高考全国卷大题训练-概率统计

合集下载

全国高考试题(全国I卷)汇总(概率统计)

全国高考试题(全国I卷)汇总(概率统计)

全国高考试题(全国I 卷)汇总《概率统计》1、【 2013 全国 I 卷 18】为了比较两种治疗失眠症的药(分别称为 A 药, B 药)的疗效,随机地选取 20 位患者服用 A 药, 20 位患者服用 B 药,这 40 位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位: h ),试验的观测结果如下:服用 A 药的 20 位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用 B 药的 20 位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.41.60.5 1.80.62.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(3)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?A药B药0.1.2.3.2、【 2014 全国 I 卷 18】从某企业生产的某种产品中抽取100 件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[75 , 85)[85 , 95)[95 , 105)[105 , 115)[115 , 125)频数62638228(I )在答题卡上作出这些数据的频率分布直方图:( II )估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 的产品至少要占全部产品的80%”的规定?频率 / 组距产品数据频率分布直方图0.0400.0380.0360.0340.0320.0300.0280.0260.0240.0220.0200.0180.0160.0140.0120.0100.0080.0060.0040.0020758595105115125质量指标值3、【 2015 全国 I 卷 19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量 y (单位: t )和年利润 z (单位:千元)的影响,对近8 年的宣传费 x i 和年销售量 y i i 1,2, L ,8 数据作了初步处理,得到下面的散点图及一些统计量的值.年 销 620 售600 量580 560 540 520 500480 11 1 1 1 1 1 1 1 1 1 13436 38 40 42 44 46 48 50 52 54 56年宣传费 /千元r urur 8888xy[来w( x ix) 2(w iw) 2(x ix)( y i y)(w i w)( y iy)源:]i 1i 1i 1i 146.6 56.3 6.8289.81.61469108.8表中 w i =xiur18, w =w i8 i 1(I )根据散点图判断,ya bx 与 y c dx ,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据( I )的判断结果及表中数据,建立 y 关于 x 的回归方程;(III ) 已知这种产品的年利润z 与 x ,y 的关系为 z 0.2 y x ,根据( II )的结果回答下列问题:( i )当年宣传费 x 90 时,年销售量及年利润的预报值时多少?( i i )当年宣传费 x 为何值时,年利润的预报值最大?附:对于一组数据 (u 1 ,v 1) , (u 2 ,v 2 ) ,⋯⋯ ,(u n , v n ) ,其回归线 v u 的斜率和截距的最小二乘估计分别为:n^u i u viv^^β i 1n2vuu i u ,i 14、【 2016 全国 I 卷 19】某公司计划购买 1 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元 .在机器使用期间,如果备件不足再购买,则每个 500 元 .现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数2420161060161718192021更换的易损零件数记 x 表示 1 台机器在三年使用期内需更换的易损零件数,y 表示 1 台机器在购买易损零件上所需的费用(单位:元), n 表示购机的同时购买的易损零件数.(I )若n =19,求 y 与 x 的函数解析式;(II )若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n的最小值;(III )假设这 100 台机器在购机的同时每台都购买19个易损零件,或每台都购买20 个易损零件,分别计算这100 台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买 1 台机器的同时应购买19 个还是 20 个易损零件?。

专题17 概率统计解答题-2020届全国卷高考数学真题分类汇编含答案

专题17  概率统计解答题-2020届全国卷高考数学真题分类汇编含答案

专题17 概率统计解答题研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文的排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。

概率统计解答题,每年一题,第一问,(文科)多为概率问题,(理科)多为统计问题,第二问,(文科)多为统计问题,(理科)多为分布列、期望计算问题或统计问题,特点;实际生活背景在加强,统计知识在加强,频率分布直方图、茎叶图、回归分析、独立性检验、正态分布(文理科)都有可能会考。

1.(2018年普通高等学校招生统一考试新课标Ⅰ卷数学(理20))某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f (p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】见解析。

【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(1)求出f(p)=,则=,利用导数性质能求出f (p)的最大值点p0=0.1.(2)(i)由p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),再由X=20×2+25Y,即X=40+25Y,能求出E(X).(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,E(X)=490>400,从而应该对余下的产品进行检验.【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=,∴=,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f (p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.【点评】本题考查概率的求法及应用,考查离散型随机变量的数学期望的求法,考查是否该对这箱余下的所有产品作检验的判断与求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.2.(2017年普通高等学校招生统一考试新课标Ⅰ卷数学(理19))为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i 个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【答案】见解析。

7、近五年全国卷分类总汇编——概率统计教师版.doc

7、近五年全国卷分类总汇编——概率统计教师版.doc

实用标准7 、近五年全国卷分类汇编——概率统计(教师版)一、概率与排列组合1 、(2013 全国 1 卷.理 3 )为了解某地区的中小考生视力情况,拟从该地区的中小考生中抽取部分考生进行调查,事先已了解到该地区小学、初中、高中三个学段考生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A 、简单随机抽样B、按性别分层抽样错误!未找到引用源。

C、按学段分层抽样 D 、系统抽样解析:不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.故选 C2 .(2014全国1卷.理5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()1 3C、5 7A 、B、8 D 、8 8 8解析: 4 位同学各自在周六、周日两天中任选一天参加公益活动共有24 16 种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有C41 A21 8 种;②每天2 人有C42 6种,则周六、周日都有同学参加公益活动的概率为8 6 7位同学都在周六或周日参加16;或间接解法: 4816 2 7公益活动有 2 种,则周六、周日都有同学参加公益活动的概率为16故选 D 83 、( 2015 全国 1 卷.理4 )投篮测试中,每人投 3 次,至少投中 2 次才能通过测试。

