中考数学冲刺:阅读理解型问题(提高)
中考数学总复习 题型突破(04)阅读理解型问题数学课件

(2)如图 Z4-1,在平面直角坐标系 xOy 中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该
函数的图象;
(2)如图.
图Z4-1
类型1 关于定义新函数的阅读理解题(针对2018 24题,2017 26题,2016 26题,2015 26题)
1.[2018·昌平期末] 小明根据学习函数的经验,对函数 y=x4-5x2+4 的图象与性质进行了探究.
题型突破(四) 阅读理解型问题
题型解读
阅读理解型问题在近几年的北京中考试题中频频“亮相”,需特别引起我们的重视.
这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多
样,既考查学生的阅读能力,又考查学生综合应用所学知识解决问题的能力.
解决阅读理解问题的关键是要认真仔细地阅读给定的材料,看看材料是从哪个角
5.[2017·顺义一模] 某“数学兴趣小组”根据学习函数的经验,对
1
2.[2018·昌平二模] 有这样一个问题:探究函数 y= x3-2x 的图象与性质.小彤根据学习函数的经验,对函数
6
1
y= x3-2x 的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:
6
x
…
-4
y
…
-
1
8
3
-3.5
-3
-2
-1
0
7
3
2
8
3
11
6
0
-
48
(3)方程 x3-2x=-2 实数根的个数为
(3)如图 Z4-4,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数
中考数学复习第五讲《阅读理解型问题》经典题型含答案

中考数学复习专题第五讲阅读理解型问题【要点梳理】阅读理解能力是初中数学课程的主要目标,是改变学生学习方式,实现自主探索主动发展的基础.阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别致.这类问题,主要考查解题者的心理素质,自学能力和阅读理解能力,考查解题者的观察分析能力、判辩是非能力、类比操作能力、抽象概括能力、数学归纳能力以及数学语言表达能力.这就要求同学们在平时的学习活动中,逐步养成爱读书、会学习、善求知、勤动脑、会创新和独立获取新知识的良好习惯.阅读理解题型分类:题型一:考查掌握新知识能力的阅读理解题命题者给定一个陌生的定义或公式或方法,让你去解决新问题,这类考题能考查我们自学能力和阅读理解能力,能考查我们接收、加工和利用信息的能力.题型二:考查解题思维过程的阅读理解题言之有据,言必有据,这是正确解题的关键所在,是提高我们数学水平的前提.数学中的基本定理、公式、法则和数学思想方法都是理解数学、学习数学和应用数学的基础,这类试题就是为了检测我们理解解题过程、掌握基本数学思想方法和辨别是非的能力而设置的.题型三:考查纠正错误挖病根能力的阅读理解题理解知识不是拘泥于形式的死记硬背,而是要把握知识的内涵或实质,理解知识间的相互联系,形成知识脉络,从而整体地获取知识.这类试题意在检测我们对知识的理解以及认识问题和解决问题的能力.题型四:考查归纳、探索规律能力的阅读理解题对材料信息的加工提炼和运用,对规律的归纳和发现能反映出我们的应用数学、发展数学和进行数学创新的意识和能力.这类试题意在检测我们的“数学化”能力以及驾驭数学的创新意识和才能.【学法指导】解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题”,具体做法:①认真阅读材料,把握题意,注意一些数据、关键名词;②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.【考点解析】阅读新知识,解决新问题(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2阅读解题过程,模仿解题策略(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D 在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB ∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).阅读探索规律,推出一般结论(2017内江)观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:(1)请写出第六个等式:a6= = ﹣;(2)用含n的代数式表示第n个等式:an= =﹣;(3)a1+a2+a3+a4+a5+a6= (得出最简结果);(4)计算:a1+a2+…+an.【考点】37:规律型:数字的变化类.【分析】(1)根据已知4个等式可得;(2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;(4)根据已知等式规律,列项相消求解可得.==﹣,【解答】解:(1)由题意知,a6故答案为:,﹣;(2)a==﹣,n故答案为:,﹣;(3)原式=﹣+﹣+﹣+﹣+﹣+﹣=﹣=,故答案为:;(4)原式=﹣+﹣+…+﹣=﹣=.【真题训练】训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.参考答案:训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.【点评】此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道基础题目.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.【考点】6B:分式的加减法.【分析】根据所列的等式找到规律=(﹣),由此计算+ ++…+的值.【解答】解:∵ =﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故答案是:.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【考点】A6:解一元二次方程﹣配方法;A3:一元二次方程的解;A8:解一元二次方程﹣因式分解法.【分析】(1)利用因式分解法解各方程即可;(2)根据以上方程特征及其解的特征,可判定方程x2﹣9x+8=0的解为1和8;②关于x的方程的解为x1=1,x2=n,则此一元二次方程的二次项系数为1,则一次项系数为1和n的和的相反数,常数项为1和n的积.(3)利用配方法解方程x2﹣9x+8=0可判断猜想结论的正确.【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x 1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;。
中考数学专题突破七:阅读理解型问题(含答案)

专题突破(七) 阅读理解型问题1. 有这样一个问题:探究函数y =12x 2+1x 的图象与性质.小东根据学习函数的经验,对函数y =12x 2+1x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y =12x 2+1x 的自变量x 的取值范围是________;(2)下表是y 与x 的几组对应值.求m 的值;(3)如图Z7-1,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;图Z7-1(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,32),结合函数的图象,写出该函数的其他性质(一条即可):____________.2. 阅读下面材料: 小明遇到这样一个问题:如图Z7-2①,在边长为a (a >2)的正方形ABCD 各边上分别截取AE =BF =CG =DH =1,当∠AFQ =∠BGM =∠CHN =∠DEP =45°时,求正方形MNPQ 的面积.图Z7-2小明发现:分别延长QE,MF,NG,PH,交F A,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE四个全等的等腰直角三角形(如图②).请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为________;(2)求正方形MNPQ的面积.参考小明思考问题的方法,解决问题:如图Z7-3,在等边三角形ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边三角形RPQ.若S△RPQ=33,则AD的长为________.图Z7-33.阅读下面材料:小伟遇到这样一个问题:如图Z7-4①,在梯形ABCD中,AD∥BC,对角线AC,BD 相交于点O.若梯形ABCD的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.图Z7-4小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可,他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图②).请你回答:图②中△BDE的面积等于________.参考小伟同学思考问题的方法,解决下列问题:如图Z7-5,△ABC的三条中线分别为AD,BE,CF.图Z7-5(1)在图中利用图形变换画出并指明以AD ,BE ,CF 的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC 的面积为1,则以AD ,BE ,CF 的长度为三边长的三角形的面积等于________.1.模] 阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且tan α=12,tan β=13,求α+β的度数.小敏是这样解决问题的:如图Z7-6①,把α,β放在正方形网格中,使得∠ABD =α,∠CBE =β,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得α+β=∠ABC =________°.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan α=4,tan β=35时,在图②的正方形网格中,利用已作出的锐角α,画出∠MON =α-β,由此可得α-β=________°.