大温差与常规

大温差与常规
大温差与常规

特灵空调,中央空调的标志中央空调项目建议书

特灵空调系统(江苏)有限公司武汉办事处

二OO五年十一月

目录

一、方案一二次泵小温差变流量空调系统方案简介

二、方案二一次泵大温差变流量空调系统方案简介

三、两种空调系统配臵及初投资对比

四、两种空调系统冷冻站夏季运行费用对比

五、两种空调系统综合对比

空调系统设计合理与否,直接影响空调的使用效果、运行的经济性、使用的可靠性、系统的先进性等问题。贵公司厂房夏季总冷负荷约3000TON ,针对贵公司的具体情况,现提供两个方案供参考,方案一是采用二次泵小温差变流量空调系统;方案二是采用一次泵大温差变流量空调系统;这两种方案各有其优缺点,详见下文。

一、方案一 二次泵小温差变流量空调系统方案简介

由于以前的冷水机组不能适应冷冻水侧变流量,对于大型的中央空调系统,为了节约能耗,往往采用二次泵系统,即末端侧变流量,但冷水机组冷冻水侧采用定流量方式,变化的水量均从旁通管内直接回到冷水机组,这是国内前些年一些大型的空调系统常用的冷冻水循环方式。

冷水机组冷却水侧及冷冻水侧温差一般为5℃,这种小温差的空调系统在国内很常见。

如图所示是一个传统二次泵系统的示意图。机组运行时,一次泵保持定流量。在末端,冷却盘管上安装二通调节阀,使二次水系统在负荷变化时进行变流量调节。二次泵则由系统最远端的压差变化变频调节转速来维持设定的压差值。 旁通管则起到平衡一次水和二次水系统水量的作用。

1、主机配臵

中央空调主机采用离心式冷水机组,冷水机组没有适应冷冻水变流量功能,辅助配套设备有冷却塔、一次定流量冷冻水泵、二次变频冷冻水泵、冷却水泵等。

冷水机组冷冻水侧及冷却水侧均为5℃温差,冷冻水进出水温度为12/7℃,冷却水进出水温度为32/37℃。

2、系统优点:

属于常规空调系统,积累的操作、选型等各方面的经验丰富。

3、系统缺点:

⒈由于有一次泵及二次泵,管道及阀门增多,导致初投资高,占地面积大;

2. 冷冻水流量高,管道大,冷冻水泵电机功率大,运行费用高,并且大管道及大水泵初投资高;

3.有一次泵及二次泵,设备多,系统故障率高;

二、方案二一次泵大温差变流量空调系统方案简介

一次泵大温差变流量系统是一种新型空调系统,这种新型的空调系统非常节能,国外从1998年开始有越来越多的用户在使用,国内也有用户开始使用这种新型的节能空调系

统,如成都的INTEL工厂、青岛贝尔卡特、沈阳卓展广场已经开始使用一次泵大温差变流量空调水系统。

近来年许多研究结果表明:加大冷水供、回水设计温差时水泵所减少的能耗大于由此导致的设备传热效率下降所增加的能耗,因此对于整个空调系统来说具有一定的节能效益,目前有的实际工程已用到8℃温差,从其运行情况看也有良好的节能效果。大温差小流量的空调系统能减少初投资并且可以节省运行费用,近几年来已经被越来越多的用户所接受。

于2005年4月4日发布的《公共建筑节能设计标准》(已于2005年7月1日实施)P16页第7条规定“冷水机组的冷水供、回水设计温差不应小于5℃。在技术可靠、经济合理的前提下宜尽量加大冷水供、回水温差”。采用大温差是大势所趋。

国内许多建筑物已经率先采用了大温差技术,有常规空调系统采用低温大温差冷冻水系统的,也有与冰蓄冷相结合的低温大温差冷冻水系统的,常规空调系统中采用低温大温差送风系统的有上海中保大厦(冷冻水进出水温度6.7℃/15.6℃,温差8.9℃)、上海万国金融大厦(冷冻水进出水温度6.7℃/14.4℃,温差7.7℃),上海浦东国际金融大厦(冷冻水进出水温度5.6℃/15.6℃,温差10℃),广州国际会议展览中心(冷冻水供回水温度5℃/14℃,温差9℃);广州新白云机场航站楼(冷冻供回水温度6℃/14℃,温差8℃),广州地铁二号线(冷冻水供回水温度7/17℃,温差10℃);

一次泵变流量系统是真正的变流量空调系统,与二次泵变流量系统有着本质的区别。我们先来看以下一次泵变流量系统的一些特点。如上图所示:和二次泵系统相比,最显著的一个特点是少了一组定速泵,当系统水量小于单台冷冻机最小允许流量时,旁通阀打开,旁通一部分水量使冷冻机运行在最小允许流量之上。系统末端仍然安装二通调节阀,末端侧变流量后冷水机组冷冻水侧直接适应这种变化了的流量,并且冷冻机和水泵的台数不必一一对应,它们的台数变化和启停也分别独立控制。

一次泵变流量空调系统对用户的好处是减少运行费用和初投资,一次泵变流量空调系统与大温差系统配合使用,整个空调系统更加节省运行费用和初投资。

1、主机配臵

中央空调主机采用蒸发器侧可适应变流量的水冷冷水机组,辅助配套设备有冷却塔、冷冻水泵、冷却水泵等,比定流量水系统所不同的是要求冷冻水泵变频,在冷冻水总管处

加设电磁水流量计。水冷离心式冷水机组具有适应蒸发器侧变流量功能,此功能不改变机组性能,只是增加变流量补偿模块,使机组在蒸发器侧变流量的情况下安全、稳定的运行,并保持出水温度恒定。

冷水机组冷却水侧仍为5℃温差,冷却水进出水温度为32/37℃;而冷冻水进出水温度为13/5℃,温差为8℃;

2、系统优点:

1.由于采用了大温差低温送风系统,水管及风管减小,保温材料减少,吊顶占用空间减小,不仅可以节约运行费用,并且初投资减少;

2.由于减少了二次泵,设备数量少,使用可靠,故障率低,日常维护量小;

3.由于减少了二次泵,设备、阀门及管路减少,可以节省初投资;

4.冷冻水流量从末端到主机都是统一改变,冷冻水泵采用变频控制,运行费用低;

5.机房占地面积小;

3、系统缺点:

1.属于新型空调系统,国外用户很多,但国内尚未普及;

五、两种空调系统配臵及初投资对比方案一二次泵变流量空调系统方案配置

方案二一次泵变流量空调系统方案配置

六、两种空调系统主机房夏季运行费用对比

武汉地区计算参数如下:

工业电价 : 0.592/kW〃h

供冷周期从每年的4月中旬至10月中旬,共计180天,每天运行8小时,其中各种负荷状态下的天数如下表:

两种方案各种负荷下的能耗明细表(冷却水泵及冷却塔在两个方案中能耗相同,此次不再计算):

系统运行费用对比:

七、两种空调系统综合对比

半导体温差发电技术

半导体温差发电技术 (总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

半导体温差发电技术 半导体温差发电技术,它的工作原理是在两块不同性质的半导体两端设置一个温差,于是在半导体两端就产生了直流电压。温差半导体发电有着无噪音、寿命长、性能稳定等特点。可在零下40摄氏度的寒冷环境中迅速启动,因此在实际中得到越来越广泛的应用。温差发电是一种新型的发电方式,利用西伯克效应将热能直接转换为电能。以半导体温差发电模块制造的半导体发电机,只要有温差存在即能发电。工作时无噪音、无污染,使用寿命超过十年,免维护,因而是一种应用广泛的便携电源。半导体温差发电机,目前主要用于油田、野外、军事等领域。该项目的另一市场化领域在于将发电装置用于太阳能、地热、工业废能等的利用,使热能直接转化为电能。另外,半导体发电模块体积小,重量轻,便于携带,可广泛用于小家电制造、仪器仪表、玩具及旅游业。 随着保护环境、节约能源的呼声越来越高、利用温差发电可能是发展大方向、从小型器件到大型电站,将越来越多地把实验室理论应用到实践中去。 目前国内市场上,最新开发的半导体温差发电组件,规格40×4 0×4毫米,其内在0.09欧姆以下,其内阻小、耐高温、长寿命。完全符合开发温差发电机的需要。若能使组件两面保持温差摄氏60

度,则可发出电压3.5V,电流3A--5A,温差减小电压电流也会随之减小。 使用时注意,温差发电组件的两面与金属散热片之间,最好涂上一层导热硅脂,以利于散热,减小热阻。另外注意,温差发电组件受热要均匀,不能直接用明火烤发电组件。要使发电组件平稳贴在高温物体表面,高温热面温度不能超过180度。其冷面必须加装金属散热片,并采取风冷、水冷、油冷或其它冷却措施,确保能够把热面传过来的热量即时带走,以保持发电组件两面的温差,提高发电效果。

整理版空调冷却水系统

空调冷却水系统空调冷却水系统设计默认分类 2010-01-21 15:17:46 阅读7 评论0 字号:大中小 摘要:空调制冷的冷却水系统一般是开式系统,相对比较简单,因而,经常不被设计人员所重视。本文就冷却水系统的承压、水泵扬程的确定、多台冷却塔的并联、系统的启停顺序、节能控制等问题谈谈自己的观点,供大家参考。 关键词:冷却水承压扬程冷却塔并联变频控制 空调冷却水系统设计问题的探讨 摘要:空调制冷的冷却水系统一般是开式系统,相对比较简单,因而,经常不被设计人员所重视。本文就冷却水系统的承压、水泵扬程的确定、多台冷却塔的并联、系统的启停顺序、节能控制等问题谈谈自己的观点,供大家参考。 关键词:冷却水承压扬程冷却塔并联变频控制 一、冷却塔的位置要考虑系统设备承压要求: 冷却水系统形式主要有两种:水泵前置式和水泵后置式,如图1、2。确定时要考虑水系统的承压能力。水系统的承压能力最大的地方是水泵出口,如图中的A点,系统承压有以下三种情况:系统停止运行时,水泵出口压力为系统静水压力h=Z;系统瞬时启动,但动压尚未形成时,水泵出口压力为系统静水压力和水泵全压之和h=Z+HP;正常运行时,水泵出口压力为该点静水压力与水泵静压之和h= Z+HP-v2/2g。冷水机组冷凝器耐压,目前国产机组一般为981KPa。水泵壳体的耐压取决于轴封的形式,水泵吸入侧压力在981KPa以上时,要使用机械密封。

冷却塔如果设在高层建筑主楼屋面,产生的压力高于机组的承压能力时,冷却水泵宜设在冷水机组的冷凝器出口,以降低冷凝器工作压力。有人会提出疑问:水泵入口负压过大,会产生气蚀。事实上, 冷却塔与冷水机组之间的高差,远大于管路阻力和冷凝器阻力,并且水泵还有一个容许吸上真空高度。 笔者的同学曾经设计一个工程,机房在地下,裙房屋顶为人员活动空间,业主要求在120米高的屋面安装冷却塔,系统最大承压要超过1.2MPa与水泵全压之和。这就造成产生的静压太高,冷凝器不能承受,同时对水泵轴封和软接头提出了更高要求。 解决方法一:选用能承受高静压的设备和管道配件,这将大大增加工程造价。 解决方法二:如图3,设两个冷却水箱、两套冷却水泵。一个高温冷却水箱、一个低温冷却水箱,一套冷却水泵从低温水箱抽水进入冷凝器后进入高温水箱,另一套冷却水泵从高温水箱抽水送入冷却塔,然后回流到低温水箱。但要注意:冷却塔处要采取一定的措施,避免停泵时水全部流入低温水箱。水箱要满足冷却塔到机房的充注水量,水箱的水位也不好控制;这样水泵的扬程太高(图中h高度的扬程浪费了),这不是一个经济的做法。 解决方法三:加板式热交换器隔绝高压,但冷却塔选用要有余量,如图4。 笔者认为,对于某些建设方的不合理的要求,设计人员不要迁就。此类工程最好把冷却塔放在放在裙楼上。 二、冷却水泵扬程的确定

大温差系统

大温差系统 EarthWise? System 中央空调节能系统设计指南(一)

大温差设计前言 1 一. 为什么要大温差? 2 二. 低温低流,使表冷器更冷 5 2.1. 冷水侧或蒸发器侧大温差5 2.2. 使表冷器更冷5 三. 高温低流,使冷却塔更热 7 3.1. 逼近度Approach7 3.2. 冷却塔的进出水温差Range7 3.3. 使冷却塔更热7 四. 水泵和管路系统的运行费用与造价 9 4.1. 水泵9 4.2. 管路系统10 五. 空气侧的大温差,低温送风应用 11 5.1. 低温送风11 5.2. 低温送风的优点11 5.3. 室内环境12 六. 结语 14 七. 常见问题 14 八. 附录 15 8.1. 建筑物内空气调节冷热水的经济绝热厚度15 8.2. 冷水机组大温差技术参数16 8.3. 吊顶式空调箱LWHA大温差参数17 8.4. 空气处理机组LPCQ大温差参数18 8.5. 组合式空调箱CLCP大温差参数19 8.6. 组合式空调箱CLCP XP大温差参数21 8.7. 风机盘管HFCF大温差参数24 九. 特灵大温差中国地区应用实例 25目 录 contents

