天津市武清区2016-2017学年度第二学期期中试卷八年级数学

合集下载

2016-2017学年天津市部分区八年级下学期期末考试数学试题(图片版含答案)

2016-2017学年天津市部分区八年级下学期期末考试数学试题(图片版含答案)

天津市部分区2016~2017学年度第二学期期末考试八年级数学评分标准一、单选题.(本题包括12小题,每小题3分,共36分)二、填空题.(本题包括6小题每题3分,共18分)13. 2714. 4.8 15. > 16. 8 17. 2 18. 2或143三、解答题.( 本题包括7小题,共46分) 19.计算:(每小题3分,共6分)(Ⅰ)解:原式/--------------------------3/(Ⅱ)解:原式//20. (本题6分)解:(Ⅰ)X 甲= 8 X 乙= 8 -----------------------2/(Ⅱ)甲种麦苗长势较整齐 --------------------------4/因为S 2甲=1.2,S2乙=1.6 -------------------------5/由于S 2甲<S 2乙 , 所以, 甲种麦苗长势较整齐 -------------------------6/21. (本题6分)解:在矩形A B C D 中,A D =4,D C =A B =8,∠ D 为直角 -------------------1/∵四边形A F C E 是菱形,AF=FC=CE=EA ------------------------2/设AE 的长为x,则EC=x, DE=8-x, ----------------------3/由勾股定理得,222AD DE AE +=∴ 2224(8)x x +-= --------------------------4/解得x=5 -------------------------5/∴AE=5, 菱形A F C E 的周长为20 . --------------------------6/22. (本题6分)(Ⅰ)解:联立方程组24y x y x =+⎧⎨=-+⎩ 解得13x y =⎧⎨=⎩ ∴A(1,3)------------1'易得B(-2,0) C(4,0), BC=6------------2's △ABC=16392⨯⨯= ----------3'(Ⅱ)解:由已知可得D(0,2), ----------4'12222BOD S ∆=⨯⨯= -----------------5'由(1)知9ABC S ∆=∴s 四边形ADOC =s △ABC -s △BOD =9-2 = 7 ------------------6'23. (本题6分)解:(Ⅰ)25 ; 28 ___________2/(Ⅱ)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6 __________________________________4/∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21 _______________________________________5'∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.---------------------6/ 24. (本题8分)(Ⅰ)证明:在正方形ABCD中,AC⊥BD,OA=OB又∵AM⊥BE, ∠AFO=∠BFM,∴∠FAO=∠EBO ________________________2'∴△AFO ≌△BEO (ASA) _______________________3'∴OE=OF _______________________4'(2) 成立_______________________5'同理可得∠AFO=∠BEO _______________________6'可得△AFO ≌△BEO (AAS) ------------------------7'得OE=OF -------------------------8'25. (本题8分)解:(Ⅰ)表一:_______________________3' 表二:注:每空1分,列式对,没化简,不扣分!_______________________6'(Ⅱ)设总运费W元,由(Ⅰ)可知,总运费为:W=20x+15(200-x) + 25(240-x)+ 24(60+x)=4x+10440 ------------------------7' 其中,0≤x≤200.∵4>0,∴W随x的增大而增大.∴当x=0时,W取得最小值10440.答:此时方案为:把甲仓库的物资(240吨)全部运往B港口,再从乙仓库运200吨往A港口,乙仓库余下的物资(60吨)全部运往B港口.-------------------------8' (说明:解答题用其他方法解,只要合理,请参照评分标准酌情给分)。

天津市武清区~八年级上期中质量调查数学试题含答案

天津市武清区~八年级上期中质量调查数学试题含答案

武清区~第一学期期中质量调查八年级数学第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合要求的。

请把每小题的答案填写在下表中。

(1)下列各图中,正确画出AC边上高的是(A)(B)(C)(D)(2)下列长度的三条线段,可以组成三角形的是(A)10,5,4 (B)3,4,2(C)1,11,8 (D)5,3,8(3)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是(A)(B)(C)(D)(4)下列说法一定正确的是(A)形状相同的两个三角形全等(B)面积相等的两个三角形全(C)完全重合的两个三角形全等(D)所有的等边三角形全等(5)已知一个多边形的内角和是900°,则这个多边形(A)五边形(B)六边形(C)七边形(D)八边形(6)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是(A)∠A(B)∠B(C)∠C(D)∠B或∠C(7)如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A’处,折痕为CD,则∠A’DB的度数是(A)40°(B)30°(C)20°(D)10°(8)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN(A)∠M=∠N(B)AM=CN(C)AM∥CN(D)AB=CD(9)在直角坐标系中,点A,点B关于y轴对称,点A的坐标(2,-8),则点B的坐标是(A)(2,8) (B)(-2,-8) (C)(-2,8) (D)(8,2) (10)在下列结论中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④有一个角是60°,且是轴对称的三角形是等边三角形.其中正确的个数是(A)4个(B)3个(C)2个(D)1个(11)如图,在△ABC中,以B为圆心,BA长为半径画弧交边BC于点D,连接AD,若∠B=40°,∠C=36°,则∠DAC的度数是(A)34°(B)44°(C)54°(D)64°(12)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α的大小为(A)30°(B)45°(C)60°(D)90°第Ⅱ卷(非选择题共84分)二、填空题:本大题共6小题,每小题3分,共18分。

2016-2017学年度下学期初二数学试卷

2016-2017学年度下学期初二数学试卷

2016-2017学年下学期中段水平测试八年级数学试卷(所有答案做在答题卡上)一、选择题(每题3分,共30分)1.下列二次根式中,属于最简二次根式的是( ) A .21B .3.0C .8D .10 2.使式子5-x 有意义,则x 的取值范围是( ) A .x >5 B .x ≠ 5C .x ≥5D .x ≤53.下列几组数中,能作为直角三角形三边长度的是( )A. 2,3,4B. 4,5,6错误!未找到引用源。

C. 6,8,11D. 5,12,134.下列运算正确的是( ) A .()442= B .()442-=-C .94)9()4(-⨯-=-⨯-D .257=-5.如图,直角三角形的三边长分为m 、n 、t ,下列各式正确的是( ) A. 222m n t =+B .222m n t =-C . 222n m t =+ D .222t m n =-6.一个直角三角形的两边长分别为8cm 、10cm ,则第三条边长为( )A .6cmB .12cmC .412 cmD .6cm 或412cm 7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1cmB .2cmC .3cmD .4cm8.两条对角线互相垂直平分且相等的四边形是( ) A .矩形 B .菱形 C .正方形 D .平行四边形9.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4, 则该菱形的面积是( )A .16 3B .16C .8 3D .8 10.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠, 点D 落在点D′处,则重叠部分△AFC 的面积为( ) A .10 B .9C .8D .6二、填空题(每题4分,共24分)11.计算:12= .12.如图,△ABC 中,D 、E 分别是AB 、AC 边的中点,且DE=7cm , 则BC= cm . 13.计算:218-= . 14.如果22(7)0a b -+-=,则a b +的值为 .15.菱形的两条对角线长分别为6和8,则这个菱形的周长为 . 16.如图,在矩形ABCD 中,AD=4,AB=3,MN ∥BC 分别交 AB 、CD 于点M 、N ,在MN 上任取两点P 、Q , 那么图中阴影部分的面积是 .三、解答题(每题6分,共18分)17.计算:(278)(32)--+18.如图,在ABCD 中,E ,F 分别在AD ,BC 边上,且AE =CF.求证: 四边形BFDE 是平行四边形.OO19.如图,已知△ABC 中,AB =5 cm ,BC =12 cm ,AC =13 cm ,AC 边上的中线BD 求:BD 的长四、解答题(每题7分,共21分)20. 已知32x =+ ,32y =-.求:(1)222y xy x ++ (2)22y x -21. 某中学八年级学生想知道学校操场上旗杆的高度,已知旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好触地面,求旗杆的长度.22.如图,在菱形ABCD 中,AC , BD 相交于点O ,E 为AB 的中点,DE ⊥AB. (1)求∠ABC 的度数; (2)若AC=43,求DE 的长.五、解答题(每题9分,共27分)23.如图,在平行四边形ABCD 中,E 为BC 的中点, 连接AE 并延长交DC 的延长线于点F. (1)求证:AB =CF ;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.24.如图,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB. (1)求证:△BCP ≌△DCP ; (2)求∠DPE 的度数;(3)把正方形ABCD 改为菱形,其他条件不变,如图(2),若∠ABC=58°,求∠DPE 的度数.25.如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm/秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t 秒(0<t ≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF. (1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由; (3)当t 为何值时,∠FDE 为直角?请说明理由.ABCDEO。