图Z7-62.模]阅读下面材料:小明遇到这样一个问题:如图Z7-7①,在△ABC中,DE∥BC分别交AB于点D,交AC于点E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图②).图Z7-7请回答:BC+DE的值为________.参考小明思考问题的方法,解决问题:如图③,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.3.一模]阅读下面材料:小明遇到这样一个问题:如图Z7-8①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC,AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图②).图Z7-8请回答:(1)在图②中,小明得到的全等三角形是△________≌△________;(2)BC和AC,AD之间的数量关系是________.参考小明思考问题的方法,解决问题:如图Z7-9,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.图Z7-94.模]阅读材料:如图Z7-10①,若P是⊙O外的一点,线段PO交⊙O于点A,则P A长是点P与⊙O 上各点之间的最短距离.图Z7-10证明:延长PO交⊙O于点B,显然PB>P A.如图Z7-10②,在⊙O上任取一点C(与点A,B不重合),连接PC,OC.∵PO<PC+OC,且PO=P A+OA,OA=OC,∴P A长是点P与⊙O上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.(1)如图Z7-11①,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于点D,P是半圆上的一个动点,连接AP,则AP长的最小值是________.图Z7-11(2)如图Z7-11②,在边长为2的菱形中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C.①求线段A′M的长;②求线段A′C长的最小值.5.模]阅读下面材料:小明研究了这样一个问题:求使得等式kx+2-||x=0(k>0)成立的x的个数.小明发现,先将该等式转化为kx+2=||x,再通过研究函数y=kx+2的图象与函数y=||x的图象(如图Z7-12①)的交点,使问题得到解决.图Z7-12(1)当k =1时,使得原等式成立的x 的个数为________; (2)当0<k <1时,使得原等式成立的x 的个数为________; (3)当k >1时,使得原等式成立的x 的个数为________. 参考小明思考问题的方法,解决问题:关于x 的不等式x 2+a -4x<0(a >0)只有一个整数解,求a 的取值范围.1.解:(1)x ≠0(2)令x =3,y =12×32+13=92+13=296,∴m =296.(3)图略(4)答案不唯一,如:①该函数没有最大值; ②该函数在x =0处断开; ③该函数没有最小值;④该函数图象不经过第四象限.2.解:(1)四个等腰直角三角形的斜边长为a ,则斜边上的高为12a ,每个等腰直角三角形的面积为12a ·12a =14a 2,则拼成的新正方形的面积为4×14a 2=a 2,即与原正方形ABCD 的面积相等.∴这个新正方形的边长为a . 故答案为a .(2)∵四个等腰直角三角形的面积和为a 2,正方形ABCD 的面积为a 2, ∴S 正方形MNPQ =S △ARE +S △DWH +S △GCT +S △SBF =4S △ARE =4×12×12=2.(3)如图所示,分别延长RD ,QF ,PE 交F A ,EC ,DB 的延长线于点S ,T ,W .由题意易得△RSF ,△QET ,△PDW 均为底角是30°的等腰三角形,其底边长均等于△ABC 的边长.不妨设等边三角形ABC 的边长为a ,则SF =AC =a .如图所示,过点R 作RM ⊥SF 于点M ,则MF =12SF =12a .在Rt △RMF 中,RM =MF ·tan30°=12a ×33=36a ,∴S △RSF =12a ·36a =312a 2.如图所示,过点A 作AN ⊥SD 于点N ,设AD =AS =x , 则AN =AD ·sin30°=12x ,SD =2ND =2AD ·cos30°=3x ,∴S △ADS =12SD ·AN =12·3x ·12x =34x 2.∵三个等腰三角形△RSF ,△QET ,△PDW 的面积和=3S △RSF =3×312a 2=34a 2,正三角形ABC 的面积为34a 2,∴S △RPQ =S △ADS +S △CFT +S △BEW =3S △ADS , ∴33=3×34x 2,得x 2=49, 解得x =23或x =-23(不合题意,舍去),即AD 的长为23.故答案为23.3.解:△BDE 的面积等于1.(1)如图,以AD ,BE ,CF 的长度为三边长的一个三角形是△CFP .(2)以AD ,BE ,CF 的长度为三边长的三角形的面积等于34.1.解:45.解决问题:画图如图所示.45.2.解:BC +DE 的值为34. 解决问题:如图,连接AE ,CE .∵四边形ABCD 是平行四边形, ∴AB 平行且等于D C. ∵四边形ABEF 是矩形,∴AB 平行且等于FE ,BF =AE , ∴DC 平行且等于FE ,∴四边形DCEF 是平行四边形, ∴CE 平行且等于DF . ∵AC =BF =DF , ∴AC =AE =CE ,∴△ACE 是等边三角形, ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. 3.解:(1)ADC △A ′DC (2)BC =AC +AD. 解决问题:如图,在AB 上截取AE =AD ,连接CE .∵AC 平分∠BAD , ∴∠DAC =∠EAC. 又∵AC =AC ,∴△ADC ≌△AEC ,∴AE =AD =9,CE =CD =10=BC. 过点C 作CF ⊥AB 于点F , ∴EF =BF . 设EF =BF =x .在Rt △CFB 中,∠CFB =90°,由勾股定理,得CF 2=CB 2-BF 2=102-x 2. 在Rt △CF A 中,∠CF A =90°,由勾股定理,得CF 2=AC 2-AF 2=172-(9+x )2. ∴102-x 2=172-(9+x )2, 解得x =6.∴AB =AE +EF +FB =9+6+6=21. 故AB 的长为21.4.解:(1)5-1(2)①∵△AMN 沿MN 所在的直线翻折得到△A ′MN , ∴A ′M =AM =1.②由①知,点A ′在以点M 为圆心,1为半径的圆上.如图,连接CM 交⊙M 于点A ′,此时A ′C 的长度最小,过点M 向CD 的延长线作垂线,垂足为H .在Rt △MHD 中, DH =DM ·cos ∠HDM =12,MH =DM ·sin ∠HDM =32. 在Rt △CHM 中, CM =MH 2+CH 2=⎝⎛⎭⎫322+⎝⎛⎭⎫522=7, ∴A ′C =7-1.第 11 页 共 11 页 5.解:(1)当k =1时,使得原等式成立的x 的个数为1.(2)当0<k <1时,使得原等式成立的x 的个数为2.(3)当k >1时,使得原等式成立的x 的个数为1.解决问题:将不等式x 2+a -4x <0(a >0)转化为x 2+a <4x(a >0). 研究函数y =x 2+a (a >0)与函数y =4x的图象的交点,如图.函数y =4x的图象经过点A (1,4),B (2,2), 函数y =x 2的图象经过点C (1,1),D (2,4),若函数y =x 2+a (a >0)经过点A (1,4),则a =3,结合图象可知,当0<a <3时,关于x 的不等式x 2+a <4x(a >0)只有一个整数解. 也就是当0<a <3时,关于x 的不等式x 2+a -4x<0(a >0)只有一个整数解.。
第四中学中考数学冲刺复习 专题训练 1 阅读理解型问题(无答案)(2021年整理)

北京市第四中学2017年中考数学冲刺复习专题训练1 阅读理解型问题(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北京市第四中学2017年中考数学冲刺复习专题训练1 阅读理解型问题(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北京市第四中学2017年中考数学冲刺复习专题训练1 阅读理解型问题(无答案)的全部内容。
阅读理解型问题例1。
问题情境:已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型:设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>. 探索研究:(1)我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>的图象性质.① 填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax 2+bx +c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x =+(x >0)的最小值.解决问题:(2)用上述方法解决“问题情境”中的问题,直接写出答案.例2。
如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕B1点按顺时针方向旋转120°,点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O运动所形成的图形是两段圆弧,即弧OO1和弧O1O2,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和。
中考数学专题复习课件 阅读理解问题(共64张PPT)

②如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E, DF⊥BC于点F, ∵DE⊥AB,∠DAB=60°,AD=4, ∴AE=2,DE2 3, ∴BE=AB-AE=5-2=3. ∵四边形BFDE是矩形, ∴DF=BE=3,BF=DE= 2 3 .