大温差设计 2005年,我国GDP按照现金汇率计算,相当于 美国的1/8,但是消耗的电力是美国的一半。我国消耗的电力比日本还要多,但GDP只相当于日本的1/3强。 目前,我国已有房间空调器1亿台,商用空调120万套,空调能耗已占全国耗电量的15%左右。夏季用电高峰时,空调用电量甚至达到城镇总用电量的40%。 “绿色建筑”,“可持续发展”,“环保”,“节能”......这些名词已经不断地出现在媒体上,相应的国家规范也陆续推出,如: 《公共建筑节能设计标准》GB 50189-2005;《房间空气调节器能效限定值及能源效率等级》GB120213-2004《单元式空气调节机能效限定值及能源效率等级》GB19576-2004 ...... 为什么大温差的空调系统越来越受到欧美设 计顾问的青睐?大温差是一个减少空调系统投资,降低能耗的先进观念。上世纪90年代,西方很多空调设计顾问对大温差的冷水系统进行了深入研究并 付诸实践,在项目的设计中采用了大温差系统。在一些专业刊物中,已经对利用大温差实现节省初投资,降低运行费用有了充分的论述。如在1999年1月HPAC杂志“优化冷水机房”(David W. Kelly)一 文中,就提到了用大温差来降低运行费用,减少初投资。我们还记得十几年前笨重的大哥大,到现在所使用的精巧手机,技术的进步带来了芯片处理能力的提高,能耗的降低。同样在空调系统中,大温差低流量可以为我们实现低能耗,低初投资的目标, 并且可以节省宝贵的空间。 前 言 前 言

温差发电技术及其一些应用

温差发电技术及其一些应用 来源:能源技术2009-5-12 1 温差发电的原理 温差发电是利用两种连接起来的导电体或者半导体的塞贝克效应(Seebeck Effect),将热能转换成电能的一种技术。由两种不同类型的半导体构成的回路如图1,当装置的一端处于高温状态另一端置于低温状态下,就会在回路中形成电动势: ε = αs(T1-T2)(1) 式中:T1为低温度端温度,K;T2为高温端温度,K;αs为所用热电转换材料的塞贝克系数,V/K。 图1 温差发电原理图 (点击图片放大) 在应用时多个PN结串联起来,构成一个热电转换模块(见图2),目前已有产品面市。例如图3为Hi-z公司生产的热电转换模块系列,该模块系列能在-20℃到300℃的温度范围内有效地进行热电转换,输出功率为2.5~19W,负载电压为1.65~3.30V。

图2 热电模块结构示意图 (点击图片放大) 图3 Hi-z生产的热电转换模块系列 (点击图片放大) 2 热电材料的研究进展 热电转换模块转换的效率很大程度上决定于其组成材料的性能,温差发电的电动势不但取决于材料的塞贝克系数α ,而且和高低温端间的温差△T和有关, s 从而与材料的导热有关,另外输出电流还与材料的导电率有关,所以常用热电转换材料的优值Z评价材料的热电性能:

Z=(α s )2σ/λ(2) 式中:α s 为塞贝克系数,σ为电导率,λ为热导率。 Z的量纲为K-1,研究分析中优值又常采用优值Z和工作温度T的无量纲ZT 表征。提高材料的优值是研究开发高效热电转换材料的主要方向,通常有以下几种途径:①选择最佳载流子度;②提高载流子迁移率与晶格热导率的比;③改变晶体取向;④改变颗粒尺度使颗粒间既能导电同时声子散射又比较显著,促使颗粒定向分布;⑤选择最佳的工作温度及材料的禁带宽度。已有的研究资料表明,在室温下热电转换材料的优值只要能大于3,热电效率就可以达到令人较满意的水平并可以推广应用。目前热电材料的研究主要集中在以下几个方面。 (1)改进材料微观结构,例如结构纳米化。通过纳米技术在热电材料中掺入纳米尺寸的杂质相制备纳米复合结构热电材料(杂质相可为绝缘体、半导体或是金属,也可以为纳米尺寸的空洞),通过调整或者控制掺入杂质的成份、结构和大小得到纳米级的新相,达到提高热电材料ZT值的目的。 (2)开发梯度结构材料。功能梯度材料主要有两种:一种是载流子浓度梯度热电材料,即沿着材料的长度方向载流子浓度被优化,让材料的每一部分在各自的工作区达到最大的优值;另一种是分段复合梯度热电材料,由不同材料连接构成,每段材料工作在最佳温度区,可在大温差范围内工作从而达到较高的热电转换效率。 日本研究人员发现采用5种不同载流子浓度值的PbTe在300~1000K的温度范围内梯度化,其平均热电优值比单一材料增加1.5倍左右。Muller等利用4层不同掺杂浓度的FeSi2制备出热传感器并对其进行了测试,发现该元件在 -50~500℃的范围内Seebeck系数保持在270μV/K,波动小于±2%。Kang等研究 了SiGe/PbTe/Bi 2Te 3 三段层状热电元件,工作温度从室温到1073K,最大效率可 达17%;对二元(PbTe) 1-2 (SnTe)合金进行Ag元素掺杂并实现三段结构梯度化, 结果表明三段梯度热电材料PbTe/(PbTe) 0.8(SnTe) 0.2 /(PbTe) 0.6 (SnTe) 0.4 的最 大输出功率达175W/m2,性能比单段材料至少提高16%。

大温差小流量

系统简介 大温差小流量是一个减少空调系统投资,降低能耗的先进观念。大温差的目的是优化空调系统各设备间的能耗配比,在保证舒适度的前提下减少冷量输配的能耗,或是减少冷却塔和末端空调箱的能耗,同时降低系统初投资。大温差可以在冷水侧或冷却水侧实现,也可以在空气侧实现。 系统优点 节能 当今(2000's)的系统能耗比例一般为:冷水机组约占机房年能耗58%,冷水泵和冷却水泵约占26%,冷却塔约占16%。若能通过特别的系统设计,减少水泵和冷却塔的耗能,将大大节省运行费用。 我们选择一个1800冷吨(6329kW)的酒店空调系统来分析大温差设计的节能效果。 项目情况:该酒店位于上海,全年空调运行时间为5月至11月。 分析软件:采用System Analyzer 进行系统全年运行模拟分析,计算全年主机水泵和冷却塔的运行能耗。我们可以得出常规和大温差的总体能耗比较。