已知某同学每次投篮投中的概率为0.6 ,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A 、 0.648 B、 0.432 C、 0.36 D 、 0.312解析:根据独立重复试验公式得,该同学通过测试的概率为C32 0.62 0.4 0.63 =0.648 故选 A4. (2016 全国 1 卷 .理 4 )某公司的班车在7:00 , 8:00 , 8:30 发车,小明在7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()1 1C、2 3A 、B、3 D 、3 2 4解析:如图所示,画出时间轴:7:30 7:40 7:50 8:00 8:10 8:20 8:30A C D B小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或 DB 时,才能保证他等车的时间不超过10 分钟,根据几何概型,所求概率10 10 1P .故选 B.40 25 .( 2017 全国 1 卷 .理 2 )如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A .1B .π481πC .D .24解析:设正方形边长为 a ,则圆的半径为a,则正方形的面积为 a 2 ,圆的面积为a 2 .由图形的对称性可24知,太极图中黑白部分面积相等,即各占圆面积的一半 .由几何概型概率的计算公式得,此点取自黑色部分1 a 2的概率是248 ,选 B.a 2二、二项式定理1 、(2013全国 1 卷 .理 9)设 m 为正整数, ( xy)2m 展开式的二项式系数的最大值为a , ( x y)2 m 1 展开式的二项式系数的最大值为 b ,若 13 a =7 b ,则 m = ()A 、 5B 、 6C 、 7D 、 8m m 1mm 113 (2 m)! 7 (2 m 1)!解析:由题知 a = C 2m , b = C 2m 1 ,∴13C 2 m =7 C 2m 1 ,即=(m 1)! m! ,m!m!解得 m =6 ,故选 B.2 、( 2014 全国 1 卷 .理 13 ) xy x y 8的展开式中 x 2 y 7 的系数为 ________(.用数字填写答案)解析: ( x y)8展开式的通项为 T r 1C 8 x y(r 0,1, ,8),∴r8r rLT 8C 87 xy 7 8xy 7 T 7 C 86 x 2 y 6 28x 2 y 6∴(xy)( x y)8 的展开式中 x 2 y 7 的项为 xg8xy 7 yg28 x 2 y 6 20x 2 y 7 ,故系数为 20 。

高三数学大题专项训练 概率与统计(答案)

高三数学大题专项训练 概率与统计(答案)

1.【2012高考真题辽宁理19】(本小题满分12分)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。

下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。

(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别 有关?(Ⅱ)将上述调查所得到的频率视为概率。

现在从该地区大量电视观众中,采用随机抽 样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X 。

若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X 。

附:22112212211212(),n n n n n n n n n χ++++-=【答案】【点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望()E X 和方差()D X ,考查分析解决问题的能力、运算求解能力,难度适中。

准确读取频率分布直方图中的数据是解题的关键。

9.【2012高考真题四川理17】(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p 。

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ。

【答案】本题主要考查独立事件的概率公式、离散型随机变量的分布列、数学期望等基础知识,考查实际问题的数学建模能力,数据的分析处理能力和基本运算能力.【解析】10.【2012高考真题湖北理】(本小题满分12分)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9. 求:(Ⅰ)工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率. 【答案】(Ⅰ)由已知条件和概率的加法公式有:(300)0.3,P X <=(300700)(700)(300)0.70.30.4P X P X P X ≤<=<-<=-=,降水量X 300X <300700X ≤< 700900X ≤<900X ≥工期延误天数Y2610(700900)(900)(700)0.90.70.2P X P X P X ≤<=<-<=-=. (900)1(900)10.90.1P X P X ≥=-<=-=.所以Y 的分布列为:于是,()00.320.460.2100.13E Y =⨯+⨯+⨯+⨯=;2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=.故工期延误天数Y 的均值为3,方差为9.8. (Ⅱ)由概率的加法公式,(300)1(300)0.7P X P X ≥=-<=,又(300900)(900)(300)0.90.30.6P X P X P X ≤<=<-<=-=.由条件概率,得(6300)(900300)P Y X P X X ≤≥=<≥(300900)0.66(300)0.77P X P X ≤<===≥.故在降水量X 至少是300mm 的条件下,工期延误不超过6天的概率是67.11.【2012高考江苏25】(10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有238C 对相交棱。

