2021中考数学冲刺专题训练阅读理解问题含解析
江苏版2021年中考数学热点专题冲刺4实际应用问题

热点专题4 实际应用问题考向1一次方程(组)的实际应用1. (2019 江苏省宿迁市)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.【解析】设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.2. (2019 江苏省淮安市)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?【解析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;点评本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.3. (2019 江苏省盐城市)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【解析】(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得:,解得:,答:每只A型球的质量是3千克、B型球的质量是4千克;(2)∵现有A型球、B型球的质量共17千克,∴设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),设A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),设A型球3个,设B型球c个,则9+4c=17,解得:c=2,设A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),设A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),综上所述:A型球、B型球各有3只、2只.【点评】此题主要考查了二元一次方程组的应用,正确分类讨论是解题关键.考向2分式方程的实际应用1. (2019 江苏省苏州市)小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( )A .15243x x =+B .15243x x =-C .15243x x =+D .15243x x=- 【解析】 找到等量关系为两人买的笔记本数量15243x x ∴=+ 故选A2. (2019 江苏省常州市)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?【解析】 设甲每小时做x 个零件,则乙每小时做(30﹣x )个零件,由题意得:=,解得:x =18,经检验:x =18是原分式方程的解,则30﹣18=12(个).答:甲每小时做18个零件,则乙每小时做12个零件.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意检验.3. (2019 江苏省扬州市) “绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?【解析】设甲工程队每天修x 米,则乙工程队每天修(1500﹣x )米,根据题意可得:=,解得:x=900,经检验得:x=900是原方程的根,故1500﹣900=600(m),答:甲工程队每天修900米,乙工程队每天修600米.【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.考向3函数的实际运用1. (2019 江苏省连云港市)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m2【解析】如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE=BC=6﹣x,∴AD=CE=BE=6﹣x,AB=AE+BE=x+6﹣x=x+6,∴梯形ABCD面积S=(CD+AB)•CE=(x+x+6)•(6﹣x)=﹣x2+3x+18=﹣(x﹣4)2+24,∴当x=4时,S最大=24.即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C.【点评】此题考查了梯形的性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键.2. (2019 江苏省淮安市)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x 之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.【解析】(1)快车的速度为:180÷2=90千米/小时,慢车的速度为:180÷3=60千米/小时,答:快车的速度为90千米/小时,慢车的速度为60千米/小时;(2)由题意可得,点E的横坐标为:2+1.5=3.5,则点E的坐标为(3.5,180),快车从点E到点C用的时间为:(360﹣180)÷90=2(小时),则点C的坐标为(5.5,360),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,,得,即线段EC所表示的y1与x之间的函数表达式是y1=90x﹣135;(3)设点F的横坐标为a,则60a=90a﹣135,解得,a=4.5,则60a=270,即点F的坐标为(4.5,270),点F代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3. (2019 江苏省连云港市)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.【解析】(1)y=0.3x+0.4(2500﹣x)=﹣0.1x+1000因此y与x之间的函数表达式为:y=﹣0.1x+1000.(2)由题意得:∴1000≤x≤2500又∵k=﹣0.1<0∴y随x的增大而减少∴当x=1000时,y最大,此时2500﹣x=1500,因此,生产甲产品1000吨,乙产品1500吨时,利润最大.