20
∵∠BCD=60°, ∴CF 3, ∴ B C C F B F 3 2 3 3 3 , ∴ A C A B 2 B C 2 5 2 ( 3 3 ) 2 2 1 3 .
29
(3)画图如下:
30
(4)S四边形MNHG =S△AMF +S△BEN.理由如 下:
设AM=a,BN=b,MN=c,
∵H是DN的1 中点, ∴DH=HN2 = c.
∵△MND,△BNE均为等边三角形,
∴∠D=∠DNE=60°.
31
∵∠DHG=∠NHE, ∴△DGH≌△NEH△AGM∽△AEN.
51
又∵y<0,∴-1<y<0.
①
同理得1<x<2.
②
由①+②得-1+1<y+x<0+2.
∴x+y的取值范围是0<x+y<2.
请按照上述方法,完成下列问题:
(1)已知x-y=3,且x>2,y<1,则x+y的取值范围是_____;
(2)已知y>1,x<-1,若x-y=a成立,求x+y的取值范围(结
果用含a的式子表示). 52
阅读理解题是近几年新出现的一种新题型, 这种题型特点鲜明、内容丰富、超越常规,源 于课本,高于课本,不仅考查学生的阅读能力 ,而且综合考查学生的数学意识和数学综合应 用能力,尤其侧重于考查学生的数学思维能力 和创新意识,此类题目能够帮助学生实现从模 仿到创造的思维过程,符合学生的认知规律。
中考数学阅读理解型问题

阅读理解型问题一、中考专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题. 二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题. 三、中考考点精讲考点一: 阅读试题提供新定义、新定理,解决新问题 例1 (2013•六盘水)阅读材料: 关于三角函数还有如下的公式:sin (α±β)=sinαcosβ±cosasinβ; tan (α±β)=tan tan 1tan tan αβαβ± 。
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan(45°-30°)=tan 45-tan 301tan 45tan 30︒︒+︒︒=31(33)(33)1263363(33)(33)13----==+-+=2-3根据以上阅读材料,请选择适当的公式解答下面问题 (1)计算:sin15°;(2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A 距离7米的C 处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC 为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据3=1.732, 2=1.414)tan 30tan 30+︒︒︒1.分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D 推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.②解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)解:∵△AOE和△DOE是友好三角形,AD=3,∴S△AOE=S△DOE,AE=ED=12∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE.∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,×4×3=12.∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2×12探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=12AB,∵沿CD折叠A和A′重合,∴AD=A′D=12AB=12×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的14,∴S△DOC=14S△ABC=12S△BDC=12S△ADC=12S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=12AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=2242=23,∴△ABC的面积是12×BC×AC=12×2×23=23;②如图2,(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润. 2.解:(1)设商场计划购进甲种手机x 部,乙种手机y 部,由题意,得0.40.2515.50.030.05 2.1x y x y +=⎧⎨+=⎩, 解得:2030x y =⎧⎨=⎩,答:商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机减少a 部,则乙种手机增加2a 部,由题意,得 0.4(20-a )+0.25(30+2a )≤16, 解得:a≤5.设全部销售后获得的毛利润为W 元,由题意,得 W=0.03(20-a )+0.05(30+2a ) =0.07a+2.1 ∵k=0.07>0,∴W 随a 的增大而增大, ∴当a=5时,W 最大=2.45.答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.45万元.考点三、阅读相关信息,通过归纳探索,发现规律,得出结论例3 (2013•)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD 中,AD ∥BC ,点E 为DC 边的中点,连接AE 并延长交BC 的延长线于点F ,求证:S 四边形ABCD =S △ABF (S 表示面积)问题迁移:如图2:在已知锐角∠AOB 有一个定点P .过点P 任意作一条直线MN ,分别交射线OA 、OB 于点M 、N .小明将直线MN 绕着点P 旋转的过程中发现,△MON 的面积存在最小值,请问当直线MN 在什么位置时,△MON 的面积最小,并说明理由.实际应用:如图3,若在道路OA 、OB 之间有一村庄Q 发生疫情,防疫部门计划以公路OA 、OB 和经过防疫站P 的一条直线MN 为隔离线,建立一个面积最小的三角形隔离区△MON .若测得∠AOB=66°,∠POB=30°,OP=4km ,试求△MON 的面积.(结果精确到0.1km 2)(参考数据:sin66°≈0.91,tan66°≈2.25,3≈1.73)拓展延伸:如图4,在平面直角坐标系中,O 为坐标原点,点A 、B 、C 、P 的坐标分别为(6,0)(6,3)(92,92)、(4、2),过点p 的直线l 与四边形OABC 一组对边相交,将四边形OABC 分成两个四边形,求其中以点O 为顶点的四边形面积的最大值.思路分析:问题情境:根据可以求得△ADE ≌△FCE ,就可以得出S △ADE =S △FCE 就可以得出结论; 问题迁移:根据问题情境的结论可以得出当直线旋转到点P 是MN 的中点时S △MON 最小,过点M 作MG ∥OB 交EF 于G .由全等三角形的性质可以得出结论;实际运用:如图3,作PP 1⊥OB ,MM 1⊥OB ,垂足分别为P 1,M 1,再根据条件由三角函数值就可以求出结论;拓展延伸:分情况讨论当过点P 的直线l 与四边形OABC 的一组对边OC 、AB 分别交于点M 、N ,延长OC 、AB 交于点D ,由条件可以得出AD=6,就可以求出△OAD 的面积,再根据问题迁移的结论就可以求出最大值;当过点P 的直线l 与四边形OABC 的另一组对边CB 、OA 分别交M 、N ,延长CB 交x 轴于T ,由B 、C 的坐标可得直线BC 的解析式,就可以求出T 的坐标,从而求出△OCT 的面积,再由问题迁移的结论可以求出最大值,通过比较久可以求出结论. 解:问题情境:∵AD ∥BC , ∴∠DAE=∠F ,∠D=∠FCE . ∵点E 为DC 边的中点, ∴DE=CE .∵在△ADE 和△FCE 中,DAE F D FCE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△FCE (AAS ), ∴S △ADE =S △FCE ,∴S 四边形ABCE +S △ADE =S 四边形ABCE +S △FCE , 即S 四边形ABCD =S △ABF ;问题迁移:出当直线旋转到点P是MN的中点时S△MON最小,如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,由问题情境可以得出当P是MN的中点时S四边形MOFG=S△MON.∵S四边形MOFG<S△EOF,∴S△MON<S△EOF,∴当点P是MN的中点时S△MON最小;实际运用:如图3,作PP1⊥OB,MM1⊥OB,垂足分别为P1,M1,在Rt△OPP1中,∵∠POB=30°,∴PP1=12OP=2,OP1=23.