2016-2017学年度第二学期期中检测八年级数学试题(含答案)

2016-2017学年度第二学期期中检测八年级数学试题(含答案)

2016-2017学年度第二学期期中检测八年级数学试题(全卷共120分,考试时间90分钟)一.选择题(本大题有8个小题,每小题3分,共24分,将正确选项填写在表格中相应位置)1.下列图形中,是中心对称图形的是(▲)A B C D2.下列调查中,适宜采用普查方式的是(▲)A.调查市场上某品牌老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对《徐州夜新闻》的认可情况3.下列调查的样本选取方式,最具有代表性的是(▲)A.在青少年中调查年度最受欢迎的男歌手B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间C.为了了解你所在学校的学生每天的上网时间,向八年级的同学进行调查D.对某市的出租司机进行体检,以此反映该市市民的健康状况4.下列事件中,属于确定事件的是(▲)A.掷一枚硬币,着地时反面向上B.买一张福利彩票中奖了C.投掷3枚骰子,面朝上的三个数字之和为18D.五边形的内角和为540度5.如图,E、F、G、H分别是□ABCD各边的中点,按不同方式连接分别得到图○1、○2中两个不同的阴影部分甲、乙,关于甲、乙两个阴影部分,下列叙述正确的是( ▲ )A .甲和乙都是平行四边形B .甲和乙都不是平行四边形C .甲是平行四边形,乙不是平行四边形D .甲不是平行四边形,乙是平 行四边形6. 如图,在菱形ABCD 中,AC =6,BD =8,则菱形的周长是( ▲ )A .24B .48C .40D .207. 若依次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ▲ )A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形 8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:○1∠BCD =2∠DCF ;○2∠ECF =∠CEF ;○3S △BEC =2S △CEF ;○4∠DFE =3∠AEF ,其中一定正确的是( ▲ )A .○1○2○4B .○1○2○4C .○1○2○3○4D .○2○3○4图(1)图(2)GF E HCDGF E HCDABBA 第5题图CDAB第6题图EFCDBA 第8题图二. 填空题(本大题有8个小题,每小题3分,共24分)9. 如图是某校参加各兴趣小组的学生人数分布扇形统计图,其中“演艺”兴趣小组一项所对应的角度是 ▲ °.10. 一只不透明的袋子里装有1个白球,3个黄球,6个红球,这些球除了颜色外都相同,将球搅匀,从中任意摸出1个球,有下列事件:○1该球是红球,○2该球是黄球,○3该球是白球.它们发生的概率分别记为P 1,P 2,P 3.则P 1,P 2,P 3的大小关系 ▲ .11. 在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在0.2,那么据此估计,袋子里的球的总数大约是 ▲ 个. 12. 在□ABCD 的周长是32cm ,AB =5cm ,那么AD = ▲ cm .13. 如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,AB =4,BC =6,则DE = ▲ . 14. 如图,在□ABCD 中,AD =6,点E 、F 分别是BD 、CD 的中点,则EF = ▲ . 15. 如图,G 为正方形ABCD 的边AD 上的一个动点,AE ⊥BG ,CF ⊥BG ,垂足分别为点E ,F ,已知AD =4,则AE 2+CF 2= ▲ .第9题图第13题图EABCD第14题图EF DABC第15题图FE CDABG16. 如图,在Rt △ABC 中,∠ACB =90,AC =3,BC =4,分别以AB 、AC 、BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则1234S S S S +++= ▲ .三. 解答题(本大题共8小题,共72分)17. (本题8分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题: (1)本次问卷共随机调查了名学生,扇形统计图中m = . (2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?18. (本题8分)为了了解某中学初三年级650名学生升学考试的数学成绩,从中随机抽取了50名学生的数学成绩进行分析,并求得样本的平均成绩是93.5分.下面是根据抽取的学生数学成绩制作的统计表:分组频数累计频数 频率问卷情况条形统计图6168类型人数DCBA2468101214161820第16题图4321S S S S LMDMPQE F CAB60.5~70.5 正3 a70.5~80.5 正正6 0.1280.5~90.5 正正9 0.1890.5~100.5 正正正正17 0.34100.5~110.5 正正b 0.2110.5~120.5正5 0.1 合计501根据题中给出的条件回答下列问题: (1)表中的数据a = ,b = ;(2)在这次抽样调查中,样本是 ;(3)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为 人.19. (本题8分)在如图所示的网格纸中,建立了平面直角坐标系xOy ,点P (1,2),点A (2,5),B (-2,5),C (-2,3).(1) 以点P 为对称中心,画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 关于点P对称,并写出下列点的坐标:B ′ ,C ′ ; yB A(2) 多边形ABCA ′B ′C ′的面积是 .20. (本题8分)如图,在□ABCD 中, AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形. 证明:21. (本题8分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解:22. (本题10分)如图,在平面直角坐标系xOy 中,点A (3,4),B (5,0),C (0,第20题图FEDABCBCA EDF 第22题图-2).在第一象限找一点D ,使四边形AOBD 成为平行四边形, (1) 点D 的坐标是 ;(2) 连接OD ,线段OD 、AB 的关系是 ;(3) 若点P 在线段OD 上,且使PC +PB 最小,求点P 的坐标. 解:23. (本题10分)将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1) 试判断四边形DHBG 为何种特殊的四边形,并说明理由; (2) 若AB =8,AD =4,求四边形DHBG 的面积. 解:(1) (2)xyO AB CEGHFCDAB第23题图24. (本题12分)如图,正方形ABCO 的边OA 、OC 分别在x 、y 轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度a (0°<a <90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG . (1)求证:△CBG ≌△CDG ;(2)求∠HCG 的度数;并判断线段HG 、OH 、BG 之间的数量关系,说明理由;(3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由. (1) 证明:(2)解:(3)解:x yOGHFEDACB第24题图2016-2017学年度第二学期第一次质量抽测八年级数学试题答案四.选择题(本大题有8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A C B D A D C B五.填空题(本大题有8个小题,每小题3分,共24分)9.108.10.P1>P2>P3.11.10.12.11.13.2.14.3.15.16.16.18.六.解答题(本大题共10小题,共72分)17.答案:(1)50,m=32;……4分(2)图略;……6分(3)1000(16%40%)100056%560⨯+=⨯=.答约有560人.……8分18.答案:(1)a=0.06,b=10;……4分(2)50名学生的数学成绩;……6分(3)221.……8分19.解:(1)B′(4,-1),C′(4,1),图, (4)分(其中图2分)(2)28.……8分xyB'C'CA'OB AP20. (本题8分)证明:(1)因为四边形ABCD 是平行四边形,所以AD =BC ,…1分因为AD ∥BC ,所以∠ADE =∠CBF ,……2分 因为AE ⊥BD ,CF ⊥BD ,所以∠AED =∠CFB =90°,…3分所以△ADE ≌△CBF ,……4分 所以AE =CF .……5分(2)因为AE ⊥BD ,CF ⊥BD ,所以∠AEF =∠CFE =90°,…6分 所以AE ∥CF ,……7分由(1)得AE =CF ,所以四边形AECF 是平行四边形.……8分 21. 解:因为EF ⊥EC ,所以∠CEF =90°,………………1分 所以∠AEF +∠DEC =90°,………………2分因为四边形ABCD 是矩形,所以∠A =∠D =90°,………………3分 所以∠AFE +∠AEF =90°,所以∠AFE =∠DEC ,………………4分又EF =EC ,所以△AEF ≌△DCE ,………………5分 所以AE =DC ,………………6分因为2(AD +DC )=32,所以2(AE +DE +AE )=32,………………7分 因为DE =4cm ,所以AE =6cm .………………8分第20题图FEDABC22. 解答:(1)(8,4),图.…………2分 (2)OD 与AB 互相垂直平分.图…………4分(3)连接AC 交OD 于点P ,点P 即是所求点.…………5分(有图也可以)设经过点O 、D 的函数表达式为1y k x =,则有方程148k =,所以112k =,所以直线OD 的函数表达式为12y x =.………………6分设过点C 、A 的一次函数表达式为2y k x b =+,则有方程组22,3 4.b k b =-⎧⎨+=⎩解得22,2.b k =-⎧⎨=⎩所以过点C 、A 的一次函数表达式为22y x =-,………………8分解方程组1,22 2.y y x ⎧=⎪⎨⎪=-⎩得4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P (43,23).………………10分xyEPO ADBCEGCD23. (本题10分)解:(1)四边形DHBG 是菱形.………………1分 理由如下:因为四边形ABCD 、FBED 是完全相同的矩形, 所以∠A =∠E =90°,AD =ED , …………2分 所以DA ⊥AB ,DE ⊥BE ,所以∠ABD =∠EBD ,………………3分 因为AB ∥CD ,DF ∥BE ,所以四边形DHBG 是平行四边形,∠HDB =∠EBD ,………………5分 所以∠HDB =∠ABD , 所以DH =BH , 所以□DHBG 是菱形.………………6分 (2)由(1),设DH =BH =x ,则AH =8-x ,在Rt △ADH 中,222AD AH DH +=,即得2224(8)x x +-=, 解得5x =,即BH =5,………………9分所以菱形DHBG 的面积为5420HB AD ??. (10)分24. (本题12分) 解:(1)证明:∵正方形ABCO 绕点C 旋转得到正方形yGFECBCDEF ,∴CD =CB ,∠CDG =∠CBG =90°.………2分在Rt △CDG 和Rt △CBG 中,CD =CB ,CG =CG ,∴△CDG ≌△CBG (HL ).………………3分(2)解:∵△CDG ≌△CBG ,∴∠DCG =∠BCG 12DCB =∠,DG =BG .……………4分在Rt △CHO 和Rt △CHD 中,CH =CH ,CO =CD ,∴△CHO ≌△CHD (HL ).……………5分∴∠OCH =∠DCH 12OCD =∠,OH =DH ,…6分∴∠HCG =∠HCD +∠GCD 11145222OCD DCB OCB =∠+∠=∠=︒,…7分HG =HD +DG =HO +BG .………………8分(3)解:四边形AEBD 可为矩形. 如图,连接BD 、DA 、AE 、EB ,因为四边形AEBD 若为矩形,则四边形AEBD 为平行四边形,且AB =ED ,则有AB 、ED 互相平分,即G 为AB 中点的时候.因为DG =BG ,所以此时同时满足DG =AG =EG =BG ,即平行四边形AEBD 对角线相等,则其为矩形.所以当G 点为AB 中点时,四边形AEBD 为矩形.………………10分 ∵四边形DAEB 为矩形,∴AG =EG =BG =DG . ∵AB =6,∴AG =BG =3.………………11分 设H 点的坐标为(x ,0),则HO =x , ∵OH =DH ,BG =DG ,∴HD =x ,DG =3.在Rt △HGA 中,∵HG =x +3,GA =3,HA =6-x ,∴(x +3)2=32+(6-x )2,∴x =2. ∴H 点的坐标为(2,0).………………12分。

