655 942.88 100 2511.07 120 2631.07 2 2876.232 0.0122173 351.398 607.00 300 2516.796 120 2636.796 1 4435.96

4 0.0122173 541.95

5 212.27 500 2508.45 120 2628.45

图4 钢束布置图(纵断面)(尺寸单位:mm)

预应力钢束的估算及其布置

目录 第一章、课程设计计算书 (1) 一、预应力钢束的估算及其布置 (1) 1.预应力钢束数量的估算 (1) 2.预应力钢束布置 (2) 二、计算主梁截面几何特性 (8) 1.截面面积及惯性矩计算 (8) 2.截面净距计算........................................ 错误!未定义书签。 3.截面几何特性总表.................................... 错误!未定义书签。 三、钢筋预应力损失计算 (12) 1.预应力钢束与管道壁间的摩擦损失 (12) 2.由锚具变形、钢束回缩引起的预应力损失 (13) 3.混凝土弹性压缩引起的预应力损失 (14) 4.由钢束应力松弛引起的预应力损失 (15) 5.混凝土收缩和徐变引起的预应力损失 (15) 6.成桥后四分点截面由张拉钢束产生的预加力作用效应计算 (17) 7.预应力损失汇总及预加力计算表 (17) 四、承载力极限状态计算 (20) 1.跨中界面正截面承载力计算 (20) 2.验算最小配筋率(跨中截面) (21) 3.斜截面抗剪承载力计算 (22) 附图 上部结构纵断面预应力钢筋结构图

上部结构横断面预应力钢筋结构图

辽宁工业大学 《桥梁工程》课程设计计算书 开课单位:土木建筑工程学院 2014年3月

一、预应力钢束的估算及其布置 1.预应力钢束数量的估算 对于预应力混凝土桥梁设计,应该满足结构在正常使用极限状态下的应力要求下的应力要求和承载能力极限状态的强度要求。以下就以跨中截面在各种作用效应组合下,对主梁所需的钢束数进行估算。 (1)按正常使用极限状态的应力要求估算钢束数 按正常使用极限状态组合计算时,截面不允许出现拉应力。当截面混凝土不出现拉应力控制时,则得到钢束数n 的估算公式 ) (p s pk p l k e k f A C M n +?= () 式中 k M ——使用荷载产生的跨中弯矩标准组合值,按任务书取用; l C ——与荷载有关的经验系数,对于公路—II 级,l C 取; p A ?)——一束715.2?钢绞线截面积,一根钢绞线的截面积是2cm ,故 p A ?=2cm ; s k ——大毛截面上核心距,设梁高为h ,s k 可按下式计算 ∑∑-= ) (s s y h A I k () p e ——预应力钢束重心对大毛截面重心轴的偏心距,p s p p a y h a y e --=-=, p a 可 预先设定,h 为梁高,150h cm =; s y ——大毛截面形心到上缘的距离; ∑I ——大毛截面的抗弯惯性矩. 本梁采用的预应力钢绞线,公称直径为,公称面积2140mm ,标准强度为 Mpa f pk 1860=,设计强度为Mpa f pd 1260=,弹性模量Mpa E p 51095.1?=。 32397.022397.0210k M kN m N m =?=??

4预应力钢束的估算及其布置

(四)预应力钢束的估算及其布置 1.跨中截面钢束的估算和确定 根据《公预规》规定,预应力梁应满足承载能力极限状态的强度要求和正常使用极限状态正截面抗裂性要求。以下就跨中截面在各种作用效应组合下,分别按照上述要求对主梁所需的钢束数进行估算,并且按这些估算的钢束数的多少确定主梁的配束。 (1)按承载能力极限状态强度要求估算钢束数 根据《公预规》第 5.1.3 条,在极限状态下,受压区混凝土达到极限强度应力图示呈矩形,同时预应力钢束也达到设计强度则钢束数的估算公式为: 式中承载能力极限状态的跨中最大弯矩,按表8取用; ——经验系数,对于带下马蹄T梁,一般采用,本算例取 ——预应力钢绞线的设计强度 ——单根钢绞线面积 (2)按正常使用极限状态正截面抗裂性要求估算 《公预规》第 6.3.1 条:全预应力砼预制构件,正截面砼拉应力需满足: ——频遇组合计算的弯矩值 ——使用阶段预应力钢筋永存应力的合力 ——预应力钢筋合力作用点至截面形心距离 ——毛截面形心至下缘距离 ——预应力钢筋合力作用点至下缘距离 ——砼大毛截面面积 ——砼毛截面对计算边缘弹性抵抗矩

