组合变形的概念
8组合变形2

3)危险点位置 最大拉应力位于固定端截面上 边缘和后边缘的交点d,即梁的危 险截面是固定端截面,危险点为 截面的d角点。
6 1.5 106 6 1.2 106 MPa MPa 8.8 MPa 2 2 100 150 150 100
max max
2
△
最大切应力和最大正应力为
max T
Wp
max
M max Wz
A
3、强度准则 d A截面上、下边缘点有最大正应力和 B 切应力,是危险点。其应力状态如图。 D 塑性材料在弯、扭组合变形的二向应 l F 力状态下,应用第三、第四强度理论的强 M'=FD/2度准则进行强度计算。其强度准则为:
2.斜弯曲强度准则:
max
本课节小结
三、拉 (压)与弯曲组合变形 1.拉弯组合 外力不沿梁的横向(斜交于轴线),但力作用线 仍在纵向对称平面内,梁将发生拉 (压)与弯曲组合变形。
2.拉弯组合强度设计准则为:
max
M z max M y max [ ] Wz Wy
FN M max [ ] A Wz
F‘=F
xd 3 2 4 2 [ ]
xd 4 2 3 2 [ ]
T
M
M'
Fl
x
x
将弯曲正应力 max = M max/ W z 和扭转 切应力 max =T/WP代入上式,用圆截面 Wz 代替 WP , WP=2Wz ,即得到圆轴的弯 、扭组合时的强度准则为
Mz y M y z k z y Iz Iy 2.斜弯曲的强度计算
二建考试必备-建筑结构与设备(7) 杆件的基本变形与组合变形

第二节杆件的基本变形与组合变形一、轴向拉伸与压缩1.轴力与轴向变形轴向拉(压)杆件横截面上的内力只有轴力,轴力可采用截面法求得。
轴力的正负号一般规定为:拉力为正,压力为负。
轴力沿杆轴方向的变化采用轴力图表示。
依据平面假设,轴向拉(压)杆件的变形沿整个横截面是均匀的,因而应力在横截面上也是均匀分布的(图3-8)。
横截面上应力的计算式为:式中N 一轴力;A ―横截面面积。
在弹性变形范围内,轴向拉(压)杆的伸长(缩短)量与杆所受轴力、杆的长度成正比,与杆的抗拉(压)刚度EA 成反比,即【例3-4】计算图3-9(a)时所示轴向受力杆件的内力,作出内力图,并判断整个杆件的变形是伸长还是缩短。
E A=常数。
在BC段内任一截面处截开,取右侧部分为隔离体(图3-9b ) ,由平衡条件可得:同理,在AB 段内任一截面处截开,取右侧部分为隔离体(图3 -9c),由平衡条件可得因整个杆件的EA=常数,AB 段的杆长虽为BC 段的一半,但其所受的拉力为BC 段的3 . 5 / 1 . 5 ≈2 . 3 倍,因此AB 段的伸长量大于BC 段的缩短量,整个杆件的变形是伸长的。
2.温度改变的影响自然界中的物体普遍存在热胀冷缩的现象,杆件结构也是一样。
例如图 3 -10 ( a )所示的杆件,若其温度升高Δt,因没有多余约束(即为静定),故杆件可以自由地伸缩,并不会产生内力或反力。
在温度改变作用下,杆件的伸长量△l 与杆长l及温度改变量△t 成正比,即:式中α——材料的线膨胀系数。
对于图3 一10 ( b )的杆件,若温度升高△t,由于杆件两端固定(即为超静定),阻止了杆件的自由伸缩,这样杆内将产生温度应力。
显然,如果该杆温度升高(△t>0 ) ,则杆内将产生压力;若温度降低(△t < 0 ),则杆内将产生拉力。
二、剪切当杆件的某一截面受一对相距很近,方向相反的横向力作用时,杆件在该截面处将发生剪切变形。
例如图3-11所示的螺栓连接件,当钢板受拉力P 作用时,螺栓将在截面m-m处承受剪力,并产生剪切变形。
第九章组合变形s