由问题迁移的结论知道,当PM=PN时,△MON的面积最小,∴MM1=2PP1=4,M1P1=P1N.在Rt△OMM1中,tan∠AOB=11MMOM,2.25=14OM,∴OM1=169,∴M1P1=P1N=23-169,∴ON=OP1+P1N=23+23-169=43-169.∴S△MON=12ON•MM1=12(43-169)×4=83-329≈10.3km2.拓展延伸:①如图4,当过点P的直线l与四边形OABC的一组对边OC、AB分别交于点M、N,延长OC、AB交于点D,∵C(92,92),∴∠AOC=45°,∴AO=AD.∴A(6,0),∴OA=6,∴AD=6.∴S△AOD=12×6×6=18,由问题迁移的结论可知,当PN=PM时,△MND的面积最小,∴四边形ANMO的面积最大.作PP1⊥OA,MM1⊥OA,垂足分别为P1,M1,∴M1P1=P1A=2,∴OM1=M1M=2,∴MN∥OA,∴S四边形OANM=S△OMM1+S四边形ANPP1=12×2×2+2×4=10②如图5,当过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,延长CB交x轴于T,∵C(92,92)、B(6,3),设直线BC的解析式为y=kx+b,由题意,得992236K bk b⎧=+⎪⎨⎪=+⎩,解得:-19kb=⎧⎨=⎩,∴y=-x+9,当y=0时,x=9,∴T(9,0).∴S△OCT=12×92×9=814.由问题迁移的结论可知,当PM=PN时,△MNT的面积最小,∴四边形CMNO的面积最大.∴NP1=M1P1,MM1=2PP1=4,∴4=-x+9,∴x=5,∴M(5,4),∴OM1=5.∵P(4,2),∴OP1=4,∴P1M1=NP1=1,∴ON=3,∴NT=6.∴S△MNT=12×4×6=12,∴S四边形OCMN=814-12=334<10.∴综上所述:截得四边形面积的最大值为10.对应训练3.(2013•)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=12AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.∴整个图形是轴对称图形,故③正确.∵AB=AC ,BM=CM ,∴AM ⊥BC ,∴∠AMB=∠AMC=90°,∵∠ADM=90°,∴四边形ADBM 四点共圆,∴∠AMD=∠ABD=45°.∵AM 是对称轴,∴∠AME=∠AMD=45°,∴∠DME=90°,∴MD ⊥ME ,故④正确,故答案为:①②③④●数学思考:MD=ME ,MD ⊥ME .理由:如图,作AB 、AC 的中点F 、G ,连接DF ,MF ,EG ,MG ,∴AF=12AB ,AG=12AC . ∵△ABD 和△AEC 是等腰直角三角形, ∴DF ⊥AB ,DF=12AB ,EG ⊥AC ,EG=12AC , ∴∠AFD=∠AGE=90°,DF=AF ,GE=AG .∵M 是BC 的中点,∴MF ∥AC ,MG ∥AB ,∴四边形AFMG 是平行四边形,∴AG=MF ,MG=AF ,∠AFM=∠AGM .∴MF=GE ,DF=MG ,∠AFM+∠AFD=∠AGM+∠AGE ,∴∠DFM=∠MGE .∵在△DFM 和△MGE 中,MF GE DFM MGE DF MG =⎧⎪∠=∠⎨⎪=⎩,∴△DFM ≌△MGE (SAS ),∴DM=ME ,∠FDM=GME .∵MG ∥AB ,∴∠GMH=∠BHM.∵∠BHM=90°+∠FDM,∴∠BHM=90°+∠GME,∴∠BHM=90°+∠GME,∵∠BHM=∠DME+∠GME,∴∠DME+∠GME=90°+∠GME,即∠DME=90°,∴MD⊥ME.∴DM=ME,MD⊥ME;●类比探究:∵如图3,点M、F、G分别是BC、AB、AC的中点,∴MF∥AC,MF=12AC,MG∥AB,MG=12AB,∴四边形MFAG是平行四边形,∴MG=AF,MF=AG.∠AFM=∠AGM∵△ADB和△AEC是等腰直角三角形,∴DF=AF,GE=AG,∠AFD=∠BFD=∠AGE=90°∴MF=EG,DF=MG,∠AFM-∠AFD=∠AGM-∠AGE,即∠DFM=∠MGE.∵在△DFM和△MGE中MF EGDFM MGEDF MG=⎧⎪∠=∠⎨⎪=⎩,∴△DFM≌△MGE(SAS),∴MD=ME,∠MDF=∠EMG.∵MG∥AB,∴∠MHD=∠BFD=90°,∴∠HMD+∠MDF=90°,∴∠HMD+∠EMG=90°,即∠DME=90°,∴△DME为等腰直角三角形.考点四、阅读试题信息,借助已有数学思想方法解决新问题例4 (2013•)阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠GHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为;(2)求正方形MNPQ的面积.(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=33,则AD的长为.思路分析:(1)四个等腰直角三角形的斜边长为a,其拼成的正方形面积为a2,边长为a;(2)如题图2所示,正方形MNPQ的面积等于四个虚线小等腰直角三角形的面积之和,据此求出正方形MNPQ的面积;(3)参照小明的解题思路,对问题做同样的等积变换.如答图1所示,三个等腰三角形△RSF,△QEF,△PDW的面积和等于等边三角形△ABC的面积,故阴影三角形△PQR的面积等于三个虚线等腰三角形的面积之和.据此列方程求出AD的长度.解:(1)四个等腰直角三角形的斜边长为a,则斜边上的高为12a,每个等腰直角三角形的面积为:12a•12a=14a2,则拼成的新正方形面积为:4×14a2=a2,即与原正方形ABCD面积相等∴这个新正方形的边长为a.故填空答案为:a.(2)∵四个等腰直角三角形的面积和为a2,正方形ABCD的面积为a2,∴S正方形MNPQ=S△ARE+S△DWH+S△GCT+S△SBF=4S△ARE=4×12×12=2.(3)如答图1所示,分别延长RD,QF,PE交FA,EC,DB的延长线于点S,T,W.由题意易得:△RSF,△QEF,△PDW均为底角是30°的等腰三角形,其底边长均等于△ABC的边长.不妨设等边三角形边长为a,则SF=AC=a.如答图2所示,过点R作RM⊥SF于点M,则MF=12SF=12a,在Rt△RMF中,RM=MF•tan30°=12a×33=36a,∴S△RSF=12a•36a=312a2.过点A作AN⊥SD于点N,设AD=AS=x,则AN=AR•sin30°=12x,SD=2ND=2ARcos30°=3x,∴S△ADS=12SD•AN=12•3x•12x=34x2.∵三个等腰三角形△RSF,△QEF,△PDW的面积和=3S△RSF=3×312a2=34a2,正△ABC的面积为34a2,∴S△RPQ=S△ADS+S△CFT+S△BEW=3S△ADS,∴33=3×34x2,得x2=49,解得x=23或x=-23(不合题意,舍去)∴x=23,即AD的长为23.故填空答案为:23.点评:本题考查了几何图形的等积变换,涉及正方形、等腰直角三角形、等腰三角形、正三角形、解直角三角形等多个知识点,是一道好题.通过本题我们可以体会到,运用等积变换的数学思想,不仅简化了几何计算,而且形象直观,易于理解,体现了数学的魅力.对应训练4.(2013•)一透明的敞口正方体容器ABCD-A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是,BQ的长是dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积SBCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的围.延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.4.解:(1)CQ∥BE,BQ=2254=3;(2)V液=12×3×4×4=24(dm3);(3)在Rt△BCQ中,tan∠BCQ=34,∴α=∠BCQ=37°.当容器向左旋转时,如图3,0°≤α≤37°,∵液体体积不变,∴12(x+y)×4×4=24,∴y=-x+3.当容器向右旋转时,如图4.同理可得:y=124x;当液面恰好到达容器口沿,即点Q与点B′重合时,如图5,由BB′=4,且12PB•BB′×4=24,得PB=3,∴由tan∠PB′B=34,得∠PB′B=37°.∴α=∠B′PB=53°.此时37°≤α≤53°;延伸:当α=60°时,如图6所示,设FN∥EB,GB′∥EB,过点G作GH⊥BB′于点H.在Rt△B′GH中,GH=MB=2,∠GB′B=30°,∴HB′=23.∴MG=BH=4-23<MN.