铅酸蓄电池设计计算
12.4.4蓄电池的选择及容量计算方

12.4.4 蓄电池的选择及容量计算方法12.1.4.1 铅酸蓄电池[66](1)铅酸蓄电池型式。
变电所直流操作电源用铅酸蓄电池,一般均为固定式铅酸蓄电池。
国产固定式蓄电池有下列几种:①开启式G (或GG )型蓄电池;②防酸隔爆式GF (或GM )型蓄电池;③防酸式GFD 型蓄电池。
开启式G (或GG )型蓄电池,由于酸雾大,维护管理复杂且对维护工人的健康影响较大,在各生产厂已极少生产,不推荐使用。
防酸式GFD 蓄电池产品达到德国工业标准DIN43539的要求。
防酸式GF (或GM )型蓄电池同GFD 型蓄电池一样,均具有防酸隔爆的特性,且能量高,寿命较长,安装、维护管理方便,可降低蓄电池室的耐酸等级,且其价格低于GFD 型。
(2)铅酸蓄电池容量的选择。
二十世纪80年代以前蓄电池容量的选择计算基本上是沿用前苏联的计算方法。
随着国外技术的引进,能源部在总结了国内外经验的基础上,提出了用电压控制法和阶梯负荷计算法来选择蓄电池的容量。
由于阶梯负荷计算法多适用于大型发电厂,而电压控制法既可用于发电厂也可用于各种类型变电所,故本节只介绍电压控制法用以选择有端电池及无端电池直流系统固定式铅酸蓄电池的容量。
电压控制法计算方法如下;1)蓄电池容量选择应满足事故全停电状态下的持续放电容量C CB SX k c K K C K C = (12−1−1)式中 c C ——蓄电池10h 放电率计算容量,Ah ;SX C ——持续事故放电容量,Ah ;k K ——可靠系数,取1.40;C K ——容量换算系数(根据不同的放电终止电压,对应放电时间1h ,由图12−1−2中曲线查出);CB K 容量比例系数,根据事故放电时间由表12−1−2查出。
但事故放电时间,应与SX C 所取时间相一致,对变电所一般取1h ,故1=CB K 。
根据C C 计算值,选择接近该值的蓄电池容量10C 。
2)蓄电池选择容量应满足事故放电过程中各阶段电压水平要求:a )事故放电初期电压水平101.1C I K cho cho = (12−1−2)式中 c h oK ——事故放电初期冲击系数; cho I ——事故放电初期放电电流,A ;10C ——蓄电池10h 放电率额定容量,Ah ;1.1——电压水平校验系数。
铅酸电池充满功率计算公式

铅酸电池充满功率计算公式铅酸电池是一种常见的蓄电池,广泛应用于汽车、UPS电源、太阳能发电等领域。
在使用铅酸电池的过程中,了解充满功率的计算公式对于正确使用和维护电池非常重要。
充满功率是指电池在充电过程中吸收的功率,也可以理解为电池充电的速率。
充满功率的计算公式可以通过以下方式得到:充满功率(W)= 充电电压(V)× 充电电流(A)其中,充电电压是指充电时施加到电池上的电压,充电电流是指充电时电池所吸收的电流。
通过这个公式,可以计算出电池在充电过程中的吸收功率。
在实际应用中,充满功率的计算可以帮助我们评估充电设备的性能以及电池的充电效率。
通过控制充电电压和充电电流,可以优化充电过程,提高充电效率,延长电池的使用寿命。
在汽车电池中,充满功率的计算公式可以帮助我们选择合适的充电设备。
根据汽车电池的额定电压和电流,可以计算出充满功率,从而选择适合的充电器。
如果充满功率过高,可能会导致电池过热甚至损坏;如果充满功率过低,可能会延长充电时间。
因此,合理选择充电设备非常重要。
在UPS电源中,充满功率的计算公式可以帮助我们评估电池组的充电性能。
UPS电源是一种用于提供持续电力供应的设备,电池组是其重要组成部分。
