压弯组合变形
合集下载
建筑力学 第9章 组合变形杆件的应力分析与强度计算

建筑力学
§9-1 组合变形的概念
一、组合变形的概念
前面几章研究了构件的基本变形: 轴向拉(压)、扭转、平面弯曲。
由两种或两种以上基本变形组合的情况称为组合变形
组合变形
斜弯曲 拉(压)弯组合变形 偏心拉伸(压缩)变形 弯扭组合变形
§9-1 组合变形的概念
斜弯曲:
压弯组合变形:
F
Fy
z
Fz
x
y
§9-1 组合变形的概念
M z max Wz
z
Fx x
Fy
y
F
设图示简易吊车在当小车运行到梁端D时,吊车横梁处于最 不利位置。已知小车和重物的总重量F=20kN, 钢材的许用应力[]=160MPa,暂不考虑梁的自重。 按强度条件选择横梁工字钢的型号。
C
2m
A
A
FAx FAy
30 3.46m
FBC
30 3.46m
解:1、横梁AD受力分析
z
F2
b
(最大拉应力)
l y
解:
h
z
l
F1
(最大压应力)y
§9-3 拉伸(压缩)与弯曲的组合变形
横向力与轴向力共同作用的组合变形 一、荷载分解
Fx F cos
z
Fx x
Fy
y
F
Fy F sin
§9-3 拉伸(压缩)与弯曲的组合变形
二、内力计算 a
z
Fx F cos
Fx Fy F sin
解:1、荷载分解
q
qy q cos 800 0.894 714 N / m A
B
L
qz q sin 800 0.447 358 N / m
§9-1 组合变形的概念
一、组合变形的概念
前面几章研究了构件的基本变形: 轴向拉(压)、扭转、平面弯曲。
由两种或两种以上基本变形组合的情况称为组合变形
组合变形
斜弯曲 拉(压)弯组合变形 偏心拉伸(压缩)变形 弯扭组合变形
§9-1 组合变形的概念
斜弯曲:
压弯组合变形:
F
Fy
z
Fz
x
y
§9-1 组合变形的概念
M z max Wz
z
Fx x
Fy
y
F
设图示简易吊车在当小车运行到梁端D时,吊车横梁处于最 不利位置。已知小车和重物的总重量F=20kN, 钢材的许用应力[]=160MPa,暂不考虑梁的自重。 按强度条件选择横梁工字钢的型号。
C
2m
A
A
FAx FAy
30 3.46m
FBC
30 3.46m
解:1、横梁AD受力分析
z
F2
b
(最大拉应力)
l y
解:
h
z
l
F1
(最大压应力)y
§9-3 拉伸(压缩)与弯曲的组合变形
横向力与轴向力共同作用的组合变形 一、荷载分解
Fx F cos
z
Fx x
Fy
y
F
Fy F sin
§9-3 拉伸(压缩)与弯曲的组合变形
二、内力计算 a
z
Fx F cos
Fx Fy F sin
解:1、荷载分解
q
qy q cos 800 0.894 714 N / m A
B
L
qz q sin 800 0.447 358 N / m
工程力学第十一章 组合变形

土建工程中的混凝土或砖、石偏心受压柱,往往不 允许横截面上出现拉应力。这就是要求偏心压力只能作 用在横截面形心附近的截面核心内。
要使偏心压力作用下杆件横截面上不出现拉应力, 那么中性轴就不能与横截面相交,一般情况下充其量只能 与横截面的周边相切,而在截面的凹入部分则是与周边外 接。截面核心的边界正是利用中性轴与周边相切和外接时 偏心压力作用点的位置来确定的。
解:拉扭组合:
7kNm T
50kN FN
安全
例11-8 直径为d的实心圆轴,
·B
P 若m=Pd,指出危险点的位置, 并写出相当应力 。
x
m
解:偏拉与扭转组合
z
C P P 例11-9 图示折角CAB,ABC段直径
d=60mm,L=90mm,P=6kN,[σ]=
BA
60MPa,试用第三强度理论校核轴 x AB的强度。
例11-6 图示圆轴.已知,F=8kN,Me=3kNm,[σ]=100MPa, 试用第三强度理论求轴的最小直径.