高考专题练习: 概率统计中的数学建模与数据分析

高考专题练习: 概率统计中的数学建模与数据分析

(2020·广东六校第一次联考)某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一、二、三等奖(分别对应成绩等级的一、二、三等级).现有某考场所有考生的两科成绩等级统计如图1所示,其中获数学二等奖的考生有12人.图1(1)求该考场考生中获语文一等奖的人数;(2)用随机抽样的方法从获得数学和语文二等奖的考生中各抽取5人,进行综合素质测试,将他们的综合得分绘成茎叶图(如图2所示),求样本的平均数及方差并进行比较分析;图2(3)已知本考场的所有考生中,恰有3人两科均获一等奖,在至少一科获一等奖的考生中,随机抽取2人进行访谈,求这2人两科均获一等奖的概率.【解】 (1)因为获数学二等奖的考生有12人, 所以该考场考生的总人数为121-0.40-0.26-0.10=50.故该考场获语文一等奖的考生人数为50×(1-0.38×2-0.16)=4.(2)设获数学二等奖考生综合得分的平均数和方差分别为x -1,s 21,获语文二等奖考生综合得分的平均数和方差分别为x -2,s 22.x -1=81+84+92+90+935=88,x -2=79+89+84+86+875=85,s 21=15×[(-7)2+(-4)2+42+22+52]=22, s 22=15×[(-6)2+42+(-1)2+12+22]=11.6,因为88>85,11.6<22,所以获数学二等奖考生较获语文二等奖考生综合素质测试的平均分高,但是成绩差距较大.(3)两科均获一等奖的考生共有3人,则仅数学获一等奖的考生有2人,仅语文获一等奖的考生有1人,把两科均获一等奖的3人分别记为A 1,A 2,A 3,仅数学获一等奖的2人分别记为B 1,B 2,仅语文获一等奖的1人记为C ,则在至少一科获一等奖的考生中,随机抽取2人的基本事件有A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 1C ,A 2A 3,A 2B 1,A 2B 2,A 2C ,A 3B 1,A 3B 2,A 3C ,B 1B 2,B 1C ,B 2C ,共15个.记“这2人两科均获一等奖”为事件M ,则事件M 包含的基本事件有A 1A 2,A 1A 3,A 2A 3,共3个, 所以P (M )=315=15,故这2人两科均获一等奖的概率为15.统计与概率“搭台”,方案选择“唱戏”破解此类频率分布直方图、分层抽样与概率相交汇的开放性问题的关键:一是会观图读数据,能从频率分布直方图中读出频率,进而求出频数;二是能根据分层抽样的抽样比或各层之间的比例,求出分层抽样中各层需取的个数;三是会转化,会对开放性问题进行转化.某校学生参与一项社会实践活动,受生产厂家委托采取随机抽样方法,调查我市市民对某新开发品牌洗发水的满意度,同学们模仿电视问政的打分制,由被调查者在0分到100分的整数分中给出自己的认可分数,现将收集到的100位市民的认可分数分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],绘制出如图所示的频率分布直方图.(1)求这100位市民认可分数的中位数(精确到0.1),平均数(同一组中的数据用该组区间的中点值作代表);(2)生产厂家根据同学们收集到的数据,拟随机在认可分数为80及其以上的市民中选出2位市民当产品宣传员,求这2位宣传员都来自认可分数为[90,100]的概率.解:(1)由于[40,50),[50,60),[60,70)的频率分别有0.1,0.2,0.3.故中位数位于[60,70)中,其值为60+10×23≈66.7.平均数为10×(45×0.01+55×0.02+65×0.03+75×0.025+85×0.01+95×0.005)=67.(2)认可分数位于[80,90)的人数为10,认可分数位于[90,100]的人数为5,从认可分数位于[90,100]的5人中随机选择2人的基本事件数为1+2+3+4=10,从认可分数位于[80,90)和[90,100]的15人中随机选择2人的基本事件数为1+2+3+…+14=105.故这2位宣传员都来自认可分数为[90,100]的概率为10105=2 21.图表与独立性检验相交汇(师生共研)某种常见疾病可分为Ⅰ,Ⅱ两种类型.为了了解所患该疾病类型与地域、初次患该疾病的年龄(单位:岁)(以下简称初次患病年龄)的关系,在甲、乙两个地区随机抽取100名患者调查其所患疾病类型及初次患病年龄,得到如下数据.初次患病年龄甲地Ⅰ型疾病患者/人甲地Ⅱ型疾病患者/人乙地Ⅰ型疾病患者/人乙地Ⅱ型疾病患者/人[10,20)815 1[20,30)433 1[30,40)352 4[40,50)384 4[50,60)392 6[60,70]21117(2)记“初次患病年龄在[10,40)内的患者”为“低龄患者”,“初次患病年龄在[40,70]内的患者”为“高龄患者”.根据表中数据,解决以下问题.①将以下两个列联表补充完整,并判断“地域”“初次患病年龄”这两个变量中哪个变量与所患疾病的类型有关联的可能性更大.(直接写出结论,不必说明理由)表一疾病类型患者所在地域Ⅰ型Ⅱ型总计甲地乙地总计100.问:是否有99.9%的把握认为所患疾病的类型与X有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.【解】(1)依题意,甲、乙两地区Ⅰ型疾病患者共40人,甲、乙两地区Ⅰ型疾病患者初次患病年龄小于40岁的人数分别为15,10,则从Ⅰ型疾病患者中随机抽取1人,其初次患病年龄小于40岁的概率的估计值为15+1040=58.(2)①填空结果如下.表一低龄 25 15 40 高龄 15 45 60 总计4060100“初次患病年龄”与所患疾病的类型有关联的可能性更大.②由①可知X 为初次患病年龄,根据表二中的数据可得a =25,b =15,c =15,d =45,n =100,则K 2=100×(25×45-15×15)240×60×40×60≈14.063,因为14.063>10.828,故有99.9%的把握认为所患疾病类型与初次患病年龄有关.本题的易错点有三处:一是审题不认真,误认为甲、乙两地区Ⅰ型疾病患者的总数为100,错误列式15+10100=0.25;二是不能从频数分布表中获取相关数据,无法正确填写列联表,不能根据列联表中数据的含义做出正确判断;三是代错公式或计算错误,从而导致统计判断出错.(2021·福州市适应性考试)世界互联网大会是由中华人民共和国倡导并每年在浙江省嘉兴市桐乡乌镇举办的世界性互联网盛会,大会旨在搭建中国与世界互联互通的国际平台和国际互联网共享共治的中国平台,让各国在争议中求共识、在共识中谋合作、在合作中创共赢.2020年11月23日至24日,第七届世界互联网大会如期举行,为了大会顺利召开,组委会特招募了1 000名志愿者.某部门为了了解志愿者的基本情况,调查了其中100名志愿者的年龄(单位:岁),得到了他们年龄的中位数为34,年龄在[40,45)内的人数为15,并根据调查结果画出如图所示的频率分布直方图.(1)求m,n的值并估算出志愿者的平均年龄(同一组的数据用该组区间的中点值代表);(2)这次大会志愿者主要通过现场报名和登录大会官网报名,即现场和网络两种方式报名参加.这100名志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能否在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”?男性女性总计现场报名50网络报名31总计50参考公式及数据:K2=2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.050.010.0050.001k0 3.841 6.6357.87910.828解:(1)因为志愿者年龄在[40,45)内的人数为15,所以志愿者年龄在[40,45)内的频率为15100=0.15.由频率分布直方图得,(0.020+2m+4n+0.010)×5+0.15=1,即m+2n=0.07,①由中位数为34可得,0.020×5+2m×5+2n×(34-30)=0.5,即5m+4n=0.2,②由①②解得m=0.020,n=0.025.所以志愿者的平均年龄为(22.5×0.020+27.5×0.040+32.5×0.050+37.5×0.050+42.5×0.030+47.5×0.010)×5=34(岁).(2)根据题意得到列联表,男性女性总计现场报名193150网络报名311950总计5050100所以K2=100×(19×19-31×31)250×50×50×50=2×[(19+31)×(19-31)]250×50×50=5.76<10.828,所以不能在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”.