? 常规温差:冷水侧7-12°C冷却水侧32-37°C ? 大温差:冷水侧5-13°C冷却水侧32-40°C 由此可见,采用大温差以后, ? 冷却塔的年能耗降低23.1%; ? 水泵的年能耗降低37.2%; ? 冷水机组的年能耗增加7.8%。 以上三项汇总,年冷水机房总能耗降低 6.1%。 由此可见,大温差可以有效地优化系统,达到运行节能的效果,它不是着眼于系统中的某一设备,而是作通盘的考虑,追求系统总效率的提升和初投资的降低。 减少初投资 ? 可以选择较小的水泵,节省初投资 大温差低流量可以让设计师选用较小的水泵,从而使得投资与运行费用减少。无论在冷水侧或是在冷却水侧,较小的水泵在部分负荷时的

节能会比常规温差更有优势。如下图4-1所示。 ? 可以选择更小尺寸的管路,节省初投资 大温差设计后,系统流量减小,则所需的钢管直径也会相应变小,这样在同样冷量情况下,可以大大节省钢管材料的费用。我们对不同冷量下5°C温差与8°C温差的冷水管的管径进行了分析,得出1800RT~10RT内不同的冷量下大温差系统可节约管路费用平均为30%。对于不同的项目,不同管径的管道所占的比例各不相同,平均节省的费用约在25-35%之间。 ? 减少冷却塔的数量,节省初投资 大温差设计后,冷却水的流量减小,冷却水和空气的换热温差加大。通过实际项目的冷却塔选型可以得出结论,大温差的冷却水设计平均可以比常规系统节约25%的冷却塔数量。 技术关键

温差发电技术与参数

温差发电是一种合理利用余热、太阳能、地热等低品位能源转换成为电能的有效方式。温差发电具有结构简单,坚固耐用,无运动部件,无噪音等特点。目前在国外已广泛研究。使用普通化石燃料作热源以形成温差发电器的实用系统首推美国专为野外使用而发展的军用电源。它们以各类军队常用的燃油燃烧产生的热量为热源转换为供给战场、尤其是前沿阵地各种电器设备的电能。由于在这些环境中低噪声、能快速启动、能长期连续工作、易携带、维护方便、后勤保障便利等是使用方首要的考虑,在这些方面,温差电转换发电器大大优于常用的内燃式驱动发电机和化学蓄电池。1988年美国生产了一种外型尺寸为 41.2cmX42.2cmX27.3cm的燃烧式温差发电器,该设备的发电元件由120对热电偶组成,可使用多种军用燃油,一次装载后连续工作12小时,产生13.1V直流电压,向负载提供120W的电功率。 2温差电技术的应用 随着环保意识的加强以及对传统能源未来匮缺的担心,充分利用余热发电的技术手段日益受到关注。2003年黎巴嫩大学的学者将温差电发电器的热端与该国的一种做饭用的火炉外壁连接,冷端置于空气中,利用炉壁的高温与环境的温差来发电。其实验中所使用的温差电元件即产自中国,因为中国的元件性价比最高,该设备实验中单片元件可产生4W的电功率。中国目前已成为世界上最大的温差电元件生产出口国,这为我国未来温差电的广泛应用打下了坚实的基础。 2.2太阳能和地热能热源 太阳能和地热能是新能源体系的主要组成部分,它们无污染,而且可以认为是无匮缺的长期资源。太阳能利用最为方便的形式是集热,通过集热后产生的温差即可用于发电。 2004年泰国学者通过利用置于屋顶的铜板吸收太阳能集热升温与环境之间的温差发电带动轴流风机引导屋顶空气自然对流从而达到给屋顶降温的效果。 2.3放射性同位素热源 对于需要长时间不间断供电而且无须人工维护的应用,温差电转换发电是一种较为理想的选择。所剩下的主要问题就是要寻找一个同样是体积小、寿命长的相应热源。由同位素放射产生热量的方式因其能量密度高、工作寿命长、可靠性高等优点被视为理想热源。 医学应用:放射性同位素热源的温差发电器用于向人体植入的器官或辅助器具供电,使之能长期正常工作,如人造心脏或心脏起博器。这类产品可耐受1600K以上的高温,其辐射水平比夜光表还低,依据放射源的半衰期其使用期限可达87年。 海洋和地面应用:随着人类在边远地区、海洋的活动不断增加,对能长期工作而不用太多维修的能源系统的需求日增。美国海军是海洋用放射性同位素温差发电器的最大用户。他们使用的典型发电器为Gulf Millibats,设计的工作深度达10KM,温差电偶材料为碲化铋,热源为同位素锶-90,可以提供电压为1.5到1.8V,功率不小于1W,寿命长达10年,通过直流-直流转化器获得24V的输出电压。1961年12月在Chesapeake Curtis海湾为核动力系统设置的第一台SNAP系统,在阿拉斯加的Umeat无人气象站。该站电能由一个至少6年无需维护的温差发电器提供。 空间应用:卫星用原子核辅助能源系统(SNAP)的发展始于1955年。1961年6月,美国海军装有SNAP3A这种能源系统

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

温差发电机原理

温差发电机原理 分类:杂九杂十| 标签:温差发电机? 塞贝克效应? 帕尔贴效应? 2013-05-21 09:35 阅读(2858)评论(0)塞贝克效应和帕尔帖效应 塞贝克效应(Seebeck effect):不同的金属导体(或半导体)具有不同的自由电子密度(或载流子密度),当两种不同的金属导体相互接触时,在接触面上的电子就会由高浓度向低浓度扩散。而电子的扩散速率与接触区的温度成正比,所以只要维持两金属间的温差,就能使电子持续扩散,在两块金属的另两个端点形成稳定的电压。由此产生的电压通常每开尔文温差只有几微伏。这种塞贝克效应通常应用于热电偶,用来直接测量温差。 一个温差发电电路由两种赛贝克系数不同的材料接触构成(比如P型半导体和N型半导体)。如果没有负载,电路中不会有电流但是两端会有电动势,这时候它以检测温度的热电偶方式工作。(图片来源:) 帕尔贴效应是塞贝克效应的逆效应,当有电流通过不同的导体组成的回路时,除产生不可逆的焦耳热外,在不同导体的接头处随着电流方向的不同会分别出现吸热、放热现象。这是珀耳帖在1834年发现的。简而言之,当在两种金属(或半导体)回路上施加电压通入电流后,不同金属的接触点会有一个温差。