通过计算充满功率,可以了解电池组的充电速率,从而判断其是否能在停电时提供足够的电力支持。
在太阳能发电系统中,充满功率的计算公式可以帮助我们评估充电控制器的性能。
太阳能发电系统通过光伏电池板将太阳能转化为电能,充电控制器用于控制充电过程。
通过计算充满功率,可以评估充电控制器的充电效率,从而优化太阳能发电系统的性能。
铅酸电池充满功率的计算公式是充电电压乘以充电电流。
掌握这个公式可以帮助我们选择合适的充电设备、评估电池组的充电性能以及优化充电过程。
合理使用和维护铅酸电池,可以延长其使用寿命,提高电池的性能和可靠性。
电池容量公式

电池容量公式电池容量是指电池储存电能的能力,通常用安时(Ah)来表示。
对于不同类型的电池,容量的计算方法也有所不同。
下面将介绍几种常见电池的容量计算公式。
1. 铅酸蓄铅酸蓄电池是一种常见的储能设备,广泛应用于汽车、UPS等场合。
其容量可以通过以下公式来计算:容量(Ah)= C20 /100其中C20代表蓄电池在20小时放电时间下的容量,单位为安时。
这个公式的意思是蓄电池在20小时内放电完毕,其容量等于实际容量的百分之一。
2. 锂离子锂离子电池是目前最常见的便携式电子设备电池,如手机、笔记本电脑等。
它的容量可以通过以下公式来计算:容量(Ah)= 电池标称电压(V) ×电池容量(mAh) / 1000其中,电池标称电压是指电池额定的电压值,通常为3.7V。
电池容量是指电池可以存储的电量,单位为毫安时(mAh)。
通过上述公式计算得到的容量单位为安时(Ah)。
3. 镍氢镍氢电池是另一种常见的便携式电子设备电池,如数码相机、无线麦克风等。
其容量可以通过以下公式来计算:容量(Ah)= 电池标称电压(V) ×电池容量(mAh) / 1000和锂离子电池类似,镍氢电池的容量计算公式也是通过电池标称电压和电池容量进行计算得到的。
需要注意的是,电池容量公式只是一种计算方法,并不能完全反映电池的使用时间或实际可用电能。
实际使用中,还需要考虑电池的工作效率、电流输出等因素。
总结本文介绍了不同类型电池的容量计算公式,包括铅酸蓄电池、锂离子电池和镍氢电池。
这些公式可以帮助我们了解电池的容量特性,并在实际应用中为电池的选择和使用提供参考。
但需要注意的是,公式只是理论计算的结果,实际情况可能会受到多种因素的影响,因此在选择和使用电池时还需要结合具体情况进行综合考虑。
铅酸蓄电池放电计算

铅酸蓄电池放电计算的方法如下:
计算蓄电池额定容量:根据蓄电池的规格参数,可获得其额定电压和容量,例如12V100Ah 的蓄电池额定容量为100Ah。
确定蓄电池的实际容量:蓄电池的实际容量一般小于额定容量,根据实际使用情况进行测试或查看蓄电池说明书得知。
计算蓄电池放电时间:根据蓄电池实际容量、负载电流大小和负载持续时间计算蓄电池放电时间。
蓄电池放电时间=蓄电池实际容量÷负载电流×0.6(注意:0.6是由于铅酸蓄电池的放电效率在60%左右)。
例如,一块实际容量为80Ah的12V铅酸蓄电池,连接了一个负载电流为10A的设备,需要计算其能够持续工作多长时间:
放电时间= 80Ah ÷10A ×0.6 ≈4.8小时
因此,这块铅酸蓄电池在10A电流下能够工作约4.8小时。
电动汽车用阀控密封铅酸蓄电池设计方案