图表与线性回归分析相交汇(师生共研)如图是某部门公布的一年内道路交通事故成因分析,由图可知,超速驾驶已经成为交通事故的一个主要因素.研究表明,急刹车时的停车距离等于反应距离与制动距离的和,下表是根据某部门的调查结果整理所得的数据(v表示行车速度,单位:km/h;d1,d2分别表示反应距离和制动距离,单位m).v6472808997105113121128135 d113.415.216.718.620.121.923.525.326.828.5好有1起属于超速驾驶的概率(用频率代替概率);(2)已知d 2与v 的平方成正比,且当行车速度为100 km/h 时,制动距离为65 m.①由表中数据可知,d 1与v 之间具有线性相关关系请建立d 1与v 之间的回归方程,并估计车速为110 km/h 时的停车距离;②我国《道路交通安全法》规定:车速超过100 km/h 时,应该与同车道前车保持100 m 以上的距离,请解释一下上述规定的合理性.参考数据:∑10i =1v i =1 004,∑10i =1(d 1)i =210,∑10i =1v i (d 1)i =22 187.3,∑10i =1v 2i =106 054,11 03352 524≈0.21. 参考公式:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘估计分别为:b =∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a =y--b x -.【解】 (1)由题意可知,从一年内发生的交通事故中随机抽出一起事故,则该起事故是恰好是超速驾驶的概率为0.2,设“恰好有一起事故属于超速驾驶”为事件A ,则P (A )=3×15×⎝ ⎛⎭⎪⎫1-152=48125.(2)由题意,设d 2=k ·v 2,当行车速度为100 km/h 时,制动距离为65 m. 所以k =0.006 5,即d 2=0.006 5v 2, ①设d 1=b v +a ,因为b =∑i =1n (x i -x ) (y i -y ) ∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,所以b=∑i =110v i(d1)i-10v-d-1∑i=110v2i-10v-2=22 187.3-10×100.4×21106 054-10×100.42=1 103.35 252.4≈0.21,故d1=0.21v+a*,把(100.4,21)代入*式,解得a=-0.084,所以d1与v i之间的回归方程为d1=0.21v-0.084.设停车距离为d,则d=d1+d2,则d=0.006 5v2+0.21 v-0.084,当v=110 km/h时,d=101.666,即车速为110 km/h时的停车距离为101.666 m.②易知当车速为100 km/h时,停车距离为85.916 m,该距离小于100 m,又因为当车速为110 km/h时的停车距离为101.666 m,该距离大于100 m,由以上两个数据可知,当车速超过100 km/h时,必须与同车道前车保持100 m以上的距离才能保证行驶安全.破解此类分层抽样、概率、线性回归相交汇的开放性问题的关键:一是会制图,即会根据频数分布表,把两组数据填入茎叶图中;二是会对开放性问题进行转化;三是熟练掌握求线性回归方程的步骤,求出a^,b^,即可写出线性回归方程.一个工厂在某年里连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据,x 1.08 1.12 1.19 1.28 1.36 1.48 1.59 1.68 1.80 1.87 y 2.25 2.37 2.40 2.55 2.64 2.75 2.92 3.03 3.14 3.26加以说明;(2)①建立月总成本y 与月产量x 之间的线性回归方程;②通过建立的y 关于x 的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:∑10i =1x i =14.45,∑10i =1y i =27.31,∑10i =1x 2i -10x -2≈0.850, ∑10i =1y 2i -10y -2≈1.042,b^≈1.223.②参考公式:相关系数r =∑ni =1x i y i -n x - y-(∑ni =1x 2i -n x -2)(∑ni =1y 2i -n y -2),回归直线y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为b ^=∑ni =1x i y i -n x - y-∑ni =1x 2i -n x-2,a ^=y --b ^x .解:(1)由已知条件得,r =b^·∑10i =1x 2i -10x-2∑10i =1y 2i -10y-2,所以r =1.223×0.8501.042≈0.998, 这说明y 与x 正相关,且相关性很强. (2)①由已知求得x -=1.445,y -=2.731, a ^=y --b ^x -=2.731-1.223×1.445≈0.964, 所以所求回归直线方程为y ^=1.223x +0.964.②当x =1.98时,y =1.223×1.98+0.964≈3.386(万元), 此时产品的总成本约为3.386万元.[A 级 基础练]1.(2020·高考全国卷Ⅰ)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下,甲分厂产品等级的频数分布表(1)(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40=0.4;100=0.28.乙分厂加工出来的一件产品为A级品的概率的估计值为28100(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为65×40+25×20-5×20-75×20=15.100由数据知乙分厂加工出来的100件产品利润的频数分布表为70×28+30×17+0×34-70×21100=10.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务. 2.(2021·福州市质量检测)垃圾分一分,城市美十分;垃圾分类,人人有责.某市为进一步推进生活垃圾分类工作,调动全民参与的积极性,举办了“垃圾分类游戏挑战赛”.据统计,在为期2个月的活动中,共有640万人参与.为鼓励市民积极参与活动,市文明办随机抽取200名参与该活动的网友,以他们单次游戏得分作为样本进行分析,由此得到如下频数分布表,中的数据用该组区间的中点值作代表,其中标准差的计算结果要求精确到0.01);(2)若要从单次游戏得分在[30,40),[60,70),[80,90]的三组参与者中,用分层抽样的方法选取7人进行电话回访,再从这7人中任选2人赠送话费,求此2人单次游戏得分不在同一组内的概率.附:185≈13.60,370≈19.24.解:(1)参与该活动的网友单次游戏得分的平均值x -=1200×(35×10+45×40+55×60+65×40+75×30+85×20)=60. 标准差s =252×10+152×40+52×60+52×40+152×30+252×20200=185≈13.60.(2)用分层抽样抽取7人,其中得分在[30,40)的有1人,得分在[60,70)的有4人,得分在[80,90]的有2人.分别记为a ,b 1,b 2,b 3,b 4,c 1,c 2,7人中任选2人,有21种结果,分别是(a ,b 1),(a ,b 2),(a ,b 3),(a ,b 4),(a ,c 1),(a ,c 2),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 1,c 1),(b 1,c 2),(b 2,b 3),(b 2,b 4),(b 2,c 1),(b 2,c 2),(b 3,b 4),(b 3,c 1),(b 3,c 2),(b 4,c 1),(b 4,c 2),(c 1,c 2).其中2人得分在同一组的有7种,分别是{b 1,b 2},{b 1,b 3},{b 1,b 4},{b 2,b 3},{b 2,b 4},{b 3,b 4},{c 1,c 2},故2人得分不在同一组内的概率P =1-721=23.3.最近青少年的视力健康问题引起家长们的高度重视,某地区为了解当地24所小学,24所初中和12所高中的学生的视力状况,准备采用分层抽样的方法从这些学校中随机抽取5所学校对学生进行视力调查.