利用塞贝克效应的热电制冷器电路图。(图片来源:) 帕尔贴效应常用于cpu散热器和袖珍冰箱里的半导体制冷片上。通常使用时我们给制冷片施加电流,一面就会变热而另一面变冷。但是这个效应也可以反过来:只要制冷片两端有温差就会产生电压。 温差发电依靠塞贝克效应,由于半导体温差电材料的效果比金属的高得多,所以有实用价值的温差电材料都是用半导体材料制成的。帕尔贴器件是利用半导体的帕尔贴效应制冷的器件,实用的半导体制冷器由很多对热电元件经并联、串联组合而成,也称热电堆。单级热电堆可得到大约60℃的温差。热电堆也可根据塞贝克效应工作把热能(即内能)转化为电能进行温差发电。当温差电堆两端处于不同温度时,就会产生电动势,可以输出功率。

空调水系统的设计原则

空调水系统的设计原则 1、空调水系统的设计原则 空调水系统设计应坚持的设计原则是: 力求水力平衡; 防止大流量小温差; 水输送系数要符合规范要求; 变流量系统宜采用变频调节; 要处理好水系统的膨胀与排气; 要解决好水处理与水过滤; 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 a、技术要求 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 a、造成大流量小温差的原因 设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。 水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 a、避免大流量小温差的方法 考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为0.2-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 a、水系统的补水与排水 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,

小流量大温差

“小流量、大温差”的运行方式可以实现了一.问题的提出 我国实施集中供热30多年以来,设计供回水温差是25℃,而实际运行都在15℃左右,能不能拉到25℃?答案是肯定的,实际上拉到40℃现在也容易实现了,为什么温差一直拉不开呢?传统的室内供暖运行方式,散热器的连接无论是并联系统还是串联系统,通过每组散热器的流量是不可控的,造成了散热量的不可控制。由于近端的散热器的流量很大,是所需流量的几倍,一般每平米建筑面积的流量是5kg/h以上,因此供水温度不用太高(一般是55℃左右,回水温度在45℃,温差只有10℃左右),室内即可达到设计温度,且大部分近端的室内温度在23℃以上(浪费了大量的电能和热能)。也就是说,一直以来“大流量、小温差”的运行模式,其主要原因是散热器的流量不可控造成的,供暖要想实现“小流量、大温差”的理想运行方式,把节能潜力全部挖掘出来,真正提高供暖质量,必须使每组散热器的流量均可调控。 为什么一直以来就没有解决这一问题呢?一是对流量控制的重要性认识不高,总认为供热就是一个热源、两根管线和几组暖器片,只要锅炉一烧、循环泵一转就行了。二是没有较好的流量控制产品和手段,对控制散热器流量来说,一直以来没有一种简单易行的产品,现行的产品调试相当繁琐,给调试人员和用户都带来很多的不便。 现在,是到了解决这一问题的时候了,首先国家提倡节能减排,给了很好的优惠政策;二是多年来的供热发展,供热水平也得到了巨大提升,人们也越来越认识到流量控制对提高供热质量的重要性;三是经过多年来的探讨与实践,真正适合中国国情、简单易行控制散热器流量的产品和方法问世了。 二.均流阀、锁闭流量阀和差压阀的配合应用是实现每组散热器的流量均可调控的极佳方案

半导体温差发电技术

半导体温差发电技术 半导体温差发电技术,它的工作原理是在两块不同性质的半导体两端设置一个温差,于是在半导体两端就产生了直流电压。温差半导体发电有着无噪音、寿命长、性能稳定等特点。可在零下40摄氏度的寒冷环境中迅速启动,因此在实际中得到越来越广泛的应用。 温差发电是一种新型的发电方式,利用西伯克效应将热能直接转换为电能。以半导体温差发电模块制造的半导体发电机,只要有温差存在即能发电。工作时无噪音、无污染,使用寿命超过十年,免维护,因而是一种应用广泛的便携电源。 半导体温差发电机,目前主要用于油田、野外、军事等领域。该项目的另一市场化领域在于将发电装置用于太阳能、地热、工业废能等的利用,使热能直接转化为电能。另外,半导体发电模块体积小,重量轻,便于携带,可广泛用于小家电制造、仪器仪表、玩具及旅游业。 随着保护环境、节约能源的呼声越来越高、利用温差发电可能是发展大方向、从小型器件到大型电站,将越来越多地把实验室理论应用到实践中去。 目前国内市场上,最新开发的半导体温差发电组件,规格40×40×4毫米,其内在0.09欧姆以下,其内阻小、耐高温、长寿命。完全符合开发温差发电机的需要。若能使组件两面保持温差摄氏60度,则可发出电压3.5V,电流3A--5A,温差减小电压电流也会随之减小。

使用时注意,温差发电组件的两面与金属散热片之间,最好涂上一层导热硅脂,以利于散热,减小热阻。另外注意,温差发电组件受热要均匀,不能直接用明火烤发电组件。要使发电组件平稳贴在高温物体表面,高温热面温度不能超过180度。其冷面必须加装金属散热片,并采取风冷、水冷、油冷或其它冷却措施,确保能够把热面传过来的热量即时带走,以保持发电组件两面的温差,提高发电效果。