此时容器液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱.∵S△NFM+S MBB′G=12×33×1+12(4-23+4)×2=8-1136.∴V溢出=24-4(8-1136)=2233-8>4(dm3).∴溢出液体可以达到4dm3.四、中考真题演练1.(2013•义乌)在义乌市中小学生“我的中国梦”读数活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的学生有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人?1.解:(1)共调查的学生数:40÷20%=200(人);(2)最喜爱丁类图书的学生数:200-80-65-40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.2.(2013•天门)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;,每回收1吨塑料类垃圾可获得0.7吨二级(3)调查发现,在可回收物中塑料类垃圾占15原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?2.解:(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1-10%-30%-54%=6%,∴有害垃圾为:50×6%=3吨;(3)5000×54%×1×0.7=378(吨),5答:每月回收的塑料类垃圾可以获得378吨二级原料.3.(2013•)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵. 3.解:(1)D 错误,理由为:20×10%=2≠3; (2)众数为5,中位数为5; (3)①第二步;②x =4458667220⨯+⨯+⨯+⨯=5.3,估计260名学生共植树5.3×260=1378(颗). 4.(2013•)如图,在正方形网格中,△ABC 各顶点都在格点上,点A ,C 的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是 ;点C 2的坐标是 ;过C 、C 1、C 2三点的圆的圆弧12CC C 的长是 (保留π).4.解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)C1(1,4),C2(1,-4),根据勾股定理,OC=22+=,1417过C、C1、C2三点的圆的圆弧是以CC2为直径的半圆,CC C的长=17π.12故答案为:(1,4);(1,-4);17.5.(2013•)如图①,在矩形纸片ABCD中,AB=3+1,AD=3.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为;(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为;(3)如图④,将图②中的△AED′绕点E 顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B ,求弧D′D″的长.(结果保留π)5.解:(1)∵△ADE 反折后与△AD′E 重合, ∴AD′=AD=D′E=DE=3, ∴AE=2222(3)(3)6AD D E ''+=+=;(2)∵由(1)知AD′=3,∴BD′=1,∵将四边形BCED′沿D′E 向左翻折,压平后得四边形B′C′ED′, ∴B′D′=BD′=1,∵由(1)知AD ′=AD=D′E=DE=3, ∴四边形ADED′是正方形, ∴B′F=AB′=3-1, ∴S 梯形B′FED′=12(B′F+D′E)•B′D′=12(3-1+3)×1=3-12;(3)∵∠C=90°,BC=3,EC=1, ∴tan ∠BEC=3BCCE=, ∴∠BEC=60°,由翻折可知:∠DEA=45°, ∴∠AEA′=75°=∠D′ED″, ∴D D '''=75360•2π•3=5312π.故答案为:6;3-12. 6.(2013•)第九届中国国际园林博览会(园博会)已于2013年5月18日在开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为平方千米;(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量和停车位数量统计表:日接待游客量(万人次)单日最多接待游客量(万人次)停车位数量(个)第七届0.8 6 约3000 第八届 2.3 8.2 约4000 第九届8(预计)20(预计)约10500 第十届 1.9(预计)7.4(预计)约6.解:(1)∵月季园面积为0.04平方千米,月季园所占比例为20%,则牡丹园的面积为:15%×0.0420%=0.03(平方千米);(2)植物花园的总面积为:0.04÷20%=0.2(平方千米),则第九届园博会会园区陆地面积为:0.2×18=3.6(平方千米),第七、八界园博会的水面面积之和=1+0.5=1.5(平方千米),则水面面积为1.5平方千米,如图:;(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,则第十届园博会大约需要设置的停车位数量约为:500×7.4≈3700.故答案为:0.03;3700.7.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,AC的度数为60°,点B是AC的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD一点,分别在边AB、BC上作出点M,点N,使PM+PN 的值最小,保留作图痕迹,不写作法.7.解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=1∠BCA=30°,BE=1,2∴CE=3BE=3;故答案为3;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵AC的度数为60°,点B是AC的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=2OA=2,∵AE的长就是BP+AP的最小值.故答案为2;(3)拓展延伸如图(4).8.(2013•)阅读材料如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.解决问题(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出BFCD的值(用含α的式子表示出来)8.解:(1)猜想:BF=CD.理由如下:如答图②所示,连接OC、OD.∵△ABC为等腰直角三角形,点O为斜边AB的中点,∴OB=OC,∠BOC=90°.∵△DEF为等腰直角三角形,点O为斜边EF的中点,∴OF=OD,∠DOF=90°.∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,∴∠BOF=∠COD.∵在△BOF与△COD中,OB OCBOF CODOF OD=⎧⎪∠=∠⎨⎪=⎩,∴△BOF≌△COD(SAS),∴BF=CD.(2)答:(1)中的结论不成立. 如答图③所示,连接OC 、OD .∵△ABC 为等边三角形,点O 为边AB 的中点, ∴OBOC=tan30°=33,∠BOC=90°.∵△DEF 为等边三角形,点O 为边EF 的中点, ∴OFOD=tan30°=33,∠D OF=90°.∴OB OF OC OD ==33. ∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF , ∴∠BOF=∠COD . 在△BOF 与△COD 中, ∵OB OFOC OD ==33,∠BOF=∠COD , ∴△BOF ∽△COD , ∴33BF CD =. (3)如答图④所示,连接OC 、OD .∵△ABC 为等腰三角形,点O 为底边AB 的中点, ∴OB OC =tan 2α,∠BOC=90°. ∵△DEF 为等腰三角形,点O 为底边EF 的中点,∴OF OD =tan 2α,∠DOF=90°. ∴OB OFOC OD==tan 2α. ∵∠BOF=∠BOC+∠COF=90°+∠COF ,∠COD=∠DOF+∠COF=90°+∠COF ,∴∠BOF=∠COD . 在△BOF 与△COD 中, ∵OB OFOC OD==tan 2α,∠BOF=∠COD , ∴△BOF ∽△COD , ∴2BF CD α=. 9.(2013•日照)问题背景: 如图(a ),点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小,我们可以作出点B 关于l 的对称点B′,连接A B′与直线l 交于点C ,则点C 即为所求.