(1)若从所抽取的5所学校中再随机抽取3所学校进行问卷调查,求抽到的这3所学校中,小学、初中、高中分别有一所的概率;(2)若某小学被抽中,调查得到了该小学前五个年级近视率y 的数据如下表,并根据方程预测六年级学生的近视率.附:回归直线y ^=b ^x +a ^的斜率和截距的最小二乘法估计公式分别为b ^=∑ni =1x i y i -n x - y -∑ni =1x 2i -n x-2,a ^=y --b ^x -. 参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55.解:(1)由24∶24∶12=2∶2∶1,得抽取的5所学校中有2所小学、2所初中、1所高中,分别设为a 1,a 2,b 1,b 2,c ,从这5所学校中随机抽取3所学校的所有基本事件为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,c ),(a 1,b 1,b 2),(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,b 2),(a 2,b 1,c ),(a 2,b 2,c ),(b 1,b 2,c ),共10种,设事件A 表示“抽到的这3所学校中,小学、初中、高中分别有一所”,则事件A 包含的基本事件为(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,c ),(a 2,b 2,c ),共4种,故P (A )=410=25.(2)由题中表格数据得x -=3,y -=0.15,5x - y -=2.25,5x -2=45,且由参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55,得b ^=2.76-2.2555-45=0.051,a^=0.15-0.051×3=-0.003, 得线性回归方程为y ^=0.051x -0.003.当x =6时,代入得y ^=0.051×6-0.003=0.303, 所以六年级学生的近视率在0.303左右.[B 级 综合练]4.某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数、客户性别等进行统计,整理得到下表:组区间的中点值作代表,结果保留小数点后两位);(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率;(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视为“非十分爱好该课程者”,请根据已知条件完成以下2×2列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?附:K2=(a+b)(c+d)(a+c)(b+a),其中n=a+b+c+d.解:(1)依题意,在这100位购买该课程的客户中,男性客户购买该课程学时数的平均值x-=160×(7.5×18+12.5×12+17.5×9+22.5×9+27.5×6+32.5×4+37.5×2)≈16.92.所以估计男性客户购买该课程学时数的平均值为16.92.(2)设“所抽取的2人购买的学时数都不低于15”为事件A,依题意按照分层抽样的方式分别从学时数为[5,10),[10,15),[15,20)的女性客户中抽取1人(设为a),2人(分别设为b1,b2),4人(分别设为c1,c2,c3,c4).则从这7人中随机抽取2人所包含的基本事件为ab1,ab2,ac1,ac2,ac3,ac4,b1b2,b1c1,b1c2,b1c3,b1c4,b2c1,b2c2,b2c3,b2c4,c1c2,c1c3,c1c4,c2c3,c2c4,c3c4,共21个,其中事件A所包含的基本事件为c1c2,c1c3,c1c4,c2c3,c2c4,c3c4,共6个.所以事件A发生的概率P(A)=621=2 7.(3)依题意得2×2列联表如下,女性 16 24 40 总计6436100K 2=100×(48×24-16×12)264×36×60×40≈16.667>10.828.故有99.9%的把握认为“十分爱好该课程者”与性别有关.5.某客户考察了一款热销的净水器,使用寿命为十年,该款净水器为三级过滤,每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯需要不定期更换,其中每更换3个一级滤芯就需要更换1个二级滤芯,三级滤芯无需更换.其中一级滤芯每个200元,二级滤芯每个400元.记一台净水器在使用期内需要更换的二级滤芯的个数构成的集合为M .如图是根据100台该款净水器在十年使用期内更换的一级滤芯的个数制成的柱状图.(1)结合柱状图,写出集合M ;(2)根据以上信息,求一台净水器在使用期内更换二级滤芯的费用大于1 200元的概率(以100台净水器更换二级滤芯的频率代替1台净水器更换二级滤芯发生的概率);(3)若在购买净水器的同时购买滤芯,则滤芯可享受5折优惠(使用过程中如需再购买无优惠).假设上述100台净水器在购机的同时,每台均购买a 个一级滤芯、b 个二级滤芯作为备用滤芯(其中b ∈M ,a +b =14),计算这100台净水器在使用期内购买滤芯所需总费用的平均数,并以此作为决策依据,如果客户购买净水器的同时购买备用滤芯的总数也为14,则其中一级滤芯和二级滤芯的个数应分别是多少?解:(1)由题意可知,当一级滤芯更换9,10,11个时,二级滤芯需要更换3个,当一级滤芯更换12个时,二级滤芯需要更换4个,所以M={3,4}.(2)由题意可知,二级滤芯更换3个,需1 200元,二级滤芯更换4个,需1 600元,在100台净水器中,二级滤芯需要更换3个的净水器共70台,二级滤芯需要更换4个的净水器共30台,设“一台净水器在使用期内更换二级滤芯的费用大于1 200元”为事件A,则P(A)=30=0.3.100(3)a+b=14,b∈M,①若a=10,b=4,则这100台净水器更换滤芯所需费用的平均数为100×10×30+(100×10+200)×40+(100×10+400)×30+200×4×100100=2 000.②若a=11,b=3,则这100台净水器更换滤芯所需费用的平均数为100×11×70+(100×11+200)×30+200×3×70+(200×3+400)×30100=1 880.所以如果客户购买净水器的同时购买备用滤芯的总数为14,客户应该购买一级滤芯11个,二级滤芯3个.6.互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分,某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下简称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表,(1)业的经营状况;(2)据统计表明,y 与x 之间具有线性关系.①请用相关系数r 对y 与x 之间的相关性强弱进行判断(若|r |>0.75,则可认为y 与x 有较强的线性相关关系(r 值精确到0.001));②经计算求得y 与x 之间的回归方程为y ^=1.382x -2.674,假定每单外卖业务,企业平均能获取纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围(x 值精确到0.01).相关公式:r =∑ni =1 (x i -x -)(y i -y -)∑ni =1(x i -x -)2∑ni =1(y i -y -)2.参考数据:∑5i =1(x i -x -)(y i -y -)=66,∑5i =1(x i -x -)2∑5i =1(y i -y -)2≈77.解:(1)由题可知x -=5+2+9+8+115=7(百单),y -=2+3+10+5+155=7(百单).外卖甲的日接单量的方差s 2甲=10,外卖乙的日接单量的方差s 2乙=23.6, 因为x -=y -,s 2甲<s 2乙,即外卖甲平均日接单量与外卖乙相同,且外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.(2)①计算可得,相关系数r ≈6677≈0.857>0.75, 所以可认为y 与x 之间有较强的线性相关关系. ②令y ≥25,得1.382x -2.674≥25,解得x ≥20.02, 又20.02×100×3=6 006,所以当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润大约不低于6 006元.。