电动汽车用阀控密封铅酸蓄电池设计方案目录一、设计要求及电池参数1.1设计要求1.2电池参数二、电池设计及计算2.1 单体电池数目2.2单体电池容量2.3电极片数与隔膜片数的确定2.4活性物质用量2.5生产用铅粉需求量2.6生产用铅膏需求量三、板栅的设计及电池实际容量的计算3.1板栅结构的选择3.2板栅尺寸的确定3.3板栅体积的计算3.4电池实际容量的计算四、隔板的选择与设计五、电解液用量的计算5.1硫酸用量计算5.2硫酸用量核算六、汇流排的设计与核算7.1汇流排的设计7.2汇流排的核算七、限压阀的设计八、电池槽设计和选择参考文献一、 设计要求及电池参数 1.1 设计要求本设计欲设计一电动汽车用阀控密封铅酸蓄电池,要求能够使总质量为1t 的电动汽车在均速为50km/h 的条件下连续运行3小时,续航能力为150km 以上,且最高时速可以达到90km/h 。
整个系统工作效率为80%。
1.2 电池参数工作方式:间歇工作,并要求可以长时间中等电流放电,短时间大电流放电。
工作电压:288V电池尺寸:单电池尺寸:150mm*40mm*200mm电池组尺寸[1]:303mm*121mm*215mm 电池系统尺寸:1215mm*740mm*230mm工作电流:根据要求计算:时速90km/h 时,汽车电机提供的最大功率可通过以下公式计算:kW V A C V Mgf P d e 16.7509761405.4157.14.0093600015.08.90010.801761403600133max max =⎪⎪⎭⎫ ⎝⎛⨯⨯⨯+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=η车重M 1000kg ,行驶时空气阻力系数Cd 0.4,滚动阻力系数f 0.015, 电动机传动效率0.8 ,车宽1750mm ,车高1450mm ,最大时速 90km/h 平均时速50km/h ,续航150km 平均时速下电机功率为:kW V A C V Mgf P d e 4.6505761405.4157.14.0053600015.08.90010.801761403600133=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=η因此最大电流为16.75x1000/288=58.16A平均电流为4.65x1000/288=16.15A工作时间:均速50km/h 可以连续工作3小时 循环寿命:500次以上工作环境:温度-5-55℃,湿度5%-95%二、电池设计及计算2.1 单体电池数目电池系统设计电压为288V,将其设计为由多个电压为12V的电池组组成,因此所需电池组数目为24个;铅酸蓄电池单体电压为2V,因此每个电池组中单体电池数目为12V/2V=6个。
蓄电池恒功率计算书

铅酸蓄电池恒功率放电时间计算书
按项目需求UPS后备电池可以满负载供电1小时。
采用恒功率法进行计算如下:
1、恒功率法的计算公式
W=
P
η∗N∗6
W:为单体蓄电池1小时放电功率计算需求值/cell;
P:为额定负载容量;
η:为UPS逆变器效率,取0.95;
N:为单组蓄电池数量(根据UPS主机而定,可根据实际需求调节),6表示12V电池为6个2V单体(根据配置的电池,本项目采用12V);
2、已知参数列表
3、根据恒功率法公式计算出蓄电池每单格至少应该提供的功率值:
W=54000/(0.95*40*6)=236.84W/Cell;
4、查蓄电池放电功率表,截止电压1.75V/Cell,后备时间1小时 2组
12V 120AH 可提供260W/Cell的功率,260W/Cell>236.84W/Cell,即配置80只12V 120AH即可满足本项目满载后备1小时。
注:每个厂家蓄电池放电功率表均有差异,以具体品牌对应的放电功率参数为准,此表仅供参考。
什么是铅酸蓄电池的容量如何计算