【点评】这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.4. (2019 江苏省泰州市)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?【解析】(1)设线段AB所在直线的函数表达式为y=kx+b,根据题意得,解得,∴线段AB所在直线的函数表达式为y=﹣0.01x+6(100≤x≤300);(2)设小李共批发水果m吨,则单价为﹣0.01m+6,根据题意得:﹣0.01m+6=,解得m=200或400,经检验,x=200,x=400(不合题意,舍去)都是原方程的根.答:小李用800元一次可以批发这种水果的质量是200千克.【点评】本题主要考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.5. (2019 江苏省宿迁市)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【解析】(1)根据题意得,y=﹣x+50;(2)根据题意得,(40+x)(﹣x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(﹣x+50)=﹣x2+30x+2000=﹣(x﹣30)2+2450,∵a=﹣<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w增大=2400,答:当x为20时w最大,最大值是2400元.【点评】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.6. (2019 江苏省镇江市)学校数学兴趣小组利用机器人开展数学活动.在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B 之间,机器人乙同时从端点B出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员探究这两个机器人迎面相遇的情况,这里的”迎面相遇“包括面对面相遇、在端点处相遇这两种.观察①观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;②若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为40个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;发现设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.兴趣小组成员发现了y与x 的函数关系,并画出了部分函数图象(线段OP,不包括点O,如图2所示).①a=;②分别求出各部分图象对应的函数表达式,并在图2中补全函数图象;拓展设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第三次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.若这两个机器人第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,则他们第一次迎面相遇时,相遇地点与点A之间的距离x的取值范围是.(直接写出结果)【解析】观察①∵相遇地点与点A之间的距离为30个单位长度,∴相遇地点与点B之间的距离为150﹣30=120个单位长度,设机器人甲的速度为v,∴机器人乙的速度为v=4v,∴机器人甲从相遇点到点B所用的时间为,机器人乙从相遇地点到点A再返回到点B所用时间为=,而,∴设机器人甲与机器人乙第二次迎面相遇时,机器人乙从第一次相遇地点到点A,返回到点B,再返回向A时和机器人甲第二次迎面相遇,设此时相遇点距点A为m个单位,根据题意得,30+150+150﹣m=4(m﹣30),∴m=90,故答案为:90;②∵相遇地点与点A之间的距离为40个单位长度,∴相遇地点与点B之间的距离为150﹣40=110个单位长度,设机器人甲的速度为v,∴机器人乙的速度为v=v,∴机器人乙从相遇点到点A再到点B所用的时间为=,机器人甲从相遇点到点B所用时间为,而,∴设机器人甲与机器人乙第二次迎面相遇时,机器人从第一次相遇点到点A,再到点B,返回时和机器人乙第二次迎面相遇,设此时相遇点距点A为m个单位,根据题意得,40+150+150﹣m=(m﹣40),∴m=120,故答案为:120;发现①当点第二次相遇地点刚好在点B时,设机器人甲的速度为v,则机器人乙的速度为v,根据题意知,x+150=(150﹣x),∴x=50,经检验:x=50是分式方程的根,即:a=50,故答案为:50;②当0<x≤50时,点P(50,150)在线段OP上,∴线段OP的表达式为y=3x,当v<v时,即当50<x<75,此时,第二次相遇地点是机器人甲在到点B返回向点A时,设机器人甲的速度为v,则机器人乙的速度为v,根据题意知,x+y=(150﹣x+150﹣y),∴y=﹣3x+300,即:y=,补全图形如图2所示,拓展如图,由题意知,x+y+150+150=(150﹣x+150﹣y),∴y=﹣5x+300,∵第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,∴﹣5x+300≤60,∴x≥48,∵x<75,∴48≤x<75,故答案为48≤x<75.【点评】本题考查了一次函数的应用,两点间的距离,分式方程的应用,一元一次方程的应用,正确的理解题意是解题的关键.考向4不等式的实际运用1. (2019 江苏省无锡市)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为() A.10 B.9 C.8 D.7【解析】设原计划m天完成,开工n天后有人外出,则15am=2160,am=144,15an+12(a+2)(m-n)<2160,化简可得:an+4am+8m-8n<720,将am=144 代入得an+8m-8n<144,an+8m-8n<am,a(n-m)<8(n-m),其中n-m<0,a>8,至少为 9 ,因此本题选B。