2017-2018年天津市武清区八年级(下)期中数学试卷(解析版)

2017-2018年天津市武清区八年级(下)期中数学试卷(解析版)

A.a:b:c=3:4:5
B.∠A:∠B:∠C=9:12:15
C.∠C=∠A﹣∠B
D.b2﹣a2=c2
【解答】解:A、由 a:b:c=3:4:5 得 c2=a2+b2 符合勾股定理的逆定理,故是
直角三角形;
B、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是
20.(8 分)如图,正方形网格中,每个小正方形的边长均为 1,每个小正方形的 顶点叫格点.
(1)在图①中,以格点为端点,画线段 MN= ; (2)在图②中,以格点为顶点,画正方形 ABCD,使它的面积为 10.
第 3 页(共 14 页)
21.(10 分)如图所示,在▱ABCD 中,AE⊥BD,CF⊥BD,垂足分别为 E,F,求 证:BE=DF.
直角三角形;
C、由三角形三个角度数和是 180°及∠C=∠A﹣∠B 解得∠A=90°,故是直角三角
形.
D、由 b2﹣a2=c2 得 b2=a2+c2 符合勾股定理的逆定理,故是直角三角形;
故选:B.
5.(3 分)平行四边形具有的特征是( )
A.四边相等
B.对角线相等
C.对角线互相平分
D.四个角都是直角
22.(10 分)已知:如图,四边形 ABCD 中,AB⊥BC,AB=1,BC=2,CD=2,AD=3, 求四边形 ABCD 的面积.
23.(10 分)如图,在▱ABCD 中 AB=6,BC=8,AC=10. (1)求证:四边形 ABCD 是矩形; (2)求 BD 的长.
第 4 页(共 14 页)
2017-2018 学年天津市武清区八年级(下)期中数学试卷
第 1 页(共 14 页)