1、什么是铅酸蓄电池的容量如何计算?在规定的条件下,完全充电的蓄电池能够提供的电量,通常用安时(Ah)表示。
容量=单格正极板片数×单片极板的容量。
2、铅酸蓄电池电解液主要成分是什么?是硫酸和蒸馏水(或去离子水)的混合物。
3、日常饮用的纯净水是否可用于蓄电池使用?不能应用因日常人们所饮用的纯净水其杂质含量远远高于蓄电池用水要求,只是水中的某些元素对人体有益而细菌泥沙较少。
蓄电池用水应达到JB/T10053—1999标准要求。
4、铅蓄电池充电方法有那些?主要有恒流充电、恒压充电、恒流限压充电、均衡充电、浮充电和脉冲快速充电等。
5、铅蓄电池的电解液密度与开路电压有什么关系?开路电压=0.85+电解液密度(经验公式)6、铅蓄电池的极板容量取决于什么?主要取决于正、负极板活性物质的量。
7、铅蓄电池的正、负极板的主要成分是什么?正极板活性物质主要成分是二氧化铅,负极板活性物质主要成分是海绵铅。
8、铅蓄电池电解液密度与百分含量如何换算?在25℃时密度1.25g/㎝3的硫酸电解液重量百分数约为33.5%,密度1.28g/㎝3的硫酸电解液重量百分数约为37.3%,密度1.30g/㎝3的硫酸电解液重量百分数约为39.5%,密度1.40g/㎝3的硫酸电解液重量百分数约为50.5%。
9、铅蓄电池充电时为什么会发热?蓄电池在充电过程中,电能一部分转变为化学能,还用一部分转变为热能和其他能量。
充电电池发热属于正常现象,但是温度较高时就应及时检查充电电流是否过大或者电池内部发生短路等,发热量与电解液量关系较小,如是密封电池电解液量较少时内阻增大,也会引起电池生温并且充电时端电压很高。
10、铅蓄电池充电时为什么会有刺激性气味?蓄电池在充电过程中,电池内部产生的硫酸蒸汽、水蒸气、氢气和氧气等混合物质逸出扩散到空气中,便会使人感觉道有刺激性气味。
11、什么是铅蓄电池浮充电、均衡充电?浮充电:当正常供电中断时给电路供电的蓄电池。
铅酸电池行程计算公式

铅酸电池行程计算公式铅酸电池是一种常见的蓄电池,广泛应用于汽车、UPS电源、太阳能储能等领域。
在使用铅酸电池时,了解其行程计算公式是非常重要的,可以帮助我们更好地管理和维护电池,延长其使用寿命。
本文将介绍铅酸电池行程计算公式的原理和应用。
铅酸电池的行程计算公式是通过对电池的充电和放电过程进行分析得出的。
在充电过程中,电池会吸收电能并将其储存起来;在放电过程中,电池会释放储存的电能。
因此,我们可以通过测量电池在充电和放电过程中的电压和电流来计算其行程。
铅酸电池的行程计算公式可以表示为:行程 = ∫(V I) dt。
其中,V表示电池的电压,I表示电池的电流,dt表示时间的微元。
通过对电池充电和放电过程中的电压和电流进行积分,我们可以得到电池的行程。
在实际应用中,我们可以通过测量电池在充电和放电过程中的电压和电流来计算其行程。
首先,我们需要使用电压表和电流表来测量电池的电压和电流;然后,将测量得到的电压和电流数据代入上述的行程计算公式中进行积分,即可得到电池的行程。
通过行程计算公式,我们可以了解电池的实际使用情况,帮助我们更好地管理和维护电池。
例如,我们可以根据电池的行程来合理安排充电和放电时间,避免过度充放电导致电池损坏;我们也可以根据电池的行程来评估电池的健康状况,及时进行维护和更换。
除了帮助我们管理和维护电池,行程计算公式还可以帮助我们优化电池的使用。
通过对电池充放电过程的电压和电流进行分析,我们可以了解电池的电压和电流特性,从而优化充放电控制策略,提高电池的使用效率和性能。
总之,铅酸电池行程计算公式是非常重要的工具,可以帮助我们更好地管理和维护电池,延长其使用寿命,提高其使用效率和性能。