——毛截面对其形心的惯性矩 由前述公式可得: 根据以上计算结果,取两计算结果的最大值为设计值。 《公预规》第 9.4.9 条:管道内径的截面面积不应小于两倍预应力钢筋截面面积。反算内径应>50mm。选用内径为 70mm(外径 77mm)的金属波纹管。

2.预应力钢束布置 (1)跨中截面及锚固端截面的钢束位置 ①跨中截面钢束位置 对于跨中截面,在保证布置预留管道构造要求的前提下,尽可能使钢束群重心的偏心距大些。本算例采用内径 70mm、外径 77cm 的预埋金属波纹管,根据《公预规》9.1.1 条规定,管道至梁底和梁侧净距不应小于 3cm 及管道直径的 1/2。根据《公预规》9.4.9 条规定,水平净距不应小于 4cm 及管道直径的 0.6 倍,对于预埋管在直线管道的竖直方向可将管道重叠。根据以上规定,跨中截面的细部构造如图 15 所示。 由此可直接得出钢束群重心至梁底距离为: ②锚固端截面钢束位置 由于主梁预制时为小截面,若钢束全部在预制时张拉完毕,有可能会在上缘出现较大的拉应力,在下缘出现较大的压应力。考虑到这个原因,本算例预制时在梁端锚固N1~N6 号钢束,N7 号钢束在成桥后锚固在梁顶,布置如图 17 所示。 对于锚固端截面,钢束布置通常考虑下述两个方面:一是预应力钢束合力重心尽可能靠近截面形心,使截面均匀受压;二是考虑锚头布置的可能性,以满足张拉操作方便的要求。

桥梁设计要点-钢筋和钢束布置

桥梁设计要点-钢筋和钢束布置 普通钢筋 1、普通钢筋:除螺旋筋、吊环外,Ф10及以上均采用HRB335级。 2、预应力箱梁纵向外侧点筋直径为16mm,内侧点筋直径为12mm,箍筋直径根据计算要求布置。 3、桥面混凝土铺装层钢筋采用直径不应小于8mm,间距不大于100mm的冷轧带肋钢筋网,钢筋距顶面的保护层厚度须根据环境类别,满足规范要求。 4、钢束架立钢筋按米布置一根Ф16来定位钢束。 5、普通钢筋的架立钢筋按每平方米布置一根Ф16定位钢筋设置。 6、除特殊要求外,防崩钢筋采用Ф20,间距100cm。 7、箱梁采用车辆荷载验算主梁顶板横向配筋。 8、钢筋混凝土T形截面梁或箱形截面梁的受力主钢筋,宜设于有效宽度内,有效宽度以外设置不小于超出部分截面面积%的构造钢筋。预应力混凝土T形或箱形截面梁的预应力钢筋,须设于有效宽度内。 9、预留孔洞构件需在两侧增加倍的孔洞部分配筋。 10、中支点底层两侧各倍的梁高范围内设置加强钢筋。 预应力筋

1、预应力钢束采用预埋成品塑料波纹套管成孔,优先采用5、7、9、12股钢束,12Ф钢束套管内径厘米,外径厘米;9Ф钢束套管内径厘米,外径厘米;7Ф钢束套管内径厘米,外径厘米;5Ф钢束套管内径厘米,外径厘米。 2、横向钢束张拉端锚具采用3孔扁形夹片锚具,固定端锚具采用3孔扁形挤压锚具,尺寸为,布置横向预应力的悬臂端厚度不小于20厘米。 3、顶底板需设置备用钢束。 4、预应力管道保护层不应小于钢束管道直径的1/2,且符合条的要求。 5、考虑到施工方便,连续高架桥除桥台处、特大跨径桥及工期能满足要求部分采用梁端张拉外,其他均采用梁顶、底面张拉。 6、预应力的张拉顺序为:张拉一半的横梁预应力束,然后依次张拉纵向预应力钢束、横向预应力钢束,最后张拉剩余的横梁预应力钢束。 7、钢筋纵横向若有冲突可对其进行调整,保证其位置的先后顺序为:纵向预应力筋;横向预应力筋;主梁普通钢筋;横梁普通钢筋。 8、腹板预应力钢束在锚固端应设置不小于1米的直线段;顶底板钢束的重叠长度不小于2H。 9、钢束张拉端应为张拉操作留出足够的空间。