F
F F' My
FN (x) F M z(x) F ey M y(x) F ez
f
ymax
FyL3 3EIz
,
x
F''
My
max
Mz Wz
My Wy
y
fy
max
FyL3 3EIz
,
2、偏心拉(压)的计算 (1)、荷载的简化
My
Fy Fcos Mz Fey
x
y
b
(2)、任意横截面任意点的“σ”
烟囱:自重引起轴向压缩 + 水平方向的风力而引起弯曲; 传动轴:在齿轮啮合力的作用下,发生弯曲 + 扭转 立柱:荷载不过轴线,为偏心压缩 = 轴向压缩 + 纯弯曲
二、组合变形的研究方法 —— 叠加原理
求解步骤 ①外力分解和简化 ②内力分析——确定危险面。
③应力分析:确定危险面上的应力分布, 建立危险点的强度条件。
(2)应力:
Mz k
Mz(x)yk Iz
k kFNkMz
Fx MzFey F
Fy
k z
y
在 FN 作用下: Z
在 Mz 作用下: Z
Y
Mz k
Mz(x)yk Iz
(3)叠加:
f y max
Fy L3 3EIz
,
k kFNkMz
Y
b
a
Z
Z
d
c 3、强度计算
危险截面——固定端
z
例 图示悬臂梁,承受载荷F1与F2作用,已知F1=800N,F2=1.6kN, l=1m,许用应力[σ ]=160MPa。试分别按下列要求确定截面尺寸: (1) 截面为矩形,h=2b;(2) 截面为圆形。
《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4
简述几种工程中常见的组合变形

简述几种工程中常见的组合变形
在工程中,组合变形是指由多个形式不同的变形组合而成的变形形式,常见的组合变形有以下几种:
1. 弯曲和剪切组合变形:当物体同时受到弯曲和剪切的变形时,会出现这种组合变形形式。
在制造和使用过程中,这种变形会导致物体的强度和刚度下降。
2. 拉伸和压缩组合变形:当物体同时受到拉伸和压缩的变形时,会出现这种组合变形形式。
这种变形会影响物体的强度和刚度,严重时会导致物体的破坏。
3. 扭曲和弯曲组合变形:当物体同时受到扭曲和弯曲的变形时,会出现这种组合变形形式。
这种变形会影响物体的形状和尺寸,严重时还会影响物体的使用功能。
4. 压缩和剪切组合变形:当物体同时受到压缩和剪切的变形时,会出现这种组合变形形式。
这种变形会影响物体的强度和刚度,严重时还会导致物体的破坏。
以上是几种工程中常见的组合变形,工程师需要对这些组合变形进行分析和评估,以保证工程设计的可靠性和安全性。
- 1 -。
工程力学-组合变形

s
强度条件为 nb
n
塑性材料 脆性材料
(2) 概述复杂应力状态下的强度计算:
组合变形的构件内危险点多为二向或三向应力状态。
难以用实验测定各种应力状态而建立强度条件,常常依 据部分实验结果提出假设,推测材料失效的原因,从而 建立强度理论。
5
§14.2 强度理论概论
强度理论 (theory of strength)
(1) 两种失效现象:屈服和断裂
各种材料的强度不足引起的失效现象不同,表现为屈服 和断裂两类。
(2) 衡量变形的程度:
衡量构件受力变形程度的量有应力、应变、能量等。
(3) 强度理论:
根据材料破坏现象和大量的实验资料,人们对强度的失 效提出了各种假说,称为强度理论。
不同的强度理论认为,材料按某种方式(屈服或断裂)
在二向应力状态下, 为两个非零主应力,
则在 为坐标的平面坐标系中, 当 同号时,失效准则为
当 异号时,失效准则为
28
故任意情况下失效准则在 所示。
平面中为六角形,如图
若某一平面应力状态其两个非零主应力
所在的点 M ,落在六来自形区域之内,则该应力状态不会引起屈服。
若点 M 落在六角形边界上,则该应力状态会引起材料 屈服。
本章主要内容:
(1) 介绍几种常见的强度理论; (2) 讨论工程中常见的斜弯曲、拉(压)弯、偏心拉
(压)、弯扭等组合变形形式的强度计算。
2
第14章 组合变形 (combined deformation)
§14.1 组合变形的概念与分析方法
四种基本变形
拉伸(压缩)、剪切、扭转、弯曲。
组合变形 (combined deformation)
材料力学(单辉祖)第十章组合变形