2016-2017年天津市武清区八年级(上)期末数学试卷含参考答案

2016-2017年天津市武清区八年级(上)期末数学试卷含参考答案

2016-2017学年天津市武清区八年级(上)期末数学试卷一、单选题(本题包括12小题,每小题3分,共38分)1.(3分)下列式子是分式的是()A.B. C.+y D.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a63.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.74.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5 6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+19.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)如果分式有意义,那么x的取值范围是.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=.15.(3分)在实数范围内分解因式:x2y﹣4y=.16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是.17.(3分)若关于x的方程无解,则m的值是.18.(3分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).20.(4分)解方程:﹣=21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.23.(3分)计算:+.24.(5分)先化简,再求值:(﹣)÷,其中x=3.25.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?26.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.2016-2017学年天津市武清区八年级(上)期末数学试卷参考答案与试题解析一、单选题(本题包括12小题,每小题3分,共38分)1.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.2.(3分)计算(﹣3a3)2的结果是()A.﹣6a5B.6a5C.9a6D.﹣9a6【解答】解:(﹣3a3)2=9a6.故选:C.3.(3分)如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A.2 B.3 C.6 D.7【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.4.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.5.(3分)下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.x5+x5=x C.a6﹣a4=a2D.3a2•2a3=6a5【解答】解:A、﹣2(a+b)=﹣2a﹣2b,故此选项错误;B、x5+x5=2x5,故此选项错误;C、a6﹣a4,无法计算,故此选项错误;D、3a2•2a3=6a5,正确.故选:D.6.(3分)下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1 D.a2﹣1=a(a﹣)【解答】解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.7.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.8.(3分)下列多项式中,含有因式(y+1)的多项式是()A.y2﹣2xy﹣3x2B.(y+1)2﹣(y﹣1)2C.(y+1)2﹣(y2﹣1)D.(y+1)2+2(y+1)+1【解答】解:A、y2﹣2xy﹣3x2=(y﹣3x)(y+x),故不含因式(y+1).B、(y+1)2﹣(y﹣1)2=[(y+1)﹣(y﹣1)][(y+1)+(y﹣1)]=4y,故不含因式(y+1).C、(y+1)2﹣(y2﹣1)=(y+1)2﹣(y+1)(y﹣1)=2(y+1),故含因式(y+1).D、(y+1)2+2(y+1)+1=(y+2)2,故不含因式(y+1).故选:C.9.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选:B.10.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个 B.1个 C.2个 D.3个【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选:D.11.(3分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【解答】解:由题意可得,﹣=,故选:C.12.(3分)已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形;②是直角三角形;③是钝角三角形;④是等边三角形,其中正确说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴此三角形为等边三角形,同时也是锐角三角形.故选:C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)如果分式有意义,那么x的取值范围是x≠1.【解答】解:由题意,得x﹣1≠0,解得x≠1,故答案为:x≠1.14.(3分)若a2+ab+b2+M=(a﹣b)2,那么M=﹣3ab.【解答】解:∵a2+ab+b2+M=(a﹣b)2=a2﹣2ab+b2,∴M=﹣3ab.故答案为:﹣3ab.15.(3分)在实数范围内分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:原式=y(x2﹣4)=y(x+2)(x﹣2),故答案为:y(x+2)(x﹣2)16.(3分)如图,已知AD所在直线是△ABC的对称轴,点E、F是AD上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是3.【解答】解:∵△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,=S△CEF,∴S△BEF∵△ABC的面积是:×BC×AD=×3×4=6,=3.∴图中阴影部分的面积是S△ABC故答案为:3.17.(3分)若关于x的方程无解,则m的值是2.【解答】解:关于x的分式方程无解即是x=1,将方程可转化为m﹣1﹣x=0,当x=1时,m=2.故答案为2.18.(3分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是()n﹣1×75°.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.三、解答题(本题共46分)19.(6分)(1)计算(12a3﹣6a2+3a)÷3a;(2)计算(x﹣y)(x2+xy+y2).【解答】解:(1)(12a3﹣6a2+3a)÷3a=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1(2)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.20.(4分)解方程:﹣=【解答】解:方程两边同乘以(x+1)(x﹣1),得2(x﹣1)﹣3(x+1)=6,∴2x﹣2﹣3x﹣3=6,∴x=﹣11.经检验:x=﹣11是原方程的根.21.(6分)如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F在AC上,BD=DF,求证:CF=BE.【解答】证明:∵∠C=90°,∴DC⊥AC.∵AD是∠BAC的平分线,DE⊥AB,∴DC=DE.在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.22.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.23.(3分)计算:+.【解答】解:原式=+=+=.24.(5分)先化简,再求值:(﹣)÷,其中x=3.【解答】解:原式=•=,当x=3时,原式=.25.(8分)一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?【解答】解:(1)设乙公司单独完成此项工程需x天,则甲公司单独完成需要1.5x天.由题意,得=.解得:x=30经检验x=30是原方程的解.则1.5x=45.答:甲公司单独完成需要45天,乙公司单独完成需要30天.(2)设甲公司每天的施工费用为y元,则乙公司每天的施工费用为(y+2000)元.由题意,得18(y+y+2000)=144000.解得y=3000.则y+2000=5000.甲公司施工费为:3000×45=135000乙公司施工费为:5000×30=150000答:甲公司施工费用较少.26.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【解答】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.。

2016-2017学年天津市武清区八年级(下)期中数学试卷

2016-2017学年天津市武清区八年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的,请将答案选项填在题中括号内)1.(3分)若式子在实数范围内有意义,则实数a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a>1 D.a≥12.(3分)下列根式中,不是最简二次根式的是()A. B.C.D.3.(3分)下列各组数中能作为直角三角形的三边长的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,234.(3分)下列计算正确的是()A.=2 B.()2=4 C.×=D.÷=35.(3分)如图,在▱ABCD中,∠A=3∠B,则∠C的大小是()A.100°B.120°C.135° D.150°6.(3分)如图,在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,若BC=6,则DE的长为()A.6 B.5 C.4 D.37.(3分)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直8.(3分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.9.(3分)下列二次根式:(1);(2);(3);(4).能与合并的是()A.(1)和(4)B.(2)和(3)C.(1)和(2)D.(3)和(4)10.(3分)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为()A.4 B.3 C.2 D.111.(3分)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF12.