解:(1) 内力分析
4kNm M
3kNm T
(2)应力分析
例11-7 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。
至于发生弯曲与压缩组合变形的杆件,轴向压力 引起的附加弯矩与横向力产生的弯矩为同向,故只有 杆的弯曲刚度相当大(大刚度杆)且在线弹性范围内 工作时才可应用叠加原理。
A M
F FN
+ ql2/8
+
B
+
=
C 10kN
A 1.6m
1.6m
10kN
1.2m
例11-3 两根无缝钢管焊接 而成的折杆。钢管外径 D=140mm,壁厚t=10mm。求 危险截面上的最大拉应力和 B 最大压应力。
第8章 组合变形(土木)

F F
350
F
350
M
FN
y1
A 15000 mm 2 z0 75mm z1 125 mm
I y 5.31 10 7 mm 4
y
z0
z1
150 50 150
(2)立柱横截面的内力 50 FN F M F 350 75 10 3
425 F 10 3 N.m
危险点在1,2点。
max
b 9cm
h 2b 18cm
屋 顶 桁 架 结 构 的 简 化
例: 图示悬臂梁由25b工字钢制成,弹性模量 E=200GPa。荷载和几何尺寸如图所示,试求: (1) 求梁上C点的应力;
(2) 求梁内最大拉应力和最大压应力。 q q=5kN/m
C C P=2kN y
t .max 667 F t
t 30 106 F
667 667
45000 N
c.max 934F c
t .max
c.max
c 120 106 F
934 934
128500 N
许可压力为 45000N 45kN F
FN
c. max
Mz1 FN Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
F
350
t .max 667 F c.max 934 F
M
FN
(4)求压力F
说明:
1. 必须是线弹性材料,加载在弹性范围内,服从虎克定律;
2. 必须是小变形,保证能按构件初始形状或尺寸进行分解与叠 加计算,且能保证与加载次序无关. 图示纵横弯曲问题,横截面上内 力为
350
F
350
M
FN
y1
A 15000 mm 2 z0 75mm z1 125 mm
I y 5.31 10 7 mm 4
y
z0
z1
150 50 150
(2)立柱横截面的内力 50 FN F M F 350 75 10 3
425 F 10 3 N.m
危险点在1,2点。
max
b 9cm
h 2b 18cm
屋 顶 桁 架 结 构 的 简 化
例: 图示悬臂梁由25b工字钢制成,弹性模量 E=200GPa。荷载和几何尺寸如图所示,试求: (1) 求梁上C点的应力;
(2) 求梁内最大拉应力和最大压应力。 q q=5kN/m
C C P=2kN y
t .max 667 F t
t 30 106 F
667 667
45000 N
c.max 934F c
t .max
c.max
c 120 106 F
934 934
128500 N
许可压力为 45000N 45kN F
FN
c. max
Mz1 FN Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
F
350
t .max 667 F c.max 934 F
M
FN
(4)求压力F
说明:
1. 必须是线弹性材料,加载在弹性范围内,服从虎克定律;
2. 必须是小变形,保证能按构件初始形状或尺寸进行分解与叠 加计算,且能保证与加载次序无关. 图示纵横弯曲问题,横截面上内 力为
材料力学组合变形

第八章 组合变形
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
组合变形

M z 440 N m
M y 187 N m
T 1020 N m