预应力钢绞线伸长量的计算

后张法预应力钢绞线伸长量的计算 预应力钢绞线施工时,采用张拉应力和伸长值双控,实际伸长值与理论伸长值误差不得超过6%,后张预应力技术一般用于预制大跨径简支连续梁、简支板结构,各种现浇预应力结构或块体拼装结构。预应力施工是一项技术性很强的工作,预应力筋张拉是预应力砼结构的关键工序,施工质量关系到桥梁的安全和人身安全,因此必须慎重对待。一般现行常接触到的预应力钢材主要:有预应力混凝土用钢绞线、PC光面钢丝、刻痕钢丝、冷拔低碳钢丝、精轧螺纹钢等材料。对于后张法预应力施工时孔道成型方法主要有:金属螺旋管、胶管抽芯、钢管抽芯、充气充水胶管抽芯等方法。本人接触多的是混凝土预应力钢绞线(PCstrand、1×7 =1860Mpa,270级高强底松弛),成孔方法多采用金属公称直径15,24mm,f pk 螺旋管成孔,本文就以此两项先决条件进行论述。 1 施工准备: 1.1 熟悉图纸:拿到施工图纸应先查阅施工说明中关于预应力钢绞线的规格,一 =1860Mpa,般预应力钢束采用ASTMA416-270级低松弛钢绞线,其标准强度为f pk Mpa。 1×7公称直径15,24mm,锚下控制力为Δk=0.75 f pk 1.2 根据施工方法确定计算参数: 预应力管道成孔方法采用金属螺旋管成孔,查下表确定K、μ取 值:表1 注:摘自《公路桥涵施工技术规范》(JTJ 041-2000)附录G-8 根据钢绞线试验结果取得钢绞线实际弹性模量Ep(一般为1.9~2.04×105Mpa)1.3 材料检测:

金属螺旋管根据《公路桥涵施工技术规范》(JTJ 041-2000)附录G-7之要求检测; 锚具根据《公路桥梁预应力钢绞线用YM锚具、连接器规格系列》(JT/T 329.1-1997)及《公路桥梁预应力钢绞线用锚具、连接器试验方法及检验规则》(JT/T 329.2-1997)之要求检测; 钢绞线根据《预应力混凝土用钢绞线》GB/T5224-2003之要求检测 2 理论伸长量计算: 后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力;两项因素导致钢绞线张拉时,锚下控制应力沿着管壁向跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。 2.1 计算公式: 《公路桥梁施工技术规范》(JTJ 041-2000)中关于预应筋伸长值ΔL的计算按照以下公式(1): ΔL= Pp×L Ap×Ep ΔL—各分段预应力筋的理论伸长值(mm); Pp—各分段预应力筋的平均张拉力(N); L—预应力筋的分段长度(mm); Ap—预应力筋的截面面积(mm2); Ep—预应力筋的弹性模量(Mpa); 《公路桥梁施工技术规范》(JTJ 041-2000)附录G-8中规定了Pp的计算公式(2): Pp=P×(1-e-(kx+μθ)) kx+μθ P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N); θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中每段曲线段的切线夹角(rad);