(1)实践运用: 如图(b ),已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为 . (2)知识拓展: 如图(c ),在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 于点D ,E 、F 分别是线段AD 和AB 上的动点,求BE+EF 的最小值,并写出解答过程. 9.解:(1)如图,作点B 关于CD 的对称点E ,连接AE 交CD 于点P , 此时PA+PB 最小,且等于AE . 作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE . ∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°, ∴∠AOE=90°,∴∠C′AE=45°,又AC为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=2AC′=22,即AP+BP的最小值是22.故答案为:22;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,=52,∴B′F=AB′•sin45°=AB•sin45°=10×22∴BE+EF的最小值为52.10.(2013•)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC 与∠ACN的数量关系,并说明理由.10.(1)证明:∵△ABC 、△AMN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAM=∠CAN ,∵在△BAM 和△CAN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△BAM ≌△CAN (SAS ),∴∠ABC=∠ACN .(2)解:结论∠ABC=∠ACN 仍成立.理由如下:∵△ABC 、△AMN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAM=∠CAN ,∵在△BAM 和△CAN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△BAM ≌△CAN (SAS ),∴∠ABC=∠ACN .(3)解:∠ABC=∠ACN .理由如下:∵BA=BC ,MA=MN ,顶角∠ABC=∠AMN ,∴底角∠BAC=∠MAN ,∴△ABC ∽△AMN ,∴AB AC,AM AN又∵∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.11.(2013•)阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD 的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.11.解:(1)点E是四边形ABCD的边AB上的相似点.理由:∵∠A=55°,∴∠ADE+∠DEA=125°.∵∠DEC=55°,∴∠BEC+∠DEA=125°.∴∠ADE=∠BEC.(2分)∵∠A=∠B,∴△ADE∽△BEC.∴点E是四边形ABCD的AB边上的相似点.(2)作图如下:(3)∵点E 是四边形ABCM 的边AB 上的一个强相似点,∴△AEM ∽△BCE ∽△ECM ,∴∠BCE=∠ECM=∠AEM .由折叠可知:△ECM ≌△DCM ,∴∠ECM=∠DCM ,CE=CD ,∴∠BCE=13∠BC D=30°, ∴BE=12CE=12AB . 在Rt △BCE 中,tan ∠BCE=BE BC=tan30°, ∴33BE BC =, ∴233AB BC =. 12.(2013•)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC ∽△A′B′C′,且沿周界ABCA 与A′B′C′A′环绕的方向相同,因此△ACB 和△A′B′C′互为顺相似;如图②,△ABC ∽△A′B′C′,且沿周界ABCA 与A′B′C′A′环绕的方向相反,因此△ACB 和△A′B′C′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE 与△ABC ;②△GHO 与△KFO ;③△NQP 与△NMQ ;其中,互为顺相似的是 ;互为逆相似的是 .(填写所有符合要求的序号).(2)如图③,在锐角△ABC 中,∠A <∠B <∠C ,点P 在△ABC 的边上(不与点A ,B ,C 重合).过点P 画直线截△ABC ,使截得的一个三角形与△ABC 互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.12.解:(1)互为顺相似的是①;互为逆相似的是②③;(2)根据点P在△ABC边上的位置分为以下三种情况:第一种情况:如图①,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、PQ2,分别使∠CPQ1=∠A,∠BPQ2=∠A,此时△PQ1C、△PBQ2都与△ABC互为逆相似.第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC 于点M.当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC互为逆相似;当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AC于点D、E.当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AQP1与△ABC互为逆相似;当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ1P2、△Q2BP2都与△ABC互为逆相似;当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q′,使∠BP3Q′=∠BCA,此时△Q′BP3与△ABC互为逆相似.。
中考数学复习《阅读理解问题》经典题型及测试题(含答案)
中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。
中考数学冲刺:阅读理解型问题--知识讲解(基础)
中考冲刺:阅读理解型问题一知识讲解(基础)【中考展望】阅读理解型问题在近几年的全国中考试题中频频“亮相”,应该特别引起我们的重视•它由两部分组成:一是阅读材料;二是考查内容•它要求学生根据阅读获取的信息回答问题•提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料等•考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的•这类问题一般文字叙述较长,信息量较大,内容丰富,超越常规,源于课本,又高于课本,各种关系错综复杂,不仅能考查同学们阅读题中文字获取信息的能力,还能考查同学们获取信息后的抽象概括能力、建模能力、决策判断能力等•同时,更能够综合考查同学们的数学意识和数学综合应用能力【方法点拨】题型特点:先给出一段材料,让学生理解,再设立新的数学概念,新概念的解答可以借鉴前面材料的结论或思想方法.解题策略:从给的材料入手,通过理解分析本材料的内容,捕捉已知材料的信息,灵活应用这些信息解决新材料的问题.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后依题意进行分析、比较、综合、抽象和概括,或用归纳、演绎、类比等进行计算或推理论证,并能准确地运用数学语言阐述自己的思想、方法、观点•展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题阅读理解题一般可分为如下几种类型:(1) 方法模拟型一一通过阅读理解,模拟提供材料中所述的过程方法,去解决类似的相关问题;(2) 判断推理型一一通过阅读理解,对提供的材料进行归纳概括;按照对材料本质的理解进行推理,作出解答;(3) 迁移发展型一一从提供的材料中,通过阅读,理解其采用的思想方法,将其概括抽象成数学模型去解决类同或更高层次的另一个相关命题.【典型例题】类型一、阅读试题提供新定义、新定理,解决新问题01 .阅读材料: 例:说明代数式vx2 V .:(x-3)2的几何意义,并求它的最小值.解:.x21 .(x-3)24= .-'(x -0)21 气(x-3)222,如图,建立平面直角坐标系,点P (x, 0)是x轴上一点,丰KV2)V1V/I:3XA r C则J x —O)2 +1可以看成点P 与点A (0, 1)的距离,J (x —3)2 +22可以看成点P 与点B (3, 2)的距离,所以原代数式的值可以看成线段 PA 与PB 长度之和,它的最小值就是 PA+PB 的最小值.