(3分)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分,请将答案直接填在题中横线上)13.(3分)计算:=.14.(3分)直角三角形两直角边长分别为,,则斜边长为.15.(3分)矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为.16.(3分)已知n是一个正整数,是整数,则n的最小值是.17.(3分)如图,菱形ABCD中,AB=AC=2,点E、F是AB,AD边上的动点,且AE=DF,则EF长的最小值为.18.(3分)如图,四边形ABCD是正方形,△ABE是等边三角形,EC=,则正方形ABCD的面积为.三、解答题(本大题共7小题,其中19-20题每题8分,21-25题每题10分,共66分,解答应写出文字说明、演算步骤或证明过程)19.(8分)计算:(1)(+)×(2)(4﹣3)÷2+.20.(8分)在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,若c ﹣a=4,b=12,求a,c.21.(10分)已知:x2+y2﹣10x+2y+26=0,求(+y)(﹣y)的值.22.(10分)如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?23.(10分)如图,▱ABCD对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF.(1)根据题意,补全图形;(2)求证:BE=DF.24.(10分)如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=2,求▱ABCD的面积.25.(10分)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2.(1)若DG=6,求AE的长;(2)若DG=2,求证:四边形EFGH是正方形.2016-2017学年天津市武清区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的,请将答案选项填在题中括号内)1.(3分)(2017春•武清区期中)若式子在实数范围内有意义,则实数a 的取值范围是()A.a>﹣1 B.a≥﹣1 C.a>1 D.a≥1【解答】解:由题意得,a﹣1≥0,解得,a≥1,故选:D.2.(3分)(2016•自贡)下列根式中,不是最简二次根式的是()A. B.C.D.【解答】解:因为==2,因此不是最简二次根式.故选B.3.(3分)(2017春•武清区期中)下列各组数中能作为直角三角形的三边长的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23【解答】解:A、因为42+52≠62,故不是勾股数;故此选项错误;B、因为12+12=()2,故三角形是直角三角形.故此选项正确;C、因为62+82≠112,故不是勾股数;故此选项错误;D、因为52+122≠232,故不是勾股数.故此选项错误;故选:B.4.(3分)(2016春•天津期末)下列计算正确的是()A.=2 B.()2=4 C.×=D.÷=3【解答】解:A、=4,故此选项错误;B、()2=2,故此选项错误;C、×=,此选项正确,D、÷=,故此选项错误;故选:C.5.(3分)(2017春•武清区期中)如图,在▱ABCD中,∠A=3∠B,则∠C的大小是()A.100°B.120°C.135° D.150°【解答】解:如图所示,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=3∠B,∴∠A=∠C=135°.故选:C.6.(3分)(2017春•武清区期中)如图,在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,若BC=6,则DE的长为()A.6 B.5 C.4 D.3【解答】解:∵在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,BC=6,∴DE是△ABC的中位线,∴DE=BC=3.故选D.7.(3分)(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.8.(3分)(2016•台州)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是:.故选:B.9.(3分)(2017春•武清区期中)下列二次根式:(1);(2);(3);(4).能与合并的是()A.(1)和(4)B.(2)和(3)C.(1)和(2)D.(3)和(4)【解答】解:(1)=2;(2)=2;(3)=;(4)=3.∴(1)(4)能与合并,故选A.10.(3分)(2017春•武清区期中)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为()A.4 B.3 C.2 D.1【解答】解:3和5为两条直角边长时,小正方形的边长=5﹣3=2,∴小正方形的面积22=4;故选A.11.(3分)(2016•荆门)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选B.12.(3分)(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.二、填空题(本大题共6小题,每小题3分,共18分,请将答案直接填在题中横线上)13.(3分)(2009•长春校级模拟)计算:=2.【解答】解:(+)(﹣)=5﹣3=2.14.(3分)(2016春•南陵县期末)直角三角形两直角边长分别为,,则斜边长为.【解答】解:由勾股定理得()2+()2=斜边2斜边=,故答案为.15.(3分)(2017春•武清区期中)矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为24.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=12,∴AC=BD=24.故答案为:24.16.(3分)(2012秋•赣县期末)已知n是一个正整数,是整数,则n的最小值是3.【解答】解:∵=4,若是整数,则也是整数;∴n的最小正整数值是3;故答案是:3.17.(3分)(2017春•武清区期中)如图,菱形ABCD中,AB=AC=2,点E、F是AB,AD边上的动点,且AE=DF,则EF长的最小值为.【解答】解:如图,∵四边形ABCD是菱形,∴AB=BC=CD=AD=AC,∴△ABC,△ACD都是等边三角形,∴∠EAC=∠D=60°,在△EAC和△FDC中,,∴△EAC≌△FDC,∴EC=CF,∠ACE=∠DCF,∴∠ECF=∠ACD=60°,∴△ECF是等边三角形,∴CE=EF=CF,∵CE⊥AB时,线段CE最小,最小值为×2=,∴EF的最小值为.故答案为.18.(3分)(2016春•泰州校级期末)如图,四边形ABCD 是正方形,△ABE 是等边三角形,EC=,则正方形ABCD 的面积为 8 .【解答】解:过点E 作MN ∥AD ,交AB 于点M ,交CD 于点N ,如图所示. 设正方形的边长为a ,则ME=a ,NC=a ,EN=AD ﹣ME=a ﹣a ,在Rt △ENC 中,由勾股定理得:EC 2=NC 2+EN 2,即=+, 解得:a 2=8.故答案为:8.三、解答题(本大题共7小题,其中19-20题每题8分,21-25题每题10分,共66分,解答应写出文字说明、演算步骤或证明过程)19.(8分)(2017春•武清区期中)计算:(1)(+)×(2)(4﹣3)÷2+. 【解答】解:(1)原式=2+3;(2)原式=2﹣+=2.20.(8分)(2017春•武清区期中)在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,若c﹣a=4,b=12,求a,c.【解答】解:在△ABC中,∠C=90°,∴a2+b2=c2,∵c﹣a=4,b=12∴c=a+4,∴a2+122=(a+4)2∴a=16∴c=20,即a=16,c=2021.(10分)(2017春•武清区期中)已知:x2+y2﹣10x+2y+26=0,求(+y)(﹣y)的值.【解答】解:∵x2+y2﹣10x+2y+26=0,∴(x﹣5)2+(y+1)2=0,∴x=5,y=﹣1,∴(+y)(﹣y)=x﹣y2=5﹣(﹣1)2.=4.22.(10分)(2017春•武清区期中)如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?【解答】解:(1)由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2﹣BE2,∴AE==2.4米;(2)由题意得:EC=2.4﹣0.4=2(米),∵DE2=CD2﹣CE2,∴DE==1.5(米),∴BD=0.8米.23.(10分)(2017春•武清区期中)如图,▱ABCD对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF.(1)根据题意,补全图形;(2)求证:BE=DF.【解答】(1)解:图象如图所示.(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=OA,OF=OC,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS),∴BE=DF.24.(10分)(2016•长沙)如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=2,求▱ABCD的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,∵∠BAC=∠DAC,∴∠BAC=∠BCA,∴AB=BC;(2)解:连接BD交AC于O,如图所示:∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=,OB=OD=BD,∴OB===1,∴BD=2OB=2,∴▱ABCD的面积=AC•BD=×2×2=2.25.(10分)(2017春•武清区期中)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2.(1)若DG=6,求AE的长;(2)若DG=2,求证:四边形EFGH是正方形.【解答】(1)解:∵AD=6,AH=2∴DH=AD﹣AH=4∵四边形ABCD是矩形∴∠A=∠D=90°∴在Rt△DHG中,HG2=DH2+DG2在Rt△AEH中,HE2=AH2+AE2∵四边形EFGH是菱形∴HG=HE∴DH2+DG2=AH2+AE2即42+62=22+AE2∴AE==4;(2)证明:∵AH=2,DG=2,∴AH=DG,∵四边形EFGH是菱形,∴HG=HE,在Rt△DHG和Rt△AEH中,,∴Rt△DHG≌Rt△AEH(HL),∴∠DHG=∠AEH,∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.参与本试卷答题和审题的老师有:知足长乐;nhx600;开心;zhjh;gbl210;家有儿女;CJX;zcx;sd2011;张其铎;szl;放飞梦想;438011;sunlang;dbz1018;弯弯的小河;曹先生;星月相随;fangcao(排名不分先后)菁优网2017年5月18日。