统计与概率高考题

统计与概率高考题

统计与概率高考题2(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--统计与概率高考题2(2015—2018年文科)1.(2018全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)频数13249265使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数151310165(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于3m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)2.(2018全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为y t;根据2010年至2016年的数=-+,,…,)建立模型①:ˆ30.413.51217据(时间变量t的值依次为127y t.=+,,…,)建立模型②:ˆ9917.5(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.3.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()0.0500.0100.0013.841 6.63510.828P K k k ≥4.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大(只需写出结论)5.(2017新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,s == 0.212≈18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,i =1,2, (16)(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.6.(2017新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:新养殖法旧养殖法箱产量/kg箱产量/kg(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较。

【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用):概率统计解答题(解析版)

【答案】(1) 0.6 ; (2)分布列见解析:, E X 13 .
解析:(1)设甲在三个项目中获胜的事件依次记为 A, B,C ,所以甲学校获得冠军的概率为
P P ABC P ABC P ABC P ABC
0.5 0.4 0.8 0.5 0.4 0.8 0.5 0.6 0.8 0.5 0.4 0.2 0.16 0.16 0.24 0.04 0.6 . (2)依题可知, X 的可能取值为 0,10, 20,30 ,所以,
P X 0 0.5 0.4 0.8 0.16 ,
P X 10 0.5 0.4 0.8 0.5 0.6 0.8 0.5 0.4 0.2 0.44 ,
P X 20 0.5 0.6 0.8 0.5 0.4 0.2 0.5 0.6 0.2 0.34 ,
P X 30 0.5 0.6 0.2 0.06 .
i=1
, 1.896 1.377 .
n
n
(xi x)2 ( yi y)2
i=1
i=1
【答案】(1) 0.06m2 ; 0.39m3
(2) 0.97
(3)1 2 0 9 m 3
解析:【小问 1 详解】
样本中 10 棵这种树木的根部横截面积的平均值 x 0.6 0.06 10
样本中 10 棵这种树木的材积量的平均值 y 3.9 0.39 10
得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间 [20,70) 的概率; (3)已知该地区这种疾病的患病率为 0.1% ,该地区年龄位于区间[40, 50) 的人口占该地区总人口的 16% .从该地区中任选一人,若此人的年龄位于区间[40, 50) ,求此人患这种疾病的概率.(以样本数

2019年高考真题概率统计专题整理 小题+大题 详细答案解析

2019年高考数学真题——概率统计专题整理1.(2019年全国卷1,文数6题,满分5分)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C .【解析】依题意可知组距间隔为100010100d ==,各组间被抽到号码的绝对值差应为间隔d 的倍数,即能被10整除.只有C 项:616465710-=能被10整除,故选C .2.(2019年全国卷1,理数6题,满分5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A .【解析】易知出现阳爻的概率服从二项分布16,2B ⎛⎫ ⎪⎝⎭,∴每卦6爻中恰好有3个阳爻的概率333611512216P C ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭,故选A .3.(2019年全国卷2,文数4题,满分5分)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B .【解析】“恰有2只测量过该指标”指的是事件“两只通过指标且另外一只没有通过指标”,∴21323535C C P C ==,故选B .4.(2019年全国卷2,文数14、理数13题,满分5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.【答案】0.98.【解析】依题意共有10201040++=个车次,∴经停该站高铁列车所有车次的平均正点率的估计值为1020100.970.980.990.98404040⨯+⨯+⨯=.5.(2019年全国卷2,理数5题,满分5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差【答案】A .【解析】根据一组数据中中位数的找法可知,极端值变化不改变整组数据的中位数,故选A .6.(2019年全国卷3,文数3题,满分5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D .【解析】把两名女同学“捆绑”在一起看成一个特殊的同学有222A =种方法,再与剩下的两名男同学全排列共有336A =种方法,而两男两女四名同学所有的排列方法有4424A =种,故两位女同学相邻的概率23234412A A P A ⋅==,故选D .7.(2019年全国卷3,文数4、理数3题,满分5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.8【答案】C .【解析】阅读过《西游记》且阅读过《红楼梦》的学生共有60位,而阅读过《红楼梦》的学生共有80位,由此可知只阅读过红楼梦的学生有20人。