预应力钢束的估算及其布置

2 预应力钢束的估算及其布置 2.1 跨中截面钢束的估算和确定 预应力混凝土梁的设计,应满足不同设计状况下规范规定的控制条件要求, 如承载力、抗裂性、裂缝宽度、变形及应力要求等。在这些控制条件中,最重要的是满足结构在正常使用极限状态下使用性能要求和保证结构对达到承载能力极限状态具有一定的安全储备。对全预应力混凝土梁来说,钢筋数量估算的一般方法是,首先根据结构的使用性能要求,即正常使用极限状态正截面抗裂性或裂缝宽度限值确定预应力钢筋的数量,然后按构造要求配置一定数量的普通钢筋,以提高结构的延性。 首先,根据跨中截面正截面抗裂要求,确定预应力钢筋数量。为满足抗裂要求,所需的有效预加力为: ? ?? ? ??+≥ W e A 185.0M N p S pe W 上式中:,查表2.2.7得=S M 5214.889m KN ?(S M -荷载短期效应弯矩组合设计值) S M =8697.916KN/m (S M -荷载基本效应弯矩组合设计值) W -毛截面对下缘的抵抗矩,30777.439198/cm y I W x == A -毛截面面积,26520cm A = p e -预应力钢筋重心对混凝土截面重心轴的偏心距,p x p a y e -=,假设 mm a p 150=,则mm e p 10901507602000=--= N 7.3292073107439198.077119010 6520185.0100777.439198105214.8891N 32 3 6 pe =??? ???+???≥ (短期) 拟采用钢绞线,mm d 2.15=,单根钢绞线的公称截面面积21139mm A P =,抗拉强度标准值 MPa f pk 1860=,张拉控制应力取 MPa f pk con 1395186075.075.0=?==σ,预应力损失按张拉控制应力的25%估算。则所需的预应力钢绞线的根数为:

预应力钢束的布置

预应力钢束的布置 1)跨中截面及锚固端截面的钢束位置 ①.对于跨中截面,在保证布置预留管道构造要求的前提下,尽可能使钢束群重心的偏心距大些。本算例采用内径70mm ,外径77mm 的预留铁皮波纹管,根据《公预规》9.1.1条规定,管道至梁底和梁侧净距不应小于3cm 及管道直径1/2。根据《公预规》9.4.9条规定,水平净距不应小于4cm 及管道直径的0.6倍,在竖直方向可叠置。根据以上规定,跨中截面的细部构造如图2-12所示。由此可直接得出钢束群重心至梁底距离为: cm 0.182) 0.92(12.55.12=++= p a ②.对于锚固端截面,钢束布置通常考虑下述两个方面:一是预应力钢束合力重心尽可能靠近截面形心,是截面均匀受压;二是考虑锚头布置的可能性,以满足张拉操作方便的要求。为使施工方便,全部3束预应力钢筋均锚于梁端,如图2-12所示。钢束群重心至梁底距离为: cm 593140 9550=++= p a 图2-12 钢束布置图(尺寸单位:cm ) a ) 预制梁端部; b ) 钢束在端部的锚固位置; c ) 跨中截面钢束位置 2)其它截面钢束位置及倾角计算 ①钢束弯起形状、弯起角及其弯曲半径 采用直线段中接圆弧线段的方式弯曲;为使预应力钢筋的预加力垂直作用于锚垫板,N1、N2和N3弯起角05.7=θ;各钢束的弯起半径为:mm R N 800001=;mm R N 250002=;mm R N 250003=。由图2-12 a )可得锚固点到支座中心的水平距离xi a 为: cm 2535)tan7-(50-72a x321==== x x a a ②钢束各控制点位置的确定 以N3号钢束为例,其起弯布置如图2-13所示。

预应力钢束损失量计算

预应力损失 随时间的推移,钢束的张拉应力因各种原因变小,这样,作用到混凝土上的预应力也随之变小,其原因如下: ? 施加预应力时的瞬时损失(Istantaneous Loss) 1. 锚固装置的滑动(Anchorange Slip) 2. 钢束和孔道之间的摩擦 3. 混凝土的弹性变形(Elastic Shortening) ? 施加预应力以后随时间的推移引起的损失(Time Dependent Loss) 1. 混凝土的徐变 2. 混凝土的收缩 3. 钢束的松弛(Relaxation) 后张法考虑上述六种预应力损失原因,但是先张法不考虑钢束和孔道之间的摩擦。预应力的瞬时损失和随时间的推移引起的损失之和达到初始拉力(Original Ja cking Force)的20~30%之多。预应力构件的混凝土应力计算中,最重要的参数为瞬时损失后的拉力i P 和随时间推移引起的损失后的最后作用于钢束的拉力e P (Effective Prestress Force) 。i P 和e P 的关系可以用以下公式表示, e i P RP = 其中,R 为预应力的有效率(Effective Ratio),一般来说,先张法为R 0.80=, 后张法为R 0.85=