二A B= AC 2 BC 2 =10,设点A 关于x 轴的对称点为 A',则PA=PA ,因此,求 PA+PB 的最小值,只需求 PA +PB 的最小值, 而点A'、B 间的直线段距离最短, 所以PA +PB 的最小值为线段 A'B 的长度.为此,构造直角厶A' CE ,因为A' C=3 CB=3所以A B=3、2,即原式的最小值为 3 2 .根据以上阅读材料,解答下列问题:(1) 代数式.(X -1)2 • 1 • .(X-2)2 • 9的值可以看成平面直角坐标系中点P (x , 0)与点A (1, 1)、 点B __________ 的距离之和.(填写点B 的坐标)(2)代数式 X 2 49 . X 2 -12x 37的最小值为 【思路点拨】(1)先把原式化为...(x-1)2 • 1 ,(^2)2 32的形式,再根据题中所给的例子即可得出结论; (2)先把原式化为,:(x-0)2,72 • ;'(x-6)2 7的形式,故得出所求代数式的值可以看成平面直角坐 标系中点P (x , 0)与点A (0, 7)、点B (6, 1)的距离之和,然后在坐标系内描出各点,利用勾股定 理得出结论即可.【答案与解析】解:(1 )•••原式化为,(x -1)2 • 1 •、(x -2)2 • 32 的形式,•••代数式 J (x —1)2 +1 + J (x —2)2+32的值可以看成平面直角坐标系中点 P (x , 0)与点A (1, 1)、点 • ••所求代数式的值可以看成平面直角坐标系中点 如图所示:设点 A 关于x 轴的对称点为 A',则PA=PA , • PA+PB 的最小值,只需求 PA +PB 的最小值,而点 A'、B 间的直线段距离最短,• 的最小值为线段 的长度,• A ( 0, 7), B (6, 1)• A'( 0, -7 ), A' C=6 BC=8,P (x , 0)与点A (0, 7)、点B (6, 1)的距离之和, B (2, 3)的距离之和,2x -6)1的形式,故答案为:10.【总结升华】本题考查的是轴对称一一最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解.类型二、阅读试题信息,归纳总结提炼数学思想方法a L2 .阅读材料:(1 )对于任意两个数a、b的大小比较,有下面的方法:当a-b >0时,一定有a> b;当a-b=0 时,一定有a=b;当a-b v 0时,一定有a v b.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:2 2Ta -b = ( a+b) (a-b ), a+b>0,•••( a2-b2)与(a-b )的符号相同.当a2-b 2> 0 时,a-b > 0,得a > b;当a -b =0 时,a-b=0,得a=b;当a2-b 2v 0 时,a-b v 0,得a v b.解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x> y,张丽同学的用纸总面积为W,李明同学的用纸总面积为W2•回答下列问题:①W i=______________ (用x、y的式子表示);W2= (用x、y的式子表示);②请你分析谁用的纸面积更大.(2)如图1所示,要在燃气管道I上修建一个泵站,分别向A、B两镇供气,已知A B到I的距离分图I 圉2 郢方案一:如图2所示,AP丄1于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP方案二:如图3所示,点A'与点A关于I对称,A'B与I相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP【思路点拨】(1 [①根据题意得出3x+7y和2x+8y,即得出答案;②求出WW=x-y,根据x和y的大小比较即可;(2)①把AB和AP的值代入即可;②过B作BM L AC于M求出AM I根据勾股定理求出BM再根据勾股定理求出BA,即可得出答案;③求出a i2-a 22=6x-39,分别求出6x-39 > 0, 6x-39=0 , 6x-39 v 0,即可得出答案.【答案与解析】(1)解:①W i=3x+7y, W=2x+8y,故答案为:3x+7y , 2x+8y .②解:W/-W^= (3x+7y) - (2x+8y) =x-y ,••• x> y,•'•x -y > 0,/•W i-W^> 0,得W> W, 所以张丽同学用纸的总面积更大.(2)①解:a i=AB+AP=x+3故答案为:x+3.图1 图[图3②解:过B作BML AC于M则AM=4-3=I,在△ ABM中,由勾股定理得:B M=AB-12=x2-i ,在厶A MB中,由勾股定理得:AP+BP=AB= ;AM 2BM 2 = • X248 , 故答案为:x248 .2 2 2 J 2 2 2 2③解:a i -a 2 = (x+3) - (p x +48 ) =x +6x+9- (x +48) =6x-39 ,当a i -a 2 >0 (即a i-a2> 0, a i> a2)时,6x-39 > 0,解得x > 6.5 ,当a i2-a 22=0 (即a i-a 2=0, a i=a2)时,6x-39=0,解得x=6.5 ,当a i2-a 22v 0 (即a i-a 2V 0, a i v a2)时,6x-39 v 0,解得x v 6.5 ,综上所述,当x > 6.5时,选择方案二,输气管道较短,当x=6.5时,两种方案一样,当0 v x V 6.5时,选择方案一,输气管道较短.【总结升华】本题考查了勾股定理,轴对称一一最短路线问题,整式的运算等知识点的应用,通过做此题培养了学生的计算能力和阅读能力,题目具有一定的代表性,是一道比较好的题目.举一反三:【变式】如图所示,正方形ABCD和正方形EFGH勺边长分别为2、、2和2,对角线BD FH都在直线l上,O、Q分别是正方形的中心,线段OQ的长叫做两个正方形的中心距.当中心0在直线l上平移时,正方形EFGH也随之平移,在平移时正方形EFGH勺形状、大小没有改变.(2)_______________________________________________________________________________________ 当中心Q在直线l上平移到两个正方形只有一个公共点时,中心距O 02 = _______________________________________ .(3)随着中心02在直线l上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围.(不必写出计算过程)【答案】(1)OD=2, QF=1;(2)O O2 =3 ;(3)当O 02> 3或0< O 02V 1时,两个正方形无公共点;当0 02=1时,两个正方形有无数个公共点;当1 V 0 02V 3时,两个正方形有2个公共点.类型三、阅读相关信息,通过归纳探索,发现规律,得出结论3. (2016?无锡一模)已知:如图正方形ABCD中,点E、F分别是边AB和BC上的点,且满足BE=CF(1)不用圆规,请只用不带刻度的直尺作图:在边CD和DA上分别作出点G和点H,使DG=AH=BE=CF保留作图痕迹,不要求写作法)(2)在(1 )的条件下,当点E在AB边上的何处时,能使S四边形EFGH : S四边形ABCD=5: 8,并说明理由.(3 )如图:正六边形ABCDEF中,点A'、B'、C'、D'、E'、F'分别是边AB BC CD DE EF、FA上的点,且AA =BB =CC =DD =EE =FF .①设AA : A B=1: 3,贝U S六边形A B Z C D :E‘六边形ABCDEF = _____________________ ;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考冲刺:阅读理解型问题(提高) 一、选择题 1. (2016•绍兴)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A.84 B.336 C.510 D.1326 2.任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,
并规定:.例如18可以分解成1×18,2×9,3×6这三种,这时就有. 给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个完全平方数, 则F(n)=1.其中正确说法的个数是( ). A.1 B.2 C.3 D.4
二、填空题 3.阅读下列题目的解题过程:
已知a、b、c为△ABC的三边长,且满足,试判断△ABC的形状.