2017-2018学年天津市武清区八年级(下)期中数学试卷(解析版)

2017-2018学年天津市武清区八年级(下)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.若式子√a−1在实数范围内有意义,则实数a的取值范围是()A. a>−1B. a≥−1C. a>1D. a≥12.下列根式中,不是最简二次根式的是()A. √10B. √8C. √6D. √23.下列各组数中能作为直角三角形的三边长的是()A. 4,5,6B. 1,1,√2C. 6,8,11D. 5,12,234.下列计算正确的是()A. √(−4)2=2B. (√2)2=4C. √2×√5=√10D. √6÷√2=35.如图,在▱ABCD中,∠A=3∠B,则∠C的大小是()A. 100∘B. 120∘C. 135∘D. 150∘6.如图,在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,若BC=6,则DE的长为()A. 6B. 5C. 4D. 37.菱形具有而一般平行四边形不具有的性质是()A. 对边相等B. 对角相等C. 对角线互相平分D. 对角线互相垂直8.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A. √3B. √5C. √6D. √79.下列二次根式:(1)√12;(2)√22;(3)√2;(4)√27能与√3合并的是( )3A. (1)和(4)B. (2)和(3)C. (1)和(2)D. (3)和(4)10.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为()A. 4B. 3C. 2D. 111.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()ADA. △AFD≌△DCEB. AF=12C. AB=AFD. BE=AD−DF12.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)13.计算:(√5+√3)(√5−√3)=______.14.直角三角形两直角边长分别为2√3+1,2√3−1,则斜边长为______.15.矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为______ .16.已知n是一个正整数,√48n是整数,则n的最小值是______ .17.如图,菱形ABCD中,AB=AC=2,点E、F是AB,AD边上的动点,且AE=DF,则EF长的最小值为______ .18.如图,四边形ABCD是正方形,△ABE是等边三角形,EC=2√3−2,则正方形ABCD的面积为______ .三、解答题(本大题共7小题,共66.0分)19.计算:(1)(√8+√6)×√3√3.(2)(4√2-3√6)÷2√2+3220.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,若c-a=4,b=12,求a,c.21.已知:x2+y2-10x+2y+26=0,求(√x+y)(√x-y)的值.22.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?23.如图,▱ABCD对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF.(1)根据题意,补全图形;(2)求证:BE=DF.24.如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=2√3,求▱ABCD的面积.25.如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2.(1)若DG=6,求AE的长;(2)若DG=2,求证:四边形EFGH是正方形.答案和解析1.【答案】D【解析】解:由题意得,a-1≥0,解得,a≥1,故选:D.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.2.【答案】B【解析】解:因为==2,因此不是最简二次根式.故选:B.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.【答案】B【解析】解:A、因为42+52≠62,故不是勾股数;故此选项错误;B、因为12+12=()2,故三角形是直角三角形.故此选项正确;C、因为62+82≠112,故不是勾股数;故此选项错误;D、因为52+122≠232,故不是勾股数.故此选项错误;故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.【答案】C【解析】解:A、=4,故此选项错误;B、()2=2,故此选项错误;C、×=,此选项正确,D、÷=,故此选项错误;故选:C.分别利用二次根式的性质以及二次根式乘除运算法则求出判断即可.此题主要考查了二次根式的乘除运算以及二次根式化简,正确掌握运算法则是解题关键.5.【答案】C【解析】解:如图所示,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=3∠B,∴∠B=45°,∴∠A=∠C=135°.故选:C.平行四边形中,利用邻角互补可求得∠B的度数,利用对角相等,即可得∠C的值.此题主要考查了平行四边形的性质,利用邻角互补的结论求四边形内角度数是解题关键.6.【答案】D【解析】解:∵在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,BC=6,∴DE是△ABC的中位线,∴DE=BC=3.故选D.先根据题意得出DE是△ABC的中位线,进而可得出结论.本题考查的是三角形中位线定理,熟知三角形的中位线等于底边的一半是解答此题的关键.7.【答案】D【解析】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选:D.由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.8.【答案】B【解析】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是:.故选:B.直接利用勾股定理得出OC的长,进而得出答案.此题主要考查了勾股定理,根据题意得出CO的长是解题关键.9.【答案】A【解析】解:(1)=2;(2)=2;(3)=;(4)=3.∴(1)(4)能与合并,故选A.根据同类二次根式的定义进行选择即可.本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.10.【答案】A【解析】解:3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积22=4;故选A.3和5为两条直角边长时,求出小正方形的边长=2,即可得出小正方形的面积;即可得出结果.本题考查了勾股定理的证明,理解直角三角形的边长与小正方形的边长之间的关系是关键.11.【答案】B【解析】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC-EC,∴BE=AD-DF,故(D)正确;故选:B.先根据已知条件判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.本题主要考查了矩形和全等三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:在直角三角形中,若有一个锐角等于30°,则这个锐角所对的直角边等于斜边的一半.12.【答案】D【解析】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握.13.【答案】2【解析】解:(+)(-)=5-3=2.本题是平方差公式的应用,是相同的项,互为相反项是-与.运用平方差公式(a+b)(a-b)=a2-b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.14.【答案】√26【解析】解:由勾股定理得()2+()2=斜边2斜边=,故答案为.已知直角三角形的两条直角边,由勾股定理直角三角形两条直角边的平方和等于斜边的平方,即可求得斜边的长度.勾股定理:直角三角形两条直角边的平方和等于斜边的平方,我们应熟练正确的运用这个定理,在以后复杂的题目中这是最为常见也最为基础的定理公式.15.【答案】24【解析】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=12,∴AC=BD=24.故答案为:24.由矩形的性质得出OA=OB,证明△AOB是等边三角形,得出OA=OB=AB=12,即可得出对角线的长.本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.16.【答案】3【解析】解:∵=4,若是整数,则也是整数;∴n的最小正整数值是3;故答案是:3.先将中能开方的因数开方,然后再判断n的最小正整数值.本题考查了二次根式定义.解答此题的关键是能够正确的对进行开方化简.17.【答案】√3【解析】解:如图,∵四边形ABCD是菱形,∴AB=BC=CD=AD=AC,∴△ABC,△ACD都是等边三角形,∴∠EAC=∠D=60°,在△EAC和△FDC中,,∴△EAC≌△FDC,∴EC=CF,∠ACE=∠DCF,∴∠ECF=∠ACD=60°,∴△ECF是等边三角形,∴CE=EF=CF,∵CE⊥AB时,线段CE最小,最小值为×2=,∴EF的最小值为.故答案为.首先证明△CEF是等边三角形,构建垂线段最短可知,当CE⊥AB时,CE最短,即EF最短.本题考查菱形的性质、等边三角形的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,灵活运用垂线段最短解决最值问题,属于中考常考题型.18.【答案】8【解析】解:过点E作MN∥AD,交AB于点M,交CD于点N,如图所示.设正方形的边长为a,则ME=a,NC=a,EN=AD-ME=a-a,在Rt△ENC中,由勾股定理得:EC2=NC2+EN2,即=+,解得:a2=8.故答案为:8.过点E作MN∥AD,交AB于点M,交CD于点N,设正方形的边长为a,根据正方形和等边三角形的性质可得出EN、NC的长度,根据勾股定理即可得出关于a的方程,解方程即可得出结论.本题考查了正方形的性质以及等边三角形的性质,解题的关键是找出关于a 的方程.本题属于基础题,难度不大,解决该题型题目时,在直角三角形中利用沟谷定理找出关于未知数a的方程是关键.19.【答案】解:(1)原式=2√6+3√2;(2)原式=2-32√3+32√3=2.【解析】(1)根据二次根式的乘法进行即可;(2)根据多项式除以单项式的法则和二次根式的除法进行计算即可.本题考查了二次根式的混合运算,掌握运算法则是解题的关键.20.【答案】解:在△ABC中,∠C=90°,∴a2+b2=c2,∵c-a=4,b=12∴c=a+4,∴a2+122=(a+4)2∴a=16∴c=20,即a=16,c=20【解析】利用勾股定理得出结论,将c-a=4和b=12代入建立方程求出a的值,即可.此题主要考查了勾股定理,解方程,解本题的关键是得出a2+122=(a+4)2.21.【答案】解:∵x2+y2-10x+2y+26=0,∴(x-5)2+(y+1)2=0,∴x=5,y=-1,∴(√x+y)(√x-y)=x-y2=5-(-1)2.=4.【解析】先配方,根据非负数的性质得出x,y的值,再代入计算即可.本题考查了二次根式的化简求值,掌握非负数的性质以及配方法是解题的关键.22.【答案】解:(1)由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2-BE2,∴AE =√2.52−0.72=2.4米;(2)由题意得:EC =2.4-0.4=2(米),∵DE 2=CD 2-CE 2,∴DE =√2.52−22=1.5(米),∴BD =0.8米.【解析】(1)在Rt △ABE 中利用勾股定理求出AC 的长即可;(2)首先在Rt △CDE 中利用勾股定理求出DE 的长,然后再计算出DB 的长即可.此题主要考查了勾股定理的应用,关键是掌握正确运用勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.23.【答案】(1)解:图象如图所示.(2)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵E ,F 分别是OA ,OC 的中点,∴OE =12OA ,OF =12OC ,∴OE =OF ,在△BOE 和△DOF 中,{OE =OF ∠BOE =∠DOF OE =OF,∴△BOE ≌△DOF (SAS ),∴BE =DF .【解析】(1)根据要求画出图象即可.(2)只要证明△BOE ≌△DOF (SAS ),即可解决问题.本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.24.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAC =∠BCA ,∵∠BAC =∠DAC ,∴∠BAC =∠BCA ,∴AB =BC ;(2)解:连接BD 交AC 于O ,如图所示:∵四边形ABCD 是平行四边形,AB =BC ,∴四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =√3,OB =OD =12BD ,∴OB =√AB 2−OA 2=√22−(√3)2=1,∴BD =2OB =2,∴▱ABCD 的面积=12AC •BD =12×2√3×2=2√3. 【解析】(1)由平行四边形的性质得出∠DAC=∠BCA ,再由已知条件得出∠BAC=∠BCA ,即可得出AB=BC ;(2)连接BD 交AC 于O ,证明四边形ABCD 是菱形,得出AC ⊥BD ,OA=OC=AC=,OB=OD=BD ,由勾股定理求出OB ,得出BD ,▱ABCD 的面积=AC•BD ,即可得出结果.本题考查了平行四边形的性质、等腰三角形的判定、勾股定理、菱形面积的计算;熟练掌握平行四边形的性质,证明四边形是菱形是解决问题的关键. 25.【答案】(1)解:∵AD =6,AH =2∴DH =AD -AH =4∵四边形ABCD 是矩形∴∠A =∠D =90°∴在Rt △DHG 中,HG 2=DH 2+DG 2在Rt △AEH 中,HE 2=AH 2+AE 2∵四边形EFGH 是菱形∴HG =HE∴DH 2+DG 2=AH 2+AE 2即42+62=22+AE 2∴AE =√48=4√3;(2)证明:∵AH =2,DG =2,∴AH =DG ,∵四边形EFGH 是菱形,∴HG =HE ,在Rt △DHG 和Rt △AEH 中,{HG =EHDG =AH,∴Rt △DHG ≌Rt △AEH (HL ),∴∠DHG =∠AEH ,∵∠AEH +∠AHE =90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.【解析】(1)先根据矩形的性质,利用勾股定理列出表达式:HG2=DH2+DG2,HE2=AH2+AE2,再根据菱形的性质,得到等式DH2+DG2=AH2+AE2,最后计算AE的长;(2)先根据已知条件,用HL判定Rt△DHG≌Rt△AEH,得到∠DHG=∠AEH,因为∠AEH+∠AHE=90°,∠DHG+∠AHE=90°,可得菱形的一个角为90°,进而判定该菱形为正方形.本题主要考查了矩形、菱形的性质以及正方形的判定,解决问题的关键是掌握:矩形的四个角都是直角,菱形的四条边都线段,有一个角为直角的菱形是正方形.在解题时注意,求直角三角形的边长时,一般都需要考虑运用勾股定理进行求解.。