以下是对MIDAS/CIVIL 考虑的预应力损失的方法的说明: 瞬时损失 1. 锚固装置滑动引起的损失 钢束的张拉结束后,随锚固装置的不同,锚固端部会有一些滑动。因此钢束的张拉端部附近会发生张力损失,这称为锚固装置滑动引起的损失(或锚具变形和钢筋内缩)。这种损失不仅在后张法中发生,也发生在先张法中。不管是什么方式,都可用张拉作业时的超张应力(Overstressing)来校正。 一般来讲,因钢束和孔道之间的存在一定的摩擦,锚固装置的滑动引起的张力的损失只限于锚固装置附近即张拉端部附近,远离张拉端处,几乎没有张力损失的现象。 受锚固装置的滑动影响的张拉构件的长度set l 是摩擦损失的函数,若摩擦损失越大,其长度越小;摩擦损失越小,其长度越长(图2.46所示)。把滑移量(l ?)、钢材截面积(p A )、弹性模量(p E )三个参数相乘,等于图2.46中的三角形的面积,这样下面等式成立。 三角形面积 (0.5set Pl ?) = p p A E l ? (1) 假设张拉构件单位长度的摩擦损失为p ,张拉力的损失p ?由图2.46可 知,可以表示为 2set P pl ?= (2) 由式(1)和(2)可以推导出受锚固装置滑动影响的张拉构件的长度()set l 的公 式, set l (3)

预应力钢束布置要求

(1)悬臂预应力筋布置 悬臂施工的连续梁桥从墩顶开始向左右对称悬臂浇筑施工,为了能支承梁体自重和施工荷载,需在悬臂施工时分段张拉预应力。悬臂预应力束的长度随着悬臂施工的进展,不断加长。一般都是对称于箱梁断面中心线布置的,尽量靠腹板布置。预应力束数量较多时可分层布置,一般来说先锚固下层钢束,后锚固上层钢束。悬臂预应力筋可以从顶板下弯延伸布置,当预应力筋下弯伸到节块腹板中时,悬臂预应力筋产生的垂直预应力分力将抵消部分混凝土断面的剪应力。当外侧腹板为倾斜时,以腹板平面竖弯进入腹板内成为倾斜的预应力束,锚固在各个节段的腹板内。锚固在腹板内的预应力束,腹板应有足够厚度以承受集中锚固力。 (2)连续预应力筋布置 连续预应力筋主要考虑在悬臂浇筑合拢以后承受恒、活载产生的内力。即按照使用阶段的要求需补充设置的预应力筋,也分直筋(沿纵向按直线布置)和弯筋(伸入腹板承受主拉应力)两种。一般直筋布置在支点截面的顶部和跨中截面的底部,直接锚固在顶板或底板的齿形锚固块上。在边跨的现浇段,弯筋是通过底板束向上弯起后锚固于梁端或顶板顶面的槽形口内,其作用除了对支点、边跨跨中截面提高抗弯能力外,主要希望改善腹板的受力情况,解决近支点截面主拉应力较大的问题。 2.纵向预应力筋的布置原则

(1)应选择适当的预应力束筋的型式与锚具型式,对不同跨径的梁桥结构,要选用预加力大小恰当的预应力束筋,以达到合理的布置型式。避免造成因预应力束筋与锚具型式选择不当,而使结构构造尺寸加大。 (2)预应力束筋的布置要考虑施工的方便,也不能像钢筋混凝土结构中任意切断钢筋那样去切断预应力束筋,而导致在结构中布置过多的锚具。由于每根束筋都是一巨大的集中力,这样锚下应力区受力较复杂,因而必须在构造上加以 保证,为此常导致结构构造复杂,而使施工不便。 (3)注意钢束平、竖弯曲线的配合及钢束之间的空间位置。钢束一般应尽量早地平弯,在锚固前竖弯。特别应注意竖弯段上下层钢束不要冲突,还应满足孔道净距的要求。钢束应尽量靠近腹板布置。这样可以使预应力以较短的传力路线分布在全截面上,有利于降低预应力传递过程中局部应力的不利影响;能减少钢柬的平弯长度;减小横向力;充分利用梗腋布束,有利于截面的轻型化。在边跨箱梁端部将腹板的箍筋适当加密,直径适当放大一些,对克服腹板的斜向裂缝是十分有效的。 (4)尽量以s型曲线锚固子设计位置,以消除锚固点产生的横向力。尽量加大曲线半径,以便于穿束和压浆。分层布束时,应使管道上下对齐,这样有利于混凝土浇筑与振捣,不可采用梅花形布置。