弯压组合
可见,危险截面为C截面 其轴力和弯矩分别为
FNC 3 kN M c M max 4 2 8kN m
A
FAy
10kN m a x
g g f
C m
FBy
B
危险点 截面C上的最低点f 和最高点g
FN M c s A W
f
18
弯压组合
A I
4
10kN
解 首先计算折杆的支座反力 由平衡方程可得 FAx A
FAx 0, FAy 5kN, FBy 5kN
FAy
m
10kN
C 1.2m B 1.6m FBy
a x 1.6m
m
由于折杆左右对称,所以只需分析一半即可。 折杆AC部分任一截面上的内力
FN FAy sin 3 kN FS FAy cos 4 kN M xFAy cos
杆件变形分析步骤 首先, 在杆件原始尺寸上分别计算由横向力和 轴向力引起变形、应力 然后, 利用叠加原理,合成在横向力和轴向力 共同作用下杆件变形、应变和应力等物理量 若杆件抗弯刚度EI较大,轴力引起杆件的弯曲 变形较小,可以忽略
10
弯拉组合
细长杆件强度问题, 受力如图,抗弯刚度 EI,截面抗弯模量W , 横截面面积A。
n
e n
P
z b h y
30
偏心拉伸(压缩)
解: 1. 力系简化 力P对竖直杆作用等效于作 用在杆轴线上一对轴力P和 一对作用在竖直平面内力 偶mz=Pe
FN P 2000 N, M z mz Pe 120 N m
mz P
n
e n
P
mz P
可见,竖直杆发生弯拉组合变形
《材料力学》第八章组合变形

(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合变形的概念
组合变形是指利用给定的元素进行排列组合,形成不同的组合形式。
在数学中,组合变形是对大小为n的集合中取出m(0<=m<=n)个元素的所有可能进行排列组合。
组合变形也广泛应用于计算机科学、统计学、概率论、密码学等领域。
组合变形的概念可以通过以下方式进行解释:假设有一个集合A = {a, b, c},在这个例子中,元素a、b和c是我们需要进行排列组合的元素。
组合变形可以生成不同的组合形式,例如{a, b}、{a, c}、{b, c}、{a}、{b}、{c}以及空集等。
在这个例子中,我们可以发现元素a、b和c的组合有3个,而组合变形的总数则为2^3 = 8个。
这是因为对于每一个元素,存在两种选择的可能性:选择该元素,或者不选择。
组合变形的数学公式可以表示为C(n, m),其中n表示集合的大小,m表示取出的元素个数。
C(n, m)的计算公式为C(n, m) = n! / (m!(n-m)!),其中n!表示n 的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
该公式的计算过程可以通过以下步骤进行解释:首先计算n的阶乘,然后计算m的阶乘,最后计算n-m的阶乘。
将n的阶乘除以m的阶乘和(n-m)的阶乘的乘积,即可得到组合变形的结果。
举例来说,假设有一个集合A = {1, 2, 3, 4, 5},我们需要从中选择3个元素进行组合。
根据公式C(5, 3) = 5! / (3!(5-3)!), 我们可以得到组合变形的结果为C(5, 3) = 10。
这意味着从集合A中选择3个元素进行组合的方式有10种。
组合变形在许多领域都有广泛的应用。
在计算机科学中,组合变形被用于解决排列问题、密码学算法和图像处理等。
在统计学和概率论中,组合变形被用于计算事件的可能性、样本空间的大小以及排列组合的问题。
在密码学中,组合变形被用于生成密钥、创建密码以及解密信息。
在图像处理中,组合变形被用于生成图像的不同变形、纹理的生成以及图像压缩等。
通过组合变形,我们可以得到大量的排列组合结果。
这些结果可以帮助我们解决各种问题。
例如,在选举中,我们可以使用组合变形来计算可能的候选人组合以及得票数的可能性。
在商品组合中,我们可以使用组合变形来计算可能的产品组合以及销售额的预测。
在排列组合的问题中,组合变形也是一个重要的概念。
例如,在公交车站排队的问题中,我们可以使用组合变形来计算不同的排队方式以及等待时间的期望值。
综上所述,组合变形是利用给定的元素进行排列组合,形成不同的组合形式。
它在数学、计算机科学、统计学、概率论、密码学等领域都有广泛的应用。
通过组合变形,我们可以解决各种问题,计算可能性和预测结果。
组合变形是一个重要的数学概念,在我们的日常生活和各个领域中都有着重要的作用。