通过了解行程计算公式的原理和应用,我们可以更好地使用铅酸电池,为我们的生活和工作提供可靠的能源支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VRLA电池酸量确定VRLA电池相对于以前的开口富液式电池,其最大的优势是在电池寿命期间不需要添加电解液或水维护,电池可以任意位置放置使用等等。
这就要求电解液被完全固定在AGM隔板和活性物质中不能流动,并且为了实现其寿命期间不需要加酸加水维护,就必须要实现电池寿命期间内的氧循环,即不能有电解液的损失。
而形成氧循环的关键一点要求就是要严格限定电池的内的酸液总量,并且必须保证AGM隔板留有10%左右的孔不被电解液所淹没,从而为氧气的循环复合提供通道。
但是又必须要求电池中电解液的总量能够维持活性物质放电反应的需要。
要想使电池中电解液总量完全够用,又能够为氧气的循环复合提供通道,就需要根据电池的实际用途,正确确定和控制电池的加酸量,下面将从三个大的方面来探讨VRLA电池加酸量确定的问题。
1、最低加酸量VRLA电池需要的酸体积,取决于电池放电态与荷电态所要求的电解液密度以及电池放电过程输出的总电量和放电率。
通常在VRLA设计时,荷电态的电解液密度要求1.28-1.30g/cm3,当其放出100%额定容量时又希望电解液密度为1.07-1.09g/cm3.这就要求电池中电解液总量至少必须满足能够维持电池在一定条件下放出其额定容量所必须消耗的电解液总量,因此VRLA电池的最低用酸量可根据电池反液压方程式推导如下:PbO2 + Pb + 2H2SO4 = 2PbSO4 + 2H2O根据电池充放电反应的方程式,结合充放电态物质各自的电化学当量值可知,电池每放出1AH的电量,要消耗纯的H2SO4 3.66g,生成水0.67g.设放电开始时电池中电解液密度为ρ1(15℃),对应的质量百分比浓度为m%,放电终了时电解液密度为ρ2,对应的质量百分比浓度为n%。
当电解液浓度由ρ1降到ρ2时,反应开始时加入的密度为ρ1的酸的体积为V ml。
则根据电池反应式中每放出1AH电量所消耗的硫酸量为3.66g,生成的水的质量为0.67g,经过方程式两边等值计算,整理得出VRLA电池中每放出1AH电量的最低用酸体积V的表达式为:V = (3.66-2.99n)/[(m-n)ρ1]如果设定电池荷电态的电解液密度为1.28g/cm3,放电态的电解液密度为1.08 g/cm3,则将各自对应的质量百分比数值带入最低用酸体积V的表达式中可以得出放电容量为C的电池的最低用酸体积为:V = (3.66-2.99×11.5%)/[(36.8-11.5)% ×1.28] C = 10.24C10.24C就是在15℃下设定电池荷电态的电解液密度为1.28g/cm3,放电态为1.08 g/cm3的最低加酸体积。
当然,电池中实际的加酸体积还需要根据电池的用途,以及为此进行的电池结构设计和活性2、电池中硫酸的来源不同生产工艺制造的VRLA电池,由于生产方式的不同,最终电池中硫酸电解液的来源也不同。
对于极板化成来说,在化成过程中,生极板中的硫酸全部转化为游离的电解液,经过水洗、干燥后,极板中基本上已经不再含有电解液了,酸的唯一来源就是电池装配后补充电前所加的电解液,按照设计要求进行加酸即可。
对于电池化成来说,又分为一次注液化成和二次注液化成,二次注液化成由于过程中有抽酸的过程,因此,具体极板中酸液的引入量不好计算。
目前VRLA电池普遍采用的化成方法是一次注液化成。
因此,这一部分主要讨论一次注液化成VRLA电池电解液硫酸的来源。