预应力钢束的估算及其布置讲课讲稿

预应力钢束的估算及 其布置

目录 第一章、课程设计计算书 (1) 一、预应力钢束的估算及其布置 (1) 1.预应力钢束数量的估算 (1) 2.预应力钢束布置 (2) 二、计算主梁截面几何特性 (8) 1.截面面积及惯性矩计算 (8) 2.截面净距计算...................................................................................... 错误!未定义书签。 3.截面几何特性总表.......................................................................... 错误!未定义书签。 三、钢筋预应力损失计算 (12) 1.预应力钢束与管道壁间的摩擦损失 (12) 2.由锚具变形、钢束回缩引起的预应力损失 (13) 3.混凝土弹性压缩引起的预应力损失 (14) 4.由钢束应力松弛引起的预应力损失 (15) 5.混凝土收缩和徐变引起的预应力损失 (15) 6.成桥后四分点截面由张拉钢束产生的预加力作用效应计算 (17) 7.预应力损失汇总及预加力计算表 (18) 四、承载力极限状态计算 (20) 1.跨中界面正截面承载力计算 (20) 2.验算最小配筋率(跨中截面) (21) 3.斜截面抗剪承载力计算 (23) 附图 上部结构纵断面预应力钢筋结构图 上部结构横断面预应力钢筋结构图

辽宁工业大学 《桥梁工程》课程设计计算书 开课单位:土木建筑工程学院 2014年3月

一、预应力钢束的估算及其布置 1.预应力钢束数量的估算 对于预应力混凝土桥梁设计,应该满足结构在正常使用极限状态下的应力要求下的应力要求和承载能力极限状态的强度要求。以下就以跨中截面在各种作用效应组合下,对主梁所需的钢束数进行估算。 (1)按正常使用极限状态的应力要求估算钢束数 按正常使用极限状态组合计算时,截面不允许出现拉应力。当截面混凝土不出现拉应力控制时,则得到钢束数n 的估算公式 ) (p s pk p l k e k f A C M n +?= (1.1) 式中 k M ——使用荷载产生的跨中弯矩标准组合值,按任务书取用; l C ——与荷载有关的经验系数,对于公路—II 级,l C 取0.45; p A ?)——一束715.2?钢绞线截面积,一根钢绞线的截面积是1.42cm ,故 p A ?=9.82cm ; s k ——大毛截面上核心距,设梁高为h ,s k 可按下式计算 ∑∑-= ) (s s y h A I k (1.2) p e ——预应力钢束重心对大毛截面重心轴的偏心距,p s p p a y h a y e --=-=, p a 可 预先设定,h 为梁高,150h cm =; s y ——大毛截面形心到上缘的距离; ∑I ——大毛截面的抗弯惯性矩. 本梁采用的预应力钢绞线,公称直径为15.20mm ,公称面积2140mm ,标准强度为 Mpa f pk 1860=,设计强度为Mpa f pd 1260=,弹性模量Mpa E p 51095.1?=。

预应力钢束的估算及其布置.doc

2预应力钢束的估算及其布置 2.1跨中截面钢束的估算和确定 预应力混凝土梁的设计,应满足不同设计状况下规范规定的控制条件要求,如 承载力、抗裂性、裂缝宽度、变形及应力要求等。在这些控制条件中,最重要的是 满足结构在正常使用极限状态下使用性能要求和保证结构对达到承载能力 极限状态具有一定的安全储备。对全预应力混凝土梁来说,钢筋数量估算的一般方法是,首先根据结构的使用性能要求,即正常使用极限状态正截面抗裂性或裂缝宽度限值确定预应力钢筋的数量,然后按构造要求配置一定数量的普通钢筋,以提高结构的延性。 首先,根据跨中截面正截面抗裂要求,确定预应力钢筋数量。为满足抗裂要求,所需的有效预加力为: M S N pe W e p 1 0.85 W A 上式中:,查表 2.2.7 得 M S KN m ( M S-荷载短期效应弯矩组合设计值) M S=m ( M S-荷载基本效应弯矩组合设计值 ) W -毛截面对下缘的抵抗矩,W I / y x 439198.0777cm3 A -毛截面面积, A 6520cm2 e p-预应力钢筋重心对混凝土截面重心轴的偏心距,e p y x a p,假设 a p 150mm ,则 e p 2000 760 150 1090mm 5214.889 106 439198.0777 103 N pe1 3292073.7N (短期) 1 1190 0.85 6520 102 439198.0777 103 拟采用钢绞线, d 15.2mm,单根钢绞线的公称截面面积A P1 139mm2,抗 拉强度标准值 f pk 1860 MPa ,张拉控制应力取con 0.75 f pk 0.75 1860 1395MPa ,预应力损失按张拉控制应力的 25%估算。则所需的预应力钢绞线的根数为:

后张法预应力钢绞线伸长量的计算与张拉时常见问题分析及预防和处理措施

后张法预应力钢绞线伸长量的计算 张拉时常见问题分析及预防和处理措施 一、后张法预应力钢绞线伸长量的计算和传统的张拉程序 1、钢绞线理论伸长量计算 钢绞线理论伸长值直线段采用公式: △L=P0×L/(Ay×Eg)式中: △L:钢绞线直线段理论伸长值(mm); P0:计算截面处钢绞线张拉力(N); L:预应力钢绞线长度(mm); Ay:预应力钢材截面面积(mm2); Eg:预应力钢材弹性模量(N/mm2). 钢绞线理论伸长值曲线段采用公式: △L = P×L/(Ay×Eg)式中: △L:钢绞线曲线段理论伸长值(mm); P:预应力钢材平均张拉力(N); 其余符号同直线段. 关于P0,P的计算: P0 = P[1-(1-e-(kx+uθ))] P = P[1-e-(kx+uθ)]/(kx+uθ): P:张拉端钢绞线张拉力 X:从张拉端至计算截面的孔道长度(m); θ:从张拉端至计算截面曲线孔道部分切线的切角之和(rad); K:孔道每m局部偏差对摩擦的影响系数; U:预应力钢材与孔道壁的摩擦系数; 式中,Ay=钢绞线根数×单根钢绞线横截面积,单根钢绞线横截面积取实验值,一般为140mm2。K规范取值为0.015,U规范取值为0.225。 2、传统张拉程序和实测伸长量计算 后张法预应力钢绞线张拉采用分级张拉,传统张拉方式为: 0→0.1бk → 0.2бk→1.05бk(要求超张拉时)→бk持荷5分钟→回油

бk为控制应力。 实测伸长量计算: L0=(l3- l2)+2*(l2- l1) l3:张拉至бk时活塞伸出量; l 2:张拉至0.2бk时活塞伸出量; l 1:张拉至0.1бk时活塞伸出量。 二、张拉时常见问题分析及预防和处理措施 1、钢绞线伸长率超出规范允许偏差范围 规范要求张拉时钢绞线理论伸长量与实际伸长量偏差不超过±6%,但实际施工时,往往会出现实测伸长值与理论伸长值的偏差超过规范允许的范围的情况。出现这种情况的原因有: (1)管道位置引起的偏差。波纹管安装时,管道定位不准确,或定位卡子数量不足,混凝土振捣时碰触波纹管导致其偏位。波纹管位置与设计位置偏差时,理论伸长量发生变化,若位置偏差较大,则会引起钢绞线伸长率超标。 (2)钢绞线材质不合格。钢绞线原材料进场时,必须按批次进行抽样试验,确定其材质是否合格,弹性模量Ep及横截面积与标准值偏差是否符合规范要求。(3)张拉设备故障或未及时标定。千斤顶的精度应在使用前校准。使用超过6个月或200次,以及在使用过程中出现不正常现象时,应重新校准。任何时候在工地测出的预应力钢绞线伸长值有差异时,千斤顶应进行再校准。用于测力的千斤顶的压力表应同千斤顶视为一个单元同时校准,并在量程范围内建立精确的标定关系,以确定张拉力与压力表读数之间的曲线方程。千斤顶、油泵、液压油管接头处漏油时,会导致油表读数与张拉力不对应,无法准确控制钢绞线张拉控制应力,使实测伸长量与设计伸长量偏差较大。 (4)初应力取值过小。传统张拉程序中,初应力取值为10%的控制应力,即认为在张拉至10%控制应力的时候已经将钢绞线拉紧。但是在实际施工中,当钢束较长,弯曲部位较多的时候,10%控制应力的张拉力往往不足以将钢绞线拉紧,此时在计算实际伸长量的时候会包含部分松弛长度,从而引起实际伸长量计算值偏大。因此在张拉时可以选择取20%控制应力作为初始张拉力,进行实际伸长量