国际五星级酒店大温差小流量空调水系统方案研究

国际五星级酒店大温差小流量空调水系统方案研究 【摘要】星级酒店空调水系统方案设计时,中央空调制冷主机冷冻水供、回水温度差通常为5℃,随着中央空调制冷主机效率的提高,8℃温度差的大温差小流量空调水系统方案应用越来越多。本文介绍了大温差小流量空调水系统方案特点及应用条件,通过与常温差空调水系统方案对比分析,得出大温差小流量空调水系统在本酒店空调系统中可以减少系统总能耗及材料设备初投资,并结合工程实例说明该方案的应用效果。为星级酒店及其他类似建筑空调水系统设计提供工程设计参考。 【关键词】酒店;中央空调;水系统;节能;运行 0 前言 国际品牌五星级酒店装修豪华、功能及设施齐全,投资与运行能耗高,其中中央空调系统能耗占到总能耗的50%左右。一般而言,完整的中央空调系统由三大部分组成,即空调冷热源、供热与供冷管网、以及空调末端用户系统。空调水系统是指空调冷冻水、冷却水系统,是空调管路系统中的重要组成部分[1]。酒店空调系统中冷冻水泵、冷却水泵、采暖热水泵耗电量占空调总耗电量的比例为:冷冻水水泵占5.9%,冷却水水泵占2.7%,采暖泵占4.9%,可见水泵电耗在空调电耗中占很大比例,节能潜力也很大。实际工程设计时,重视空调水系统节能[2],并贯穿于设计、施工和运行全过程,具有十分积极的意义。 1 国际五星级酒店工程及空调系统介绍 本国际五星级酒店位于广东珠江三角洲地区,占地面积49148.85平方米,建筑面积175255.97平方米,建筑总高度99.8米。其中,负2~负1层为酒店地下室,主要功能为各类设备房,停车区及酒店后勤区;1~5层为酒店裙楼,主要功能为酒店大堂、宴会、餐饮、酒吧、会议及康体娱乐等;6~27层为酒店塔楼,主要为客房区及行政休闲廊。 本酒店空调按舒适性空调设计,夏季降温、冬季采暖,采用五星级酒店设计标准。通过对酒店全年负荷进行分析,综合酒店实际设计条件,主机选用离心式冷水机组加全热回收螺杆式机组的方案,包括2台1000RT、2台600RT的离心式冷水机组,以及2台856kW的全热回收螺杆式机组。 2 大温差小流量空调水系统优点分析 大温差小流量空调水系统是一个减少空调系统投资,降低能耗的先进概念。大温差的目的是优化空调系统各设备间的能耗配比,在保证舒适度的前提下减少冷量输配的能耗,以及减少冷却塔和空调末端的能耗,同时降低系统初投资。 2.1 对比系统满负荷运行能耗,温差增大,流量减小,制冷机能耗虽上升,

冷能温差发电技术及材料研究进展

冷能温差发电技术及材料研究进展 胡 放3 戚学贵 王学生 任 超 代晶晶 (华东理工大学机械与动力工程学院) 摘 要 温差发电技术是一种直接利用热电材料完成热能到电能转换的能源利用技术。介绍近年来关于温差发电的实验和理论研究的国内外现状以及各种热电材料的研究进展和制备状况。 关键词 温差发电 LNG冷能 热电材料 热导率 磁控溅射 0 前言 21世纪的能源短缺促使各国展开多种形式的开源节流,并促使了全球能源体系的重大调整。展望我国从目前到2050年能源需求与保障供应的可能性,煤的份额将由目前的约70%减少至2050年的约40%,天然气、水电、核电份额将有所增长,还有约15%的缺口要靠大规模发展非水能的可再生能源来补足[1]。理论上只要存在冷、热温差,就可转化得到可供利用的能源,故可称为冷、热温差资源为温差能源。开发利用温差能源,国内外已进行了相当多的探索和应用,且工作主要集中于热电转换材料的温差发电[2~4]。 1 L NG冷能利用现状 LNG(liquified natural gas)是天然气经过脱酸、脱水处理,通过低温工艺冷冻液化而成的低温(-162℃)液体混合物。每生产1t LNG的动力及公用设施耗电量约为850k W?h;而在LNG接收站,一般又需将LNG通过气化器气化后使用,气化时放出很大的冷量,其值大约为830kJ/kg(包括液态天然气的气化潜热和气态天然气从储存温度复热到环境温度的显热)。我国将在沿海地区相继建成十几个LNG接收站,每年将进口数以千万吨计的LNG,同时携带着巨额冷量[5]。在高能源价格下,液化天然气的巨大能耗和汽化天然气的冷能浪费使LNG的冷能利用成为热电转换中的新兴领域。 2007年福建已经以每年260×104t的规模进口LNG,华南理工大学[5]为其设计了“超低温冷能的火用分析和火用经济价值估算通过冷媒循环利用LNG 冷能系统”以及“LNG冷能用于空分和中低温冷用户的集成方案”,可以冷却290×104t空气,相当于60000m3/h的氧气制备规模,即一套特大型常规空气分离装置的规模,其大致可以生产11000 m3/h的液氧、47000m3/h的氧气、80000m3/h左右的液氮和氮气,以及1800m3/h左右的氩气。 另外一例国内LNG接收站冷能利用以深圳大鹏湾接受终端[6],如不采用LNG的冷能综合利用技术,每年排入附近海域的冷量将达到215×109 MJ。因此,研究LNG冷能的综合利用技术不仅有利于节约能源,发展循环经济,而且能最大程度减少LNG终端站对附近海域的影响,保证该湾区甚至全部沿海地区的可持续发展。 在国内,LNG低温电能利用尚处于实验室研究阶段。目前所提出的LNG冷能发电主要是利用LNG的低温冷能使发电装置中循环工质液化,而后工质经加热气化再在气轮机中膨胀作功带动发电机发电。全静态的热电材料温差发电方式具有简单、无运动部件、组合方便等很多优点,因此它是一种实现LNG低温冷能温差发电的颇具前景的途径。 北京化工大学的Lu、W ang两人[7]设计开发了直接利用LNG冷能的朗肯循环,以氨水—水作为 3胡放,女,1986年7月生,硕士研究生。上海市,200237。