对于一次注液电池化成的VRLA电池,硫酸的来源主要有两个,一是正、负极铅膏制备时加入的硫酸通过合膏、固化以及化成完全转化为硫酸,这一部分硫酸直接按照合膏中的加酸比例计算电池中活性物质内的酸含量即可。
另一部分则是电池化成前加入的酸量,这一加酸量是电池的结构分析在保证电池中氧复合条件下所最多可以吸收的硫酸量,并且要考虑电池在化成过程中的酸液损失来确定这个加酸量。
此数值的确定必须要考虑电池中隔板的压缩比以用电池中隔板的总量,因为AGM 隔板是VRLA电池中电解液的主要载体,而隔板的压缩比又极大地影响其吸酸量。
但是不论电池的结构如何变化,电池的加酸量必须不能小于第一部分分析的电池的最低加酸量。
3、电池中酸液的分配众所周知,VRLA电池中的没有游季酸存在,酸液被全部吸收在极板活性物质空隙中和AGM的空隙中。
极板活性物质的吸液量与活性物质的孔率和质量有关。
电池设计时,通常活性物质的质量都是预先确定的,因为在设计和组装电池时,单极板的额定容量通常都是已经确定了的。
如此,活性物质对吸酸量的影响主要是其孔率的大小等。
而活性物质的孔率主要与极板固化前铅膏所含的水分密切相关,从数值上说,基本相等。
但是实际空隙体积在极板固化过程中由于金属铅的进一步氧化,碱式硫酸铅的重结晶等影响而会有复杂的变化。
并且极板在实际吸酸时还由于在极板表面形成一层液膜。
这些因素综合影响的结果是极板的实际吸酸量要略大于极板的空隙体积。
在通常的正极铅4.0-4.2 g/cm3视密度范围内,正极铅膏的吸酸量为每克活性物质吸酸0.15ml;负极铅膏在4.2-4.4 g/cm3视密度范围内吸酸量为每活性物质0.155ml.在通常正负极板厚度比例为1比0.6左右的范围内,正极活性物质所吸收的电解液总量为电解液总量的22%左右,负极为13%左右,另外的酸都吸收在AGM隔板中。
些处的计算考虑了负极板通常比正极板多一片。
AGM隔板的孔率高达95%左右,在VRLA电池中是电解液的主要载体。
而隔板的吸酸量与隔板的材质和其压缩有关。
压缩率高,则吸酸量少。
对于目前国内普遍采用的不含憎水纤维的AGM隔板来说,在一定范围内,隔板的吸酸量(每单位质量隔板的吸酸体积)与压缩率之间有如下线形关系:吸酸量(ml/g)= 6.45-(0.06×压缩率)式中6.45可理解为每克隔板具有的孔体积,即隔板在没有受压情况下饱和状态的最大吸酸量;0.06表示隔板受压缩是时,每压缩1%,孔体积相应减少0.06ml。
但是,通常为了预防电池正负极板之间的短路等,隔板的表面积相对于极板面积有15%左右的富裕,这就意味着这一部分隔板没有受到压缩。
资料显示,这一部分没有受到压缩的隔板反倒是有些膨胀,要比自然状态下的隔板多吸收一些酸,吸酸量大约为8.5ml/g。
这一同有压缩的隔板吸收的酸液只有在电池以小电流放电时才能够应用于电极反应,因此在设计电池加酸总量并且为此确定隔板使用量的时候必须要综合考虑各种因素。
在VRLA电池中,通常极板活性物质中所贮存的电解液量仅够10%左右的活性物质参加电化学反应,另外的电解液都有要来自于AGM隔板。
这就要求根据电池电化学反应所需要的酸液量以及硫酸的分配情况,结合电池中使用环境,来考虑和设计隔板的压缩率以及隔板的用量,以确保电池中电解液的总量能够满足电池电化学反应的需要。
通常,在电池正负极板面间距确定下来以后,如果隔板的压缩比增大,则电池正负极板间受压缩隔板吸收的电解液量就要减少,则为了能够有相同量的电解液来维持极板活性物质的放电反应,就必须增加电解液量。
即要想增加电解液量,就要增加隔板的面间距。
所以说,通常情况下,要想维持电池吸液量的恒定,极板压缩比的增大必须伴随着极板面间距的增大。