快速布置钢束形状的方法详

关于如何快速布置钢束形状的说明 1、标准钢束0 2、钢束复制移动(重新分配单元法):1 3、钢束复制移动(MCT文本输入法):3 4、横桥向复制/移动顶板束9 5、沿主梁底缘布置底板束10 6、钢束的镜像功能11 7、柱构件钢束布置形状的定义11 北京迈达斯技术有限公司 2007年5月关于如何快速布置钢束形状的说明 1、标准钢束 进行结构初算时,可使用标准钢束功能。即将沿桥横向对称布置的多根预应力钢束简化为一根标准钢束来模拟。 命令:荷载/预应力荷载/钢束布置形状

图1 初步分析或对称结构使用标准钢束 程序在计算预应力荷载时按照标准钢束的n倍来计预应力荷载大小,计算截面特性时也会按n个孔道和n束钢束来计算换算截面特性。 标准钢束对于确定钢束形状是非常方便的,初步定义好桥梁中心线上的钢束后执行分析,根据分析结果判断钢束布置形状(主要是竖向形状)、钢束数量、预应力荷载是否满足结构的验算要求。如果基本满足验算要求再按准确的横向位置布置每根钢束。如果不满足验算要求通过调整标准钢束的形状再进行分析。 参考例题:模型\预应力钢束布置方法-标准钢束.mcb 2、钢束复制移动(重新分配单元法): 对于顶板束,钢束的布置形状通常都是相似的,因此可通过钢束的复制移动功能实现。 命令:荷载/预应力荷载/钢束布置形状 1)定义源钢束——在钢束布置形状中,选择“添加”,钢束坐标轴选择“单元”,如下图 所示定义源钢束布置形状:

图2 钢束复制移动时源钢束的定义 2)复制生成钢束——在钢束布置形状中选择源钢束,然后选择“复制和移动”功能,如 下图所示—— 图3 选择源钢束后选择复制和移动功能

箱梁预应力钢束的估算及布置

预应力钢束的估算及布置 1预应力钢筋数量的估算 本桥采用后张法预应力混凝土连续组合箱梁桥构造形式。设计时他应满足不同设计状况下规范规定的控制条件要求,例如承载力、抗裂性、裂缝宽度、变形及应力等要求。在这些控制条件中,最重要的是满足结构在正常使用极限状态下的使用性能要求和保证结构在达到承载能力极限状态时具有一定的安全储备。因此,预应力混凝土桥梁设计时,一般情况下,首先根据结构在正常使用极限状态正截面抗裂性或裂缝宽度限值确定预应力钢筋的数量,再由构件的承载能力极限状态要求确定普通钢筋的数量。 估算配筋总体信息输入: 本桥为预应力三跨连续箱梁桥,共设89个单元,简直变连续体系。 施工阶段边界条输入: 第一施工阶段边界条件: 第二施工阶段边界条件:

使用阶段活荷载输入: 全桥三维模型: 根据桥梁博士计算所出的结果可以查出再正常使用极限状态截面上下缘所需的钢筋面积。如表3-1:

表3-1 所需估算钢筋截面面积表 所需钢筋面积() 2m 截面杆件号 左上缘 左下缘 右上缘 右下缘 29 0.0027 0.0028 30 0.0028 0.0027 31 0.0027 0.0026 76 0.0037 0.0039 77 0.0039 0.0038 78 0.0038 0.0037 本工程中预应力钢筋采用 S φ15.20 高强度低松弛钢绞线、抗拉强度标注值 1860 =pk f MPa ,弹性模量 51095.1?=P E MPa 。对应的单根预应力钢筋的截面面积为2140mm 。 因此,需要的预应力钢筋的根数为: 上缘根数:16 0.028 2014010n -= =? 下缘根数:26 0.039 27.914010 n -==? 这样最终的预应力钢筋的选取为:上缘为 4515.2 s φ?的钢绞线;下缘为 4515.22615.2s s φφ?+?的钢绞线。预留钢束孔道为圆形塑料波纹管,分别选用 的型号为SBG-50Y ,SBG-60Y 。 钢束布置如下图3-1,3-2: 图 3-1 钢束纵向布置图

相关文档
最新文档