概率与统计 第三讲 统计与统计案例——2023届高考理科数学大单元二轮复习练重点【新课标全国卷】

专题八 概率与统计 第三讲 统计与统计案例——2023届高考理科数学大单元二轮复习练重点【新课标全国卷】1.在某次赛车中,50名参赛选手的成绩(单位:min )全部介于13到18之间(包括13和18).现将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18],其频率分布直方图如图所示.若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为( )A.11B.15C.35D.392.某学校组织学生参加英语测试,成绩的频率分布直方图如图所示,数据的分组依次为[)20,40,[)40,60,[)60,80,[]80,100.若低于60分的人数是15人,则参加英语测试的学生人数是( )A.45B.50C.55D.603.我国是一个农业大国,从事农业工作的人员有5.4亿,如图为某县农村从业人员年龄结构图,为了解该县从业人员在从事农业工作中的实际困难,以推进县乡村振兴工作,某调查机构计划从某县的所有从业人员中随机抽取20人展开某项调研,则所抽取的20人中恰有2人的年龄在20岁以下的概率约为( ) (170.90.167≈,180.90.15≈,190.90.135≈,200.90.122≈)A.0.25B.0.29C.0.32D.0.354.某校高一年级在某次数学测验中成绩不低于80分的所有考生的成绩统计表如下:A.在[90,100]内B.在(100,110]内C.在(110,120]内D.在(120,130]内5.若某同学连续3次考试的名次(3次考试均没有出现并列名次的情况)不低于第3名,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次的数据,推断一定是尖子生的是( )A.甲同学:平均数为2,众数为1B.乙同学:平均数为2,方差小于1C.丙同学:中位数为2,众数为2D.丁同学:众数为2,方差大于16.2021年某省高考体育百米测试中,成绩全部介于12秒与18秒之间,抽取其中100个样本,将测试结果按如下方式分成六组:第一组[12,13),第二组[13,14),…,第六组[17,18],得到如下的频率分布直方图.则该100考生的成绩的平均数和中位数(保留一位小数)分别是( )A.15.2 15.3B.15.1 15.4C.15.1 15.3D.15.2 15.37.设样本数据1x ,2x ,…,10x 的平均数和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则1y ,2y ,…,10y 的平均数和方差分别为( ) A.1a +,4B.1a +,4a +C.1,4D.1,4a +8.已知变量x ,y 之间的一组数据如下表:若y 关于x 的线性回归方程为0.7y x a =+,则a =( ) A.0.1B.0.2C.0.35D.0.459.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得经验回归直线方程0.6754.9y x =+,表中有一个数据模糊不清,请你推断出该数据的值为( )C.68 10.第24届冬季奥林匹克运动会将于2022年在北京举办.为了解某城市居民对冰雪运动的关注情况,随机抽取了该市100人进行调查统计,得到如下22⨯列联表.参考公式:()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.附表:A.该市女性居民中大约有5%的人关注冰雪运动B.该市男性届民中大约有95%的人关注冰雪运动C.有95%的把握认为该市居民是否关注冰雪运动与性别有关D.有99%的把握认为该市居民是否关注冰雪运动与性别有关11.一个项目由15个专家评委投票表决,剔除一个最高分96,一个最低分58后所得到的平均分为92,方差为16,那么原始得分的方差为_______.12.经市场调查,某款热销品的销售量y(万件)与广告费用x(万元)之间满足回归直线方程 3.5=+.若样本点中心为(45,35),则当销售量为52.5万件时,可估计投入y bx的广告费用为_________________万元.13.某学校为了制订治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:14.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.15.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):1(优) (2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.附:2()()()()K a b c d a c b d =++++,)2kk答案以及解析1.答案:A解析:由题意可得,成绩在[13,15)内的频率为10.080.320.380.22---=.又本次赛车中,共50名参赛选手,所以这50名选手中获奖的人数为500.2211⨯=.故选A. 2.答案:B解析:根据频率分布直方图的特点可知,低于60分的频率是(0.0050.01)200.3+⨯=,则所求学生人数是15500.3=. 3.答案:B解析:由频率分布直方图可得20岁以下的农村从业人员的概率为0.1,所以从所有从业人员中抽取20人,其中恰有2人的年龄在20岁以下的概率为221820C (0.1)(0.9)0.2850.29≈≈,故选B. 4.答案:B解析:由表可知,及格的考生共有401512105284+++++=人,在[90,100]内有40人,在(100,110]内有15人,故及格的所有考生成绩的中位数在(100,110]内.5.答案:B解析:甲同学:若平均数为2,众数为1,则有一次名次应为4,故排除A ;乙同学:平均数为2,设乙同学3次考试的名次分别为1x ,2x ,3x ,则方差()()()2222123122213s x x x ⎡⎤=-+-+-<⎣⎦,则()()()2221232223x x x -+-+-<,所以1x ,2x ,3x 均不大于3,符合题意;丙同学:中位数为2,众数为2,有可能是2,2,4,不符合题意;丁同学:众数为2,方差大于1,有可能是2,2,6,不符合题意.故选B. 6.答案:C解析:100名考生成绩的平均数12.50.1013.50.1514.50.15x =⨯+⨯+⨯+15.50.3016.50.2517.50.0515.1⨯+⨯+⨯=.因为前三组频率直方图面积和为0.100.150.150.4++=,前四组频率直方图面积和为0.100.150.150.300.7+++=,所以中位数位于第四组内,设中位数为a ,则(15)0.300.1a -⨯=,解得15.3a ≈,故选C.7.答案:A解析:由题意知i i y x a =+,即()1210110110y x x x a x a a =⨯++++=+=+,方差{}222212101()()()10x a x a x s a x a x a x a ⎡⎤⎡⎤⎡⎤=⨯+-+++-++++-+⎣⎦⎣⎦⎣⎦()()()22212101410x x x x x x ⎡⎤=⨯-+-++-=⎢⎥⎣⎦. 故选A. 8.答案:C解析:本题考查线性回归方程截距的求解.因为11(3456) 4.5,(2.534 4.5) 3.544x y =+++==+++=,所以0.7 3.50.7 4.50.35a y x =-=-⨯=,故选C. 9.答案:C解析:设表中模糊看不清的数据为m .由表中数据得30x =, 3075m y +=,将30730,5m x y +==代入经验回归方程0.6754.9y x =+,得68m =.故选C. 10.答案:C解析:由22⨯列联表中的数据可得()22352515251004.167 3.84160405050K ⨯-⨯⨯=≈>⨯⨯⨯,因此,有95%的把握认为该市居民是否关注冰雪运动与性别有关.故选:C.11.答案:88解析:根据题意,设剔除最高分、最低分之后的13个数据为1a ,2a ,3a ,…,13a ,由这13个数据的平均分为92,方差为16, 知()1231319213a a a a ++++=,()()()222121319292921613a a a ⎡⎤-+-++-=⎣⎦, 解得123131196a a a a ++++=,2221213110240a a a +++=,对于原始得分96,58,1a ,2a ,3a ,…,13a , 其平均数()12313196589015a a a a a =++++++=,其方差为()(()22222212131(9690)(5890)9090)908815s a a a ⎤⎡=-+-+-+-++-=⎣⎦. 12.答案:70解析:本题考查线性回归方程.依题意,将(45,35)代入回归直线方程 3.5y bx =+(提示:回归直线必过样本点中心),得3545 3.5b =⨯+,解得0.7b =,所以回归直线方程为0.7 3.5y x =+.令0.7 3.552.5y x =+=,得70x =. 13.答案:99.5%解析:因为2250(2015510)8.33325253020χ⨯⨯-⨯=≈⨯⨯⨯,又()27.8790.0050.5%P χ==≥,所以我们有99.5%的把握认为“是否同意限定区域停车与家长的性别有关”.14.答案:(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为20%(2)平均数与标准差的估计值分别为30%,17%解析:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为20%. (2)1(0.1020.10240.30530.50140.707)0.30100y =⨯-⨯+⨯+⨯+⨯+⨯=, ()52222111(0.40)2(0.20)100100i i i s n y y=⎡=-=⨯-⨯+-⨯⎣∑222240530.20140.4070.0296⎤+⨯+⨯+⨯=⎦,0.020.17s .所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.15.答案:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得25.82055457030K =≈⨯⨯⨯. 由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.。