温差发电的原理

温差发电原理 温度这个名词是因为我们天天听得到,所以不去问什么是温度的实质。温度是指一定环境下物体内分子或原子热运动的速度”比如气温就是指气体分子的运动速度。不过他们的运动是热”运动,没有固定的方向,或者说物体内由于分子相互碰撞,能量相互传递,方向时时因碰撞而改变。故物体内分子运动很快达到同一运动速度状态” 再说温度传递。两片具有温差的物体接近时,有两种方式可以形成热”传递。或者说形成分子运动速度传递。第一是分子碰撞,温度低的速度慢,能量低。温度高的速度快。两者结合再一起,最终形成中和”第二种是热辐射”说到底就是电磁辐射” 只是这种电磁辐射的波长要比可见光长一些,但温度高时发出的辐射就是可见光”了。所以说在空间内电磁辐射”是能量传递的最基本形式。物体只要在绝对零度以上就能向外界发射电磁辐射”线。只是不同物体在不同温度下,电磁辐射的强度不同。温差就是指两种物体在接触时电磁辐射强度有差别。即物体间存在电磁场强度差别,即存在电位差”或者说存在电动势”导线可以理解为等势体”这样温度不同的物体间接一导线,有电流”产生就好理解了。温差发电”就不奇怪了。 温差发电将热能直接转化为电能,只有微小温差存在的情况下也能应用,是适用范围很广的绿色环保型能源一一它甚至能利用人的体热,为各种便携式设备供电,真正做到,变废为宝?。”华东理工大学机械工程学院涂善东教授、栾伟玲副教授认为,温差电技术正重新成为全球研究的热点,值得我国科学技术研究部门的重视。 就温差电技术的机理、该领域最新研究进展、进行推广应用的紧迫性和当前可能取得进展的突破点等问题,两位从事能源材料与设备技术研究的专家接受了本报记者的专访。 Seebeck 效应 温差发电通过热电转换材料得以实现,而检定热电转换材料的标志,在于它的三个基本效应:Peltier效应、Seebeck效应和Thomson效应。”栾伟玲副教授说,正是这三个效应,奠定了热力学中热电理论的基础,也为热电转换材料的实际应用展示了广阔前景。其中,Seebeck效应是温差发电的基础。 1821年,德国人Seebeck发现,在两种不同金属(锑与铜)构成的回路中,如果两个接头处存在温度差,其周围就会出现磁场,又通过进一步实验发现回路中存在电动势。这一效应的发现,为测温热电偶、温差发电和温差电传感器的制作奠定了基础。 栾伟玲介绍,热电转换材料直接将热能转化为电能,是一种全固态能量转换方式,无需化学反应或流体介质,因而在发电过程中具有无噪音、无磨损、无介质泄漏、体积小、重量轻、移动方便、使用寿命长等优点,在军用电池、远程空间探测器、远距离通讯与导航、微电子等特殊应用领域具有无可替代”的地位。在21世纪全球环境和能源条件恶化、燃料电池又难以进入实际应用的情况下,温差电技术更成为引人注目的研究方向。

空调管路系统的设计原则

一、空调管路系统的设计原则 空调管路系统设计主要原则如下: 1.空调管路系统应具备足够的输送能力,例如,在中央空调系统中通过水系统来确保渡过每台空调机组或风机盘管空调器的循环水量达到设计流量,以确保机组的正常运行;又如,在蒸汽型吸收式冷水机组中通过蒸汽系统来确保吸收式冷水机组所需要的热能动力。 2.合理布置管道:管道的布置要尽可能地选用同程式系统,虽然初投资略有增加,但易于保持环路的水力稳定性;若采用异程系统时,设计中应注意各支管间的压力平衡问题。 3.确定系统的管径时,应保证能输送设计流量,并使阻力损失和水流噪声小,以获得经济合理的效果。众所周知,管径大则投资多,但流动阻力小,循环水泵的耗电量就小,使运行费用降低,因此,应当确定一种能使投资和运行费用之和为最低的管径。同时,设计中要杜绝大流量小温差问题,这是管路系统设计的经济原则。 4.在设计中,应进行严格的水力计算,以确保各个环路之间符合水力平衡要求,使空调水系统在实际运行中有良好的水力工况和热力工况。 5.空调管路系统应满足中央空调部分负荷运行时的调节要求; 6.空调管路系统设计中要尽可能多地采用节能技术措施; 7.管路系统选用的管材、配件要符合有关的规范要求; 8.管路系统设计中要注意便于维修管理,操作、调节方便。 二、管路系统的管材 管路系统的管材的选择可参照下表选用:

三、供回水总管上的旁通阀与压差旁通阀的选择 在变水量水系统中,为了保证流经冷水机组中蒸发器的冷冻水流量恒定,在多台冷水机组的供回水总管上设一条旁通管。旁通管上安有压差控制的旁通调节阀。旁通管的最大设计流量按一台冷水机组的冷冻水水量确定,旁通管管径直接按冷冻水管最大允许流速选择,不应未经计算就选择与旁通阀相同规格的管径。 当空调水系统采用国产ZAPB、ZAPC型电动调节阀作为旁通阀,末端设备管段的阻力为0.2MPa时,对应不同冷量冷水机组旁通阀的通径,可按下表选用: 冷冻水压差旁通系统的选择计算 在冷冻水循环系统设计中,为方便控制,节约能量,常使用变流量控制。因为冷水机组为运行稳定,防止结冻,一般要求冷冻水流量不变,为了协调这一对矛盾,工程上常使用冷冻水压差旁通系统以保证在末端变流量的情况下,冷水机组侧流量不变。系统图如图一。

大温差小流量的空调水系统方案(1)

大温差小流量的空调水系统方案(1) 摘要:在楼宇空调水系统设计方案中,冷水机组的冷冻水供、回水温差通常为5 ℃。近年来冷水机组的效率提高很快,同时大温差小流量的空调水系统方案受到了更多关注。本文分析说明大温差小流量的空调水系统方案经过优化可以减少空调系统的总能耗和配套设备的初投资,探讨在该方案中空调水系统末端设备的选择问题,并结合工程实例说明该方案的应用效果。 关键词:冷水机组空调水系统运行费用初投资 0 前言 近年来中国许多大中城市夏季电力短缺现象日趋严重,已影响了当地的经济发展和人民生活。夏季空调设备的耗电量节节攀升,高峰时甚至消耗约40 %的城市电力供应,因此节约用电迫在眉睫。 于20XX年实施的《冷水机组能效限定值及能源效率等级》和《公共建筑节能设计标准》均提出了强制性的冷水机组能效比要求,为空调设备节约用电打下坚实基础。 由于楼宇的空调电费取决于整个空调系统的能耗,因此不仅需要提高空调设备本身的效率,而且要优化空调系统设计,降低楼宇空调系统的整体能耗。楼宇空调的冷水系统一般包括冷水机组、冷却塔、冷冻水水泵及冷却水水泵等几个

主要的耗能部件。在过去的30年内,冷水机组的效率几乎提高了一倍,冷水机组占整个系统能耗的比例已降低了20 %,而冷却塔和水泵的能耗比例提高了10 %。需要优化空调系统的设计方案,调整各部件所占系统能耗的分配比例来降低整个系统的能耗。 图1 过去30年内冷水系统能耗百分比的变化1 优化空调水系统 多年来冷水机组的冷冻水供、回水设计温差通常为5 ℃。冷水机组提供的冷量与冷冻水的供、回水温差和流量有关,计算公式如下: Q = M*Cp*DT 式中假定比热Cp为常数。若所需的冷量Q不变,则既可采用增大流量M而减小温差DT的方案,又可采用减少流量M而增大温差DT的方案,而这两种方案的系统总能耗可能并不相等。 为了分析系统总能耗如何随水流量和水温差而变化,在表1中选择4种不同的流量/温差方案进行了计算。表中/ gpm/ton这一基准方案也是ARI的标准额定工况。本例中对系统的构成不作详细介绍。表1 水流量对系统总能耗的影响水流量方案////冷冻水流量gpm/3/温差oF10121818o进口温度oF54546060o出口温度oF44424242o冷却水流量gpm/3/温差oF10101015o进口温度oF85858585o进口温度