2017-2018学年天津市武清区等部分五区八年级(下)期中数学试卷(解析版)

2017-2018学年天津市武清区等部分五区八年级(下)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中属于最简二次根式的是()A. B. C. D.2.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A. 1B.C.D. 23.下列二次根式中,与是同类二次根式的是()A. B. C. D.4.满足下列条件的△ABC,不是直角三角形的是()A. a:b::4:5B. :::12:15C. D.5.平行四边形具有的特征是()A. 四边相等B. 对角线相等C. 对角线互相平分D. 四个角都是直角6.下列变形中,正确的是()A. B.C. D.7.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若AC=3,BC=4.则BD的长是()A. 2B. 3C. 4D. 58.如图,字母B所代表的正方形的面积是()A. 12B. 15C. 144D. 3069.若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A. 22B. 26C. 22或26D. 2810.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A. 5 cmB.C.D. 4 cm11.实数a在数轴上的位置如图所示,则+化简后为()A. 7B.C.D. 无法确定12.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.13.A. B. C. D.二、填空题(本大题共6小题,共18.0分)14.二次根式有意义,则实数x的取值范围是______.15.若一个直角三角形两边的长分别为6和8,则第三边的长为______.16.在在△ABC中,∠ACB=90°,∠A=30°,BC=4,则斜边AB上的中线长是______.17.把二次根式化成最简二次根式,则=______.18.如图,△ABC中,BD平分∠ABC,且AD⊥BD,E为AC的中点,AD=6cm,BD=8cm,BC=16cm,则DE的长为______cm.19.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的边长为1,则图中阴影部分的面积为______.三、计算题(本大题共2小题,共16.0分)20.计算:×(2-)-÷+.21.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.四、解答题(本大题共3小题,共30.0分)22.如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.23.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.(1)求证:四边形ABCD是矩形;(2)求BD的长.答案和解析1.【答案】C【解析】解:A、=,二次根式的被开方数中含有没开的尽方的数,故A 选项错误;B、==4,二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、符合最简二次根式的定义,故C选项正确;D、的被开方数中含有分母,故D选项错误;故选:C.判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.【答案】B【解析】解:=,∴OA=,则点A对应的数是,故选:B.根据勾股定理求出OA的长,根据实数与数轴的知识解答.本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.解:=2,=2,=2,=3,所以与是同类二次根式.故选:B.先把各选项中的二次根式化简,然后根据同类二次根式的定义进行判断.本题考查了同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.4.【答案】B【解析】解:A、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;B、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形;C、由三角形三个角度数和是180°及∠C=∠A-∠B解得∠A=90°,故是直角三角形.D、由b2-a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;故选:B.依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.5.【答案】C【解析】解:平行四边形的对角线互相平分.故选:C.根据平行四边形的性质即可判断.本题考查平行四边形的性质:平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分.解题的关键是记住平行四边形的性质,属于中考常考题型.解;A、(2)2=12,故A错误;B、=,故B错误;C、=5,故C错误;D、=,故D正确;故选:D.根据二次根式的性质,可得答案.本题考查了二次根式性质与化简,利用了二次根式的性质.7.【答案】A【解析】解:∵AC=3,BC=4,∴AB===5,∵以点A为圆心,AC长为半径画弧,交AB于点D,∴AD=AC,∴AD=3,∴BD=AB-AD=5-3=2.故选:A.首先利用勾股定理可以算出AB的长,再根据题意可得到AD=AC,根据BD=AB-AD即可算出答案.此题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8.【答案】C【解析】解:如图,∵a2+b2=c2,而a2=81,c2=225,∴b2=225-81=144,∴字母B所代表的正方形的面积为144cm2.故选:C.如图,利用勾股定理得到a2+b2=c2,再根据正方形的面积公式得到a2=81,c2=225,则可计算出b2=144,从而得到字母B所代表的正方形的面积.本题考查了勾股定理:会利用勾股定理进行几何计算.9.【答案】C【解析】解:∵AD∥BC,∴∠AEB=∠EBC又∵BE平分∠ABC,即∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE.当AE=3cm,DE=5cm时,AD=BC=8cm,AB=CD=AE=3cm.∴矩形ABCD的周长是:2×8+2×3=22cm;当AE=3cm,DE=2cm时,AD=BC=8cm,AB=CD=AE=5cm,∴矩形ABCD的周长是:2×8+2×5=26cm.故矩形的周长是:22cm或26cm.故选:C.根据AD∥BC,理解平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=3cm,DE=5cm 和AE=5cm,DE=3cm两种情况即可求得矩形的边长,从而求解.此题考查了矩形的性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.10.【答案】A【解析】【分析】本题考查了菱形的判定,勾股定理,作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【解答】解:如图,作AR⊥BC于R,AS⊥CD于S,连接AC,BD交于点O,由题意知,AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.∵两张纸条等宽,∴AR=AS.∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD.在Rt△AOB中,OA=3,OB=4,∴AB==5.故选A.11.【答案】A【解析】解:由数轴上点的位置,得4<a<8.+=a-3+10-a=7,故选:A.根据二次根式的性质,可得答案.本题考查了二次根式的性质与化简,利用二次根式的性质化简是解题关键.12.【答案】B【解析】【分析】本题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长.根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2cm,∴AB=4cm,BC=(2+4)cm,∴空白部分的面积=(2+4)×4-12-16,=8+16-12-16,=(-12+8)cm2.故选B.13.【答案】x≤-2或x≥2【解析】解:由题意得,x2-4≥0,解得x≤-2或x≥2.故答案是:x≤-2或x≥2.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.14.【答案】10或2【解析】解:分情况讨论:①当6和8为两条直角边时,由勾股定理得第三边长为:=10;②当8为斜边,6为直角边时,由勾股定理地第三边长为:=2;故答案为:10或2.由于直角三角形的斜边不能确定,故分b是斜边与直角边两种情况进行解答.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.【答案】4【解析】解:如图,∵∠ACB=90°,∠A=30°,∴AB=2BC=2×4=8,∴斜边AB上的中线长=AB=4.故答案为:4.作出图形,然后根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2BC,再根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形30°角所对的直角边等于斜边的一半和直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键,作出图形更形象直观.16.【答案】【解析】解:==,故答案为:.根据二次根式的性质把根号内的因式开出来即可.本题考查了最简二次根式和二次根式的性质,能正确根据二次根式的性质进行变形是解此题的关键.17.【答案】3【解析】解:如图,延长AD交BC于F,∵BD平分∠ABC,∴∠ABD=∠FBD,∵AD⊥BD,∴∠BDA=∠BDF=90°,AB===10(cm),在△BDF和△BDA中,,∴△BDF≌△BDA(ASA),∴DF=AD,FB=AB=10cm,∴CF=BC-FB=16-10=6cm,又∵点E为AC的中点,∴DE是△ACF的中位线,∴DE=CF=3cm.故答案为:3.延长AD交BC于F,利用“角边角”证明△BDF和△BDA全等,根据全等三角形对应边相等可得DF=AD,FB=AB=10cm,再求出CF并判断出DE是△ACF 的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.18.【答案】4-2【解析】解:∵直角三角形斜边长为2,最短的之边长为1,∴该直角三角形的另外一条直角边长为,∴S=22-4××1×=4-2.阴影故答案是:4-2.由题意可知阴影部分的面积=大正方形的面积-4个小直角三角形的面积,代入数值计算即可.本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.19.【答案】解:原式=3×(2-)-+=6--+=5-【解析】先化简各二次根式,再根据混合运算顺序依次计算可得.本题主要考查二次根式的混合运算,熟练掌握二次根式的性质和二次根式的混合运算的顺序和法则是解题的关键.20.【答案】解:(1)如图①所示:(2)如图②所示.【解析】(1)以3和2为直角边作出直角三角形,斜边即为所求;(2)以3和1为直角边作出直角三角形,斜边为正方形的边长,如图②所示.此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.21.【答案】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.【解析】利用AAS,易证得△ABE≌△CDF,然后由全等三角形的性质,证得结论.此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.22.【答案】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【解析】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.23.【答案】(1)证明:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴▱ABCD是矩形;(2)∵四边形ABCD是矩形,∴BD=AC=10.【解析】(1)由在▱ABCD中,AB=6,BC=8,AC=10,利用勾股定理的逆定理,即可证得∠ABC=90°,即可判定▱ABCD是矩形;(2)由四边形ABCD是矩形,根据矩形的对角线相等,即可求得BD的长.此题考查了矩形的判定与性质以及勾股定理的逆定理.注意利用勾股定理的逆定理证得∠ABC=90°是关键.。