合弯矩:
2 M M y M z2 4402 187 2
478N m
第四强度理论:
W
r4
1 W
M 2 0.75T 2
603 109
32
21.2110 6 m3
危险截面: B 截面
T 21.7 N m M 26.7 N m
第三强度理论:
r3
W
1 W
M 2 T 2
T图
21.7 N m
353 109
32
2
4.2110 6 m3
2
r3
8.18MPa
26.7 21.7 4.21106
第四强度理论:
式中: T
r4
危险截面上的扭矩 危险截面上的合弯矩
M
M
实心轴 W
2 2 My Mz
D3
32 D3 空心轴 W 1 4 32
,
例题 8-5 45钢的传动轴AB的直径为35mm,许用应力为 85MPa。电动机功率P = 2.2kW,由带轮C 传入。带轮C转速为 966r/min,带轮的直径为 D = 132mm,带拉力为F+F’ = 600N。齿轮E的 d 节圆直径为: 1 50mm 。
Fz Fz F sin 240 F sin 300 257 N
二、作出轴的弯矩图 和扭矩图
T图
21.7 N m
My 图
7.43N m 20.4 N m 11.4 N m 24.1N m
Mz 图
M y 187 N m
T 1020 N m
合弯矩:
2 M M y M z2 4402 187 2
478N m
第四强度理论:
W
r4
1 W
M 2 0.75T 2
603 109
32
21.2110 6 m3
危险截面: B 截面
T 21.7 N m M 26.7 N m
第三强度理论:
r3
W
1 W
M 2 T 2
T图
21.7 N m
353 109
32
2
4.2110 6 m3
2
r3
8.18MPa
26.7 21.7 4.21106
第四强度理论:
式中: T
r4
危险截面上的扭矩 危险截面上的合弯矩
M
M
实心轴 W
2 2 My Mz
D3
32 D3 空心轴 W 1 4 32
,
例题 8-5 45钢的传动轴AB的直径为35mm,许用应力为 85MPa。电动机功率P = 2.2kW,由带轮C 传入。带轮C转速为 966r/min,带轮的直径为 D = 132mm,带拉力为F+F’ = 600N。齿轮E的 d 节圆直径为: 1 50mm 。
Fz Fz F sin 240 F sin 300 257 N
二、作出轴的弯矩图 和扭矩图
T图
21.7 N m
My 图
7.43N m 20.4 N m 11.4 N m 24.1N m
Mz 图
材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
组合变形(工程力学课件)

偏心压缩(拉伸)
轴向拉伸(压缩)
偏心压缩
F2 F2e
轴向压缩(拉伸)和 弯曲两种基本变形组合
偏心压缩(拉伸)
单向偏心压缩(拉伸)
双向偏心压缩(拉伸)
单向偏心压缩(拉伸)
外力
内力
平移定理
应力
+
=
弯矩
轴力
max
min
FN A
Mz Wz
【例 1】求横截面上的最大正应力
F 50 kN
e 10 mm
组合变形的概念 及其分析方法
杆件的四种基本变形
轴向拉压 剪切 扭转
F
F
F
F
Me
Me
沿轴线的伸长或缩短 相邻横截面相对错动 横截面绕轴线发生相对转动
Me
弯曲
Me
F
轴线由直线变为曲线 横截面发生相对的转动
两种或两种以上基本变形的组合,称为组合变形
常见的 组合变形
(1)拉(压)弯组合 (2)斜弯曲(弯、弯组合) (3)偏心压缩(拉伸) (4)弯扭组合
24 106 401.88 103
64
4.3 59.7 64 [ ] 满足强度要求
59.7 55.4
斜弯曲
平面弯曲
作用线与截面的 纵向对称轴重合
梁弯曲后挠曲线位于外力F所在的纵向对称平面内
斜弯曲
作用线不与截面 的对称轴重合
梁弯曲后挠曲线不再位于外力F所在的纵向平面内
图示矩形截面梁,应用叠加原理对其进行分析计算:
3、应力分析
( z,y)
横截面上任意一点 ( z, y) 处 的正应力计算公式为
Mz
z
O
x
1.拉伸正应力
N
压弯组合变形中轴力对变形和强度的影响

压弯组合变形中轴力对变形和强度的影响压弯是指在外力作用下,使杆件发生弯曲变形。
而压弯组合变形是指杆件在外力作用下,同时发生弯曲和轴向变形。
在压弯组合变形中,轴力是一个重要的参数,它对变形和强度都有影响。
下面将从变形和强度两个方面进行阐述。
首先是变形方面。
轴力会改变杆件的形状和尺寸,从而引起杆件的变形。
对于压弯组合变形,轴向压力会使杆件发生轴向压缩或拉伸。
轴向压缩会减小杆件的长度,而轴向拉伸则会增大杆件的长度。
同时,由于弯曲力矩的作用,杆件还会发生弯曲变形。
轴力的大小、位置和方向都会影响杆件的变形。
在轴力较小的情况下,杆件的变形主要由弯曲变形所主导,而轴向变形相对较小。
但当轴向压力较大时,轴向变形将成为主导。
这是因为轴向变形可以产生较大的变形量,而且轴向压力会使杆件变形速度增大。
此外,轴向压力还会增大弯曲变形的刚度,使弯曲变形的变形量减小。
因此,压弯组合变形中的轴力对杆件的变形有着重要的影响。
接下来是强度方面。
轴力对杆件的强度也有一定的影响。
在压弯组合变形中,轴力会增大杆件的承载能力和稳定性。
当轴向压力较小时,弯曲变形成为主要破坏方式;而当轴向压力较大时,轴向压缩会使杆件变形速度增大,从而使杆件的承载能力增加。
这是因为轴向压缩会增大杆件的横截面积,进而增大其抗弯能力。
此外,轴向压力还可以提高杆件的稳定性。
当轴向压力作用在杆件上时,它可以增大杆件的刚度和强度,使杆件更不容易产生屈曲破坏。
特别是在较长的杆件中,轴向压力可以有效地提高杆件的稳定性,防止其发生屈曲失稳。
总之,在压弯组合变形中,轴力对变形和强度都有显著的影响。
轴向压力可以改变杆件的形状和尺寸,进而影响其变形行为和强度性能。
因此,在工程设计中,需要充分考虑轴向力对杆件的影响,以确保杆件具有足够的变形能力和承载能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
目录
§10-2 斜 弯 曲
fz
f
fy
挠度:
f
f
2 y
f
2 z
tan fz I z tan
fy Iy
正方形
Iy Iz
12
目录
§10-3 拉(压)弯组合变形
=+
10-3
13
目录
§10-3 拉(压)弯组合变形
t ,max
=+
c,max
c
F A
t ,max
150
200
解:(1)受力分析,作 计算简图
F2 R M e
F2
Me R
300 0.2
1500N
24
目录
§10-4 弯扭组合变形
300N.m 1400N
(2)作内力图
危险截面E 左处
300N.m
1500N
150
200
300N.m 128.6N.m
120N.m
25
目录
§10-4 弯扭组合变形
16
§10-3 拉(压)弯组合变形
F 350
M
t.max 667 F c.max 934F
(4)求压力F
FN
t.max 667 F t
F t 30 106 45000N
667 667
t.max
c.max
c.max 934F c F c 120 106 128500N
第四强度理论:
22
目录
§10-4 弯扭组合变形
塑性材料的圆截面轴弯扭组合变形
第三强度理论:
r3
第四强度理论:
1 W
r4
1 W
M 2 T 2 [ ] M 2 0.75T 2 [ ]
式中W 为抗弯截面系数,M、T 为轴危险面的
弯矩和扭矩
W d 3
W D3 1 4
934 934
许 可 压 力 为F 45000N 45kN 17 目录
§10-4 弯扭组合变形
10-4
18
目录
§10-4
l
SF
a
Fa T
M
Fl
弯扭组合变形
S平面 y
1
T
4
z
x
2
3 Mz
1
τ
T Wp
σ
Mz Wz
3
τ
T Wp
目录
σ