总之,在电池的实际设计时,要根据电池的使用环境要求,结合电化学反应,来确定电池的加酸量。
并要根据电池壳体情况等,结合活性物质孔率、隔板压缩率和加酸量,来确定电池中隔板的投料,并要考虑电池中酸液的分配情况。
并且不论电池的使用环境如何和结构设计如何变化,都有要求电池的加酸量必须要大于电池的最低加酸量。
并且增加电解液必须伴随着隔板用量的增加,因为在正负极活性物质总量确定的情况下,酸液总量增加要求必须保证AGM隔板中至少有10%左右的孔隙来为氧气的内部复合提供气体通道。
某些用途的铅蓄电池要求在高速率下放电,若以10min率(10min率或更高速率放电,这时在极板孔内储存的酸量就够。
各种阀控式铅蓄电池在不同放电率时,实际使用的总酸量列于表2-2-92。
我正在玩搜狐微博,快来“关注”我,了解我的最新动态吧。
/铅酸蓄电池设计---方法一标签:battery design铅酸蓄电池设计2009-12-15 18:34下文是03年偶得的一个学习教材,里面内容有不少是不合理的。
网上也有看到此文,但不全面。
在此稍加完善一下图片。
这种设计模式我称之为方法一,它比较偏重于理论化,跟实际设计还是有一定的差别。
国内通用的实际电池设计,正在整理中,只能待续了。
铅酸蓄电池设计本文以用于电动自行车能源的铅酸蓄电池设计为例,介绍有关设计中的计算和步骤,虽然针对铅酸电池系列,但其中的某些原则和方法,对其它系列的电池设计也有一定的参考价值。
设计要求:电池用途和要求:电动自行车能源,行程50公里,时速20公里。
工作电压:24V 工作电流:9A 循环寿命:250个周期电池组外形尺寸:233×133×204 单腔内格尺寸:60×33×178设计:一、确定单体电池数目:单体电池数目= 工作电压/单体电池额定电压= 24/2 = 12(只)另外根据给定的外形尺寸和内腔尺寸,确定电池组应由12个单元格组成双排结构。
二、单体电池的设计与计算:1.电池容量的确定:提高电性能的途径就是改善限制电极的性能因素,而降低成本则是降低非限制电极因素的用量!(1)额定容量:根据给定条件,电池额定容量为:工作电流×(行程/时速)= 9A×(50km/20kmH-1)=22.5AH ≒23AH(2)设计容量:1.1×额定容量=1.1×23=25.3(AH)2.单体电池极板尺寸与数目的确定:(1)根据给定的内腔尺寸,确定极板尺寸为:正极板(板栅):164×58×2.0;负极板(板栅):164×58×1.4值得注意的是极板的厚度设计。
由于极板厚度直接影响着活物质的利用率。
极板放电产物PbSO4的比容较大,随着放电过程的加深,极板孔率下降,使H2SO4的扩散发生困难,因而极板越厚,活物质的利用率就越低,所以在选择极板厚度时应全面考虑用户提出的性能要求和使用条件。
首先应保证电池的性能指标,这样可能会影响到一些次要的性能指标,如对电池主要要求大功率,低温起动,则设计极板应薄些,然而相应地电池寿命可能就会降低。
反之,如对电池主要须耐较强冲击振动和较长的寿命,则就要设计极板厚些。
另外,负极板厚度至少为正极板的70~80%以上才适宜。
(2)单片正极板容量:据阿仑特(Arend t)经验公式:C=L×H×0.154 式中:C:单片容量;L:极板宽度(cm);H:极板高度(cm)D:极板厚度(cm)每片正极板容量C t =5.8×16.4×0.154 =6.55(AH)(3)单体电池极板数目:正极板数目=单体电池的容量/每片极板的额定容量=25.3/6.55≒3.7=4(片)而对起动型铅蓄电池,其极板额定容量的标准化数据为14AH/片。