天津一中2016-2017学年初二下学期期中数学试题及答案

3 3xy 5 2 y 2 75x 3 y 3 x 2 + y 2 0.1y .若A .x > 2b (2a -1)2B .(1 - 2a )23 天津一中2016-2017 学年度第二学期期中检测八年级数学试卷满分 100 分 考试时间 100 分钟一.选择题(每题 2 分,共 24 分,答案涂在答题卡上) 1.把A . 1.5 化成最简二次根式为()C .D .2.计算: + 的值是() A. 0B. 4a - 23.下列命题正确的有( )个C. 2 - 4aD. 2 - 4a 或 4a - 2如果∠C-∠B=∠A,则△ABC 是直角三角形。

如果 c 2= b 2—a 2,则△ABC 是直角三角形,且∠C=90°。

如果(c +a )(c -a )=b 2,则△ABC 是直角三角形。

④如果∠A:∠B:∠C=5:2:3,则△ABC 是直角三角形。

A .1B .2C .3D .44 在实数范围内有意义,则 x 的取值范围是()B .x≥C .x <D .x >05.一个直角三角形的两条直角边边长分别为 3 和 4,则斜边上的高为( ) A .2 B .2.2C .2.4D .2.56.已知△ABC 的三边长分别为 a ,b ,c ,且满足=0,则△ABC()A .不是直角三角形B .是以 a 为斜边的直角三角形C .是以 b 为斜边的直角三角形D .是以 c 为斜边的直角三角形7.已知 x= +1 ,y= -1,则 x 2+2xy+y 2 的值为()A .4B .6C .8D .128.下列根式中最简二次根式的个数有( )ab, , 2 c , , , , , , 2x +1A .2 C .4 个 D .5 个2 x 2y ,5(a 2 - b 2 ) a 2 + 19.顺次连接()各边中点所得的四边形是菱形A.平行四边形B.对角线相等的四边形C.对角线互相垂直的四边形D.以上都不对10.小明尝试着将矩形纸片 ABCD(如图①,AD>CD)沿过 A 点的直线折叠,使得 B 点落在 AD 边上的点 F 处,折痕为 AE(如图②);再沿过 D 点的直线折叠,使得 C 点落在DA 边上的点 N 处,E 点落在 AE 边上的点 M 处,折痕为 DG(如图③).如果第二次折叠后,M 点正好在∠NDG的平分线上,那么矩形 ABCD 的长 BC 与宽 AB 的关系是()3 2 2 10 2A .BC=2AB B .BC= ABC .BC=1.5ABD .BC= AB11.如图为等边三角形 ABC 与正方形 DEFG 的重叠情形,其中 D , E 两点分别在 AB ,BC 上,且 BD=BE .若 AC=18,GF=6,则点 F 到 AC 的距离为( )A . 6B . 6C . 2D . 32 - 63 - 6 5 312.如图,在边长为 6 的正方形 ABCD 中,E 是 AB 边上一 点,G 是 AD 延长线上一点,BE=DG ,连接 EG ,过点 C 作 EG 的垂线 CH ,垂足为点 H ,连接 BH ,BH=8.有下列结论: ①∠CBH=45°;②点 H 是 EG 的中点;③EG= 4 ; ④DG= 2 ,其中,正确结论的个数是()A .1B .2C .3D .4二.选择题(每题 3 分,共 18 分,答案填写在答题纸上)13.如图,矩形 ABCD 的对角线 AC ,BD 相交于点 O ,∠AOB=60°, AB=3.则矩形对角线的长等于.14.若 a=1,b=1,c=﹣1,的值等于.15.如图,在 Rt△ABC 中,BD 是斜边 AC 上的中线,若 Rt△ABC 的两条边 分别为 5 和 12,则 BD 的长=.16.已知菱形周长是 24cm,一个内角为 60°,则面积为_cm 2.17.(1)如图①,△ABE,△ACD 都是等边三角形,若 CE=6,则 BD 的长=;(2)如图②,△ABC中,∠ABC=30°,AB=3,BC=4,D 是△ABC外一点,且△ACD是等边三角形,则 BD 的长= .18.图中的虚线网格是等边三角形网格,它的每一个小三角形都是边长为 1 的等边三角形.(1)边长为 1 的等边三角形的高= ;(2)图①中的▱ABCD 的对角线 AC 的长= ;(3)图②中的四边形 EFGH 的面积= .3 52 天津一中 2016-2017 学年度第二学期期中测试八年级数学答题纸二、填空题答题表格:19. 计算: (1)(- 2 5 )( 15 +5)(2) -(3) (4- 3 6 )÷ 2 +(4+ (4 - 2)0+20.如图,直角三角形纸片 OAB ,∠AOB=90°,OA=1,OB=2,折叠该纸片,折痕与边 OB 交于点 C ,与边 AB 交于点 D ,折叠后点 B 与点 A 重合. (1)直接填空:AB 的长=;32 2 33 (5 - 23)2(2)求 OC 的长.21.在▱ABCD 中,点 E,F 分别在边 BC,AD 上,且 AF=CE.(1)如图①,求证:四边形 AECF 是平行四边形;(2)如图②,若∠BAC=90°,且四边形 AECF 是边长为 6 的菱形,求 BE 的长.22.如图,在正方形 ABCD 中,点 F 为 CD 上一点,BF 与 AC 交于点 E,∠CBF=20°.(1)直接填空:∠ACB的大小= (度);(2)求证:△ABE≌△ADE;(3)直接填空:∠AED的大小= (度).23.(1)如图 1,在正方形 ABCD 中,点 E、F 分别在边 BC、CD 上,AE、BF 交于点O,∠AOF=90°.求证:BE=CF.(2)如图 2,在正方形 ABCD 中,点 E、H、F、G 分别在边 AB、BC、CD、DA 上,EF、GH 交于点 O,∠FOH=90°,EF=4.求 GH 的长.(3)已知点 E、H、F、G 分别在矩形 ABCD 的边 AB、BC、CD、DA 上,EF、GH 交于点 O,∠FOH=90°,EF=4.直接填出下列两题的答案:①如图 3,矩形 ABCD 由 2 个全等的正方形组成,则 GH= ;②如图 4,矩形 ABCD 由 n 个全等的正方形组成,则 GH= (用 n 的代数式表示).关注公众号:《物理小宇宙》获得更多学习资料!24.将一矩形纸片 OABC 放在平面直角坐标系内,O(0,0)A(6,0)C(0,3),动点 Q 从 O 出发以每秒 1 个单位长度的速度沿 OC 向终点 C 运动,23 运动秒时,动点 P 从点 A 出发以相同速度沿 AO 向终点 O 运动,当其中一个点到达终点时另一点也停止运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档