Mz Wz
19
§10-4 弯扭组合变形
的强度计算许可载荷F。
解:(1)计算横截面的形心、
面积、惯性矩
F 350
F 350
A 15000mm2
F
M
z0 75mm
FN
y1 z0 y z1
z1 125 mm I y 5.31107 mm4 (2)立柱横截面的内力
50
FN F
150
M F350 75103
50
构件在小变形和服从胡克定理的条件下,力的 独立性原理是成立的。即所有载荷作用下的内力、 应力、应变等是各个单独载荷作用下的值的叠加
解决组合变形的基本方法是将其分解为几种基 本变形;分别考虑各个基本变形时构件的内力、应 力、应变等;最后进行叠加。
6
目录
§10-1 概 述
研究内容
斜弯曲 拉(压)弯组合变形 弯扭组合变形
1
τ
T Wp
3
σ
Mz Wz
τ
T Wp
σ
Mz Wz
max
x
y
2
1 2
x
y
2
4
2 xy
1 2 4 2 0
M
22
T
Wp
W
min
x
y
2
1 2
x
y
2
4
2 xy
1 2 4 2 0
32
32
23
目录
§10-4 弯扭组合变形 例题10-2
传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300N.m。两轴承中间的齿轮半径R=200mm,径向啮合力 F1=1400N,轴的材料许用应力〔σ〕=100MPa。试按第三强 度理论设计轴的直径d。
300N.m 1400N
300N.m
1500N
22
20
目录
§10-4 弯扭组合变形
M
W T
Wp
1
2
1 2
2 4 2
2 0
3
2
1 2
2 4 2
第三强度理论:
21
目录
§10-4 弯扭组合变形
M
W T
Wp
1
2
1 2
2 4 2
2 0
3
2
1 2
2 4 2
150Βιβλιοθήκη 425F 103N.m15
目录
§10-3 拉(压)弯组合变形
A 15000mm2
(2)立柱横截面的内力
z0 75mm
FN F
z1 125 mm
M 425 10 3 F N.m
I y 5.31107 mm4 (3)立柱横截面的最大应力
t.max
r3
M 2 T 2
W
M
W T
Wp
r4
M 2 0.75T 2
W
26
目录
§10-4 弯扭组合变形
300N.m 1400N
300N.m
1500N
150
200
300N.m 128.6N.m
外力分析 内力分析 应力分析
7
目录
§10-2 斜 弯 曲
平面弯曲
斜弯曲
8
目录
§10-2 斜 弯 曲
9
目录
§10-2 斜 弯 曲
10
目录
§10-2 斜 弯 曲
t,max M y max M z max
c,max
Wy
Wz
强度条件:
D1点: t,max [ t ] D2点: c,max [ c ]
Mz0 Iy
FN A
F 350
M FN
425103 F 0.075 5.31105
F 15 10 3
667F Pa
c.max
Mz1 Iy
FN A
t.max
c.max
425103 F 0.125 5.31105
F 15 10 3
934F Pa目 录
§10-1 概 述
组合变形工程实例
压弯组合变形
10-1
1
目录
§10-1 概 述
组合变形工程实例
拉弯组合变形
2
目录
§10-1 概 述
组合变形工程实例
弯扭组合变形
3
目录
§10-1 概 述
组合变形工程实例
压弯组合变形
4
目录
§10-1 概 述
组合变形工程实例
拉扭组合变形
5
目录
§10-1 概 述
叠加原理
=+
c,max
t,max
Fl W
c,max
Fl W
t,max
Fl W
F A
[ t ]
c,max
Fl W
F A
[ c ]
14
目录
§10-3 拉(压)弯组合变形 例题10-1
铸铁压力机框架,立柱横截面尺寸如图所示,材料的许用
拉应力[t]=30MPa,许用压应力[c]=120MPa。试按立柱