解:∵, (A) ∴, (B) ∴, (C) ∴△ABC是直角三角形. 问:(1)上述解题过程中,从哪一步开始出现错误? 请写出该错误步骤的代号:________________. (2)错误的原因为:________________________. (3)本题的正确结论为:____________________. 4.(2016•高县一模)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函
数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2; ④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是__________________.
三、解答题 5.已知p2-p-1=0,1-q-q2=0,且pq≠1,求的值. 解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0 又∵pq≠1,∴ ∴1-q-q2=0可变形为的特征 所以p与是方程x 2- x -1=0的两个不相等的实数根则 根据阅读材料所提供的方法,完成下面的解答.
已知:2m2-5m-1=0,,且m≠n,求:的值. 6. (市北区二模)【阅读材料】 完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理. 【问题探究】 完成沿图1的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多少种不同的走法? (1)根据材料中的原理,从A点到M点的走法共有(1+1)=2种.从A点到C点的走法: ①从A点先到N点再到C点有1种; ②从A点先到M点再到C点有2种,所以共有(1+2)=3种走法.依次下去,请求出从A点出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种? (2)运用适当的原理和方法,算出如果直接从C点出发到达B点,共有多少种走法?请仿照图2画图说明. 【问题深入】 (3)在以上探究的问题中,现由于交叉点C道路施工,禁止通行,求从A点出发能顺了到达BB点的走法数?说明你的理由.
7.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①. 观察图①可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组
的解,所以这个方程组的解为 在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图③. ① ② ③ 回答下列问题:
(1)在直角坐标系中,用作图象的方法求出方程组的解;
(2)用阴影表示,所围成的区域. 8. 我们学习过二次函数图象的平移,如:将二次函数的图象向左平移2个单位长度,再向下平移4个单位长度,所得图象的函数表达式是. 类比二次函数图象的平移,我们对反比例函数的图象作类似的变换:
(1)将的图象向右平移1个单位长度,所得图象的函数表达式为________,再向上平移1个单位长度,所得图象的函数表达式为________.
(2)函数的图象可由的图象向________平移________个单位长度得到;的图象可由哪个反比例函数的图象经过怎样的变换得到? (3)一般地,函数(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到? 9. “三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB
置于直角坐标系中,边OB在轴上、边OA与函数的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作轴和轴的平行线,两直线相交于点M ,
连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题: (1)设、,求直线OM对应的函数表达式(用含的代数式表示). (2)分别过点P和R作轴和轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,
并据此证明∠MOB=∠AOB. (3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明). 10. 阅读下列材料: 问题:如图1所示,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线
段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG,与PC的位置关系及的值; (2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明. (3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺旋转任意角度,
原问题中的其他条件不变,请你直接写出的值(用含α的式子表示). 答案与解析 【答案与解析】 一、选择题
1.【答案】C; 【解析】1×73+3×72+2×7+6=510. 2.【答案】B; 二、填空题 3.【答案】 (1)C;
(2)错误的原因是由(B)到(C)时,等式两边同时约去了因式,而可能等于0; (3)△ABC是等腰三角形或直角三角形. 4.【答案】①②③. 【解析】(1)分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm,故①正确; (2)如答图1所示,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,∴sin∠EBC=, 故②正确; (3)如答图2所示,过点P作PG⊥BQ于点G, ∵BQ=BP=t, ∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2. 故③正确; (4)结论D错误.理由如下: 当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N, 如答图3所示,连接NB,NC.
此时AN=8,ND=2,由勾股定理求得:NB=8,NC=2, ∵BC=10, ∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形. 故④错误; 故答案为:①②③. 三、解答题 5.【答案与解析】
解:由2m2-5m-1=0知m≠0,∵m≠n,∴ 得 根据的特征 ∴是方程x 2+5 x -2=0的两个不相等的实数根 ∴ . 6.【答案与解析】 解:(1)∵完成从A点到B点必须向北走,或向东走, ∴到达A点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和, 故使用分类加法计数原理,由此算出从A点到达其余各交叉点的走法数,填表如图1. 答:从A点到B点的走法共有35种.
(2)如图3,使用分类加法计数原理,算出从C点到B点的走法为6种; (3)方法一:可先求从A点到B点,并经过交叉点C的走法数,再用从A点到B点总走法数减去它,即得从A点到B点,但不经过交叉点C的走法数. 完成从A点出发经C点到B点这件事可分两步,先从A点到C点,再从C点到B点, 使用分类加法计数原理,算出从A点到C点的走法是3种,见图2; 见图3,从C点到B点的走法为6种, 再运用分步乘法计数原理,得到从A点经C点到B点的走法有3×6=18种. ∴从A点到B点但不经过C点的走法数为35﹣18=17种.
方法二:如图4:由于交叉点C道路施工,禁止通行,故视为相邻道路不通,可删除与