半导体温差发电机原理及制作

半导体温差发电机原理及制作 编辑:https://www.360docs.net/doc/be17381391.html, 文章来源:网络我们无意侵犯您的权益,如有侵犯请[联系我们] 半导体温差发电机原理及制作 笔者以蜂窝煤热水炉的进出水为温差源,制作了一台半导体温差发电装置,原理框图 见上图。 半导体温差发电是一种将温差能(热能)转化成电能的固体状态能量转化方式。发电 装置无化学反应和机械运动,无噪声、无污染、无磨损、寿命长。它的核心部件是半 导体温差电偶模块(因多用于制冷,亦称半导体致冷片,电子元器件市场大多有售)。将它的两根引出线连接到万用表的电压或电流挡,用体温传导到它的一个面,使其两 面形成温差,指针就会偏转,实实在在的温差发电就展现在你的面前。但是,目前半 导体温差电偶模块热电转化效率低,近年有研究表明最高不到5%,这是半导体温差 发电实用化的最大障碍。 制作半导体温差发电装置的第一件事是选择温差源。供一个家庭利用的温差源十分有限,可说说也挺多。 一是炊事温差,烧天然气、石油液化气、煤炭、沼气等等产生高温;二是空调、暖气 温差;三是地温温差,庭院井水、溪水与地表的温差;四是太阳能温差,用太阳能热 水器、太阳灶获得热量;五是冬季冰雪与室内、地下的温差,等等。但是,利用起来 必须满足方便获得、经济、持续和有足够的能量的要求。实验表明,对目前通常的半 导体温差发电模块每提供摄氏1度的温差可相应产生约0.03V电压,可见温差小就没 有实际利用价值。本人之所以选择蜂窝煤热水炉的进出水为温差源,是因为炉火昼夜 不熄,炉灶热水与进水(自来水)的温差大,夏季摄氏60多度,冬季可达摄氏90多度,且比较稳定。同时利用自来水的压力解决了能量无耗输送的难题,只要家庭成员 洗菜、洗碗、洗手、洗脸、洗澡等一用热水,就能获得理想的温差。特别需要强调的是,半导体温差电偶模块是良好的导热体,如果两面没有高低温两种能量的输送,温 差就不能维持,保温做得再好,模块两面的温度接近也是枉然。这是许多失败案例的 根本原因。本发电装置用的是“过路水”,能耗视同为零,同时对热水的降温也不十 分明显。中图是该装置的结构示意图。 制作要点如下: 1.介质导管和高低温差面的制作将两根直径30.5mm、长1000mm的铝管两端车丝,以便在使用时经活接头接人蜂窝煤热水炉的冷、热水管路,按图2剖面的形状加工后,分别和宽60mm、厚3mm、长1000mm的铝条焊在一起,焊接要充分、厚实。铝条 与半导体温差发电模块相贴的冷热端传导面要平整光滑。再试着将要安装的半导体温

关于换热站二次网进行小流量大温差运行工况试验的情况说明

关于换热站二次网进行小流量大温差运行工况试验的情况说明 【摘要】节能对于促进能源、资源节约和合理利用,缓解我国能源、资源供应与经济社会发展的矛盾,加快发展循环经济,实现经济社会的可持续发展,有着举足轻重的作用,也是保障国家能源安全,保护环境,提高人民群众生活质量、贯彻落实科学发展观的一项重要举措。 【关键词】换热站换热器;循环泵;节能 目前,我国能源浪费已经是非常严重,是世界上第二能源消耗国,其中采暖能耗占有相当大的比例。采暖能耗一部分是由于供热系统自身存在的问题及运行管理不到位导致,另一部分是由于建筑围护结构的保温性差,热损失严重以及用户无自主节能意识,有私自放水放热现象导致。随着国家节能减排工作的开展,节约能源已经是供热企业的工作重点,它不但要求要有良好的企业管理模式,还要求采用先进的节能技术措施及经济的运行方式。 供暖运行中实现小流量大温差的运行工况一直是供暖行业乃至整个社会关于供暖节能运行最为关注的课题,水以流量的形式在供暖运行中作为热能的载体输送着热量,多年来国内和国际市场上陆续出现了多种多样的节能产品,从管道保温材料的技术更新,减少了热能输送过程中不必要的损失,从普通建筑到节能建筑,减少了建筑物能耗大的问题,从水-水管壳式换热器到水-水板式换热器,很大程度提高了换热器的换热性能,从工频运行到变频技术,解决了实际运行负荷小于设计负荷和设计富裕量过大的问题,从手动平衡阀到各种自立式平衡阀,解决了管网平衡调节周期长、互相干扰精度低的问题,这些措施无不体现了社会对节能工作的重示和研究。 从性价比来讲,现有行业中主要的可行性节能措施有:水泵采用变频技术减少富裕流量、管网安装自力式平衡阀提高平衡调节水平,局部管网管径加粗或环网改造,减少失水和降低比摩阻,次要的可行性节能措施主要有:对换热器进行改造或更换来提高换热能力,对管网进行大范围更换提高保温性能、减少失水和降低比摩阻,从社会角度来讲,新建节能建筑和对老旧建筑物围护结构增加保温结构来减少热量浪费同样是一项很有效的节能措施,对于刚步入节能工作的单位来讲,上述改造方式可以很大程度的达到节能的效果,但对于节能工作已做到一定水准的单位来讲,就必须通过其它途径进行突破才能更有效的将运行节能工作进行下去。 换热站节能工作主要有减少能源浪费、降低能源过剩、提高换热效率三大部分,通过对建筑围护结构节能和管道及设备的保温性、密闭性的处理以及变频技术的应用和开展管网平衡调节都是对前两部分的有效诠释,一定程度的减少电能的消耗,但这些都是对管网或者热用户进行流量合理分配达到减少总循环流量,从而达到了减少循环水泵动力电耗的目的,而对于提高换热效率这个同样重要的工作环节的研究却开展的很缓慢,从水-水板式换热器的推广和广泛应用后,就渐渐的达到了一个相对稳定的时期,对于非直供的供热系统来讲,换热站的换热

相关文档
最新文档