全国通用2020_2022三年高考数学真题分项汇编专题15概率与统计解答题理

15 概率与统计(解答题)(理科专用)1.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为2.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R . (ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析(2)(i )证明见解析;(ii)R =6; 【解析】 【分析】(1)由所给数据结合公式求出K 2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R . (1)由已知K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K 2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异. (2)(i)因为R =P(B|A)P(B ̅|A)⋅P(B̅|A )P(B|A )=P(AB)P(A)⋅P(A)P(AB ̅)⋅P(A B̅)P(A )⋅P(A )P(A B ), 所以R =P(AB)P(B)⋅P(B)P(A B )⋅P(A B̅)P(B̅)⋅P(B ̅)P(AB ̅) 所以R =P(A|B)P(A |B)⋅P(A |B̅)P(A|B ̅), (ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=63.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.4.【2021年新高考1卷】某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)B类.【解析】【分析】(1)通过题意分析出小明累计得分X的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X的所有可能取值为0,20,100.()010.80.2P X==-=;()()200.810.60.32P X==-=;()1000.80.60.48P X==⨯=.所以X的分布列为(2)由(1)知,()00.2200.321000.4854.4E X=⨯+⨯+⨯=.若小明先回答B问题,记Y为小明的累计得分,则Y的所有可能取值为0,80,100.()010.60.4P Y==-=;()()800.610.80.12P Y==-=;()1000.80.60.48P X==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=. 因为54.457.6<,所以小明应选择先回答B 类问题.5.【2021年新高考2卷】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义. 【答案】(1)1;(2)见解析;(3)见解析. 【解析】 【分析】(1)利用公式计算可得()E X .(2)利用导数讨论函数的单调性,结合()10f =及极值点的范围可得()f x 的最小正零点. (3)利用期望的意义及根的范围可得相应的理解说明. 【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤, 故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<; 故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数, 若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>. 此时()()20300f p p p '=-++<,()230120f p p p '=+->, 故()f x '有两个不同零点34,x x ,且3401x x <<<, 且()()34,,x x x ∈-∞+∞时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数, 而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.6.【2020年新课标1卷理科】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 【答案】(1)116;(2)34;(3)716. 【解析】 【分析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率;(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率;(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率. 【详解】(1)记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭;(2)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=; (3)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、 BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪ ⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等, 所以丙赢的概率为()97123216P N =-⨯=. 【点睛】本题考查独立事件概率的计算,解答的关键就是列举出符合条件的基本事件,考查计算能力,属于中等题.7.【2020年新课标2卷理科】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi ,yi )(i =1,2,…,20),其中xi 和yi 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi ,yi )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.【答案】(1)12000;(2)0.94;(3)详见解析 【解析】 【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20()()iix x y y r --=∑计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样. 【详解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯= (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.94iix x y y r --===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性, 从而可以获得该地区这种野生动物数量更准确的估计. 【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.8.【2020年新课标3卷理科】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:2()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=; (2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()21003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.9.【2020年新高考1卷(山东卷)】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:11 (3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关? 附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见解析;(3)有.【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据可得22⨯列联表;(3)计算出2K ,结合临界值表可得结论.【详解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:22⨯222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关.【点睛】本题考查了古典概型的概率公式,考查了完善22⨯列联表,考查了独立性检验,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
概率统计大题训练
(2009)18某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参
加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100
名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。
(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.

表1:

生产能力
分组
100,110 110,120 120,130 130,140 

140,150

人数 4 8 x 5 3
表2:
生产能力分

110,120 120,130 130,140 

140,150

人数 6 y 36 18
(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差
异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)

(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一
组中的数据用该组区间的中点值作代表)
2

(2010)19.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年
人,结果如下:
是否需要志愿 性别 男 女

需要 40 30
不需要 160 270
(1) 估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2) 能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3) 根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?
说明理由

附:22()()()()()nadbcKabcdacbd

(2011)19.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或
等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产
品,并测试了每件产品的质量指标值,得到下面试验结果:

(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;
(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为

2
()PKk
0.050 0.010 0.001

k
3.841 6.635
10.828
3

从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及
数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的概率)

(2012)19.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,
如果当天卖不完,剩下的玫瑰花作垃圾处理。

(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n
(单位:枝,nN)的函数解析式。
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率。
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,
数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?
请说明理由。

(2013)19、(本小题满分12分)
一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品
的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如
果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产
品都不能通过检验。
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互
独立
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需
的费用记为X(单位:元),求X的分布列及数学期望。
4

(2013Ⅱ,理19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利
润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直
方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一
个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(1)将T表示为X的函数;
(2)根据直方图估计利润T不少于57 000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作
为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需
求量落入[100,110)的频率),求T的数学期望.

(2012)(19)(本小题满分12分)(注意:在试题卷上作答无效.........)
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,
依次轮换。每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球方得1分的概率为
0.6
,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。

(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;

(Ⅱ)表示开始第4次发球时乙的得分,求的期望。

(2011)18.(本小题满分12分)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为
0.3,设各车主购买保险相互独立。
(Ⅰ)求该地1为车主至少购买甲、乙两种保险中的1种的概率;
(Ⅱ)X表示该地的100为车主中,甲、乙两种保险都不购买的车主数,求X的期望。

2011辽宁19、某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进
行田间试验。选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,
另外n小块地种植品种乙。 (12分)
(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷
产量(单位:kg/hm2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验
结果,你认为应该种植哪一品种?

附:样本数据x1,x2,„,xn的样本方差2222121xxxxxxnsn,其中x为样本平均数。
5

2012辽宁(19)(本小题满分12分)
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。
下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别
有关?

(Ⅱ)将上述调查所得到的频率视为概率。现在从该地区大量电视观众中,采用随机抽
样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X。若每次抽取的结果
是相互独立的,求X的分布列,期望()EX和方差()DX。

附:22112212211212(),nnnnnnnnn
6

19.(2013辽宁,理19)(本小题满分12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取
3道题解答.
(1)求张同学至少取到1道乙类题的概率;

(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙
类题的概率都是

18.(12分)(2014•辽宁)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,
如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概
率;
(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差
D(X).

相关文档
最新文档