备战中考数学(人教版)综合能力冲刺练习(含解析)

2021备战中考数学〔人教版〕-综合才能冲刺练习〔含解析〕一、单项选择题1.y关于t的函数y=--,那么以下有关此函数图像的描绘正确的选项是〔〕A.该函数图像与坐标轴有两个交点B.该函数图象经过第一象限C.该函数图像关于原点中心对称D.该函数图像在第四象限2.a、b均为正整数,且a>,b<,那么a+b的最小值是〔〕A.3B.4C.5D.63.以下语句不是命题的是〔〕A.两点之间线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗?D.相等的角是对顶角4.假如零上6℃记作+6℃,那么零下4℃记作〔〕A.-4B.4C.-4℃D.4℃5.以下关系式中,y是x反比例函数的是〔〕A.y=B.y=-1C.y=-D.y=6.如下图,四边形ABCD的四个顶点都在℃O上,称这样的四边形为圆的内接四边形,那么图中℃A+℃C=〔〕度.A.90°B.180°C.270°D.360°7.下面哪个点不在函数y = -2x+3的图象上〔〕A.〔-5,13〕B.〔0.5,2〕C.〔3,0〕D.〔1,1〕8.如图,在平面直角坐标系xOy中,℃A′B′C′由℃ABC绕点P旋转得到,那么点P的坐标为〔〕A.〔0,1〕B.〔0,﹣1〕C.C〔1,﹣1〕D.〔1,0〕9.如图,下午2点30分时,时钟的分针与时针所成角的度数为〔〕A.90°B.120°C.105°D.135°10.假如将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,那么这一方向应为〔〕A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°11.把一副三角板如图甲放置,其中℃ACB=℃DEC=90,℃A=45,℃D=30,斜边AB=6,DC=7,,把三角板DCE绕着点C顺时针旋转15得到℃D1CE1〔如图乙〕,此时AB与CD1交于点O,那么线段AD1的长度为〔〕A. B.5 C.4 D.二、填空题12.假设最简二次根式与是同类根式,那么b的值是________.13.我区有15所中学,其中九年级学生共有3000名.为了理解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进展排序.①搜集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.那么正确的排序为________.〔填序号〕14.假设分式有意义,那么实数x的取值范围是________15.估计与的大小关系是:________ 〔填“>〞“=〞或“<〞〕16.假如3y9﹣2m+2=0是关于y的一元一次方程,那么m=________.17.如图, 量具ABC是用来测量试管口直径的,AB的长为10cm,AC被分为60等份.假如试管口DE正好对着量具上20等份处(DE℃AB),那么试管口直径DE是________cm.三、计算题18.解方程:.19.计算:〔﹣﹣+ 〕÷〔﹣〕20.计算以下各题〔1〕计算:〔﹣〕﹣2﹣|2﹣|﹣3tan30°;〔2〕解不等式组:.21.解方程组:.四、解答题22.小明为班级联欢会设计了一个摸球游戏.游戏规那么如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全一样,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,假设两次摸到的球颜色一样,那么游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.23.阅读以下材料:“为什么不是有理数〞.假是有理数,那么存在两个互质的正整数m,n,使得=,于是有2m2=n2.℃2m2是偶数,℃n2也是偶数,℃n是偶数.设n=2t〔t是正整数〕,那么n2=2m,℃m也是偶数℃m,n都是偶数,不互质,与假设矛盾.℃假设错误℃不是有理数有类似的方法,请证明不是有理数.五、综合题24.如图,AB为℃O直径,C是℃O上一点,CO℃AB于点O,弦CD与AB交于点F.过点D作℃O 的切线交AB的延长线于点E,过点A作℃O的切线交ED的延长线于点G.〔1〕求证:℃EFD为等腰三角形;〔2〕假设OF:OB=1:3,℃O的半径为3,求AG的长.25.一工地方案租用甲、乙两辆车清理淤泥,从运输量来估算,假设租两车合运,10天可以完成任务,假设甲车的效率是乙车效率的2倍.〔1〕甲、乙两车单独完成任务分别需要多少天?〔2〕两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.答案解析局部一、单项选择题1.【答案】D【考点】函数关系式,函数自变量的取值范围【解析】【分析】在w关于t的函数式y=--中,根据二次根式有意义的条件解答此题.【解答】函数式中含二次根式,分母中含t,故当t>0时,函数式有意义,此时y<0,函数图象在第四象限.应选D.【点评】此题考察了函数式的意义,自变量与函数值对应点的坐标的位置关系.2.【答案】B【考点】估算无理数的大小【解析】【分析】此题需先根据条件分别求出a、b的最小值,即可求出a+b的最小值.【解答】a、b均为正整数,且a>,b<℃a的最小值是3,b的最小值是:1,那么a+b的最小值4.应选B.【点评】此题主要考察了如何估算无理数的大小,在解题时要能根据题意求出a、b的值是此题的关键.3.【答案】C【考点】命题与定理【解析】【分析】判断一件事情的语句叫做命题.x与y的和等于0吗是询问的语句,故不是命题.【解答】A、正确,符合命题的定义;B、正确,符合命题的定义;C、错误;D、正确,符合命题的定义.应选C.【点评】主要考察了命题的概念.判断一件事情的语句叫做命题.4.【答案】C【考点】正数和负数【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.【解答】“正〞和“负〞相对,℃假如零上6℃记作+6℃,那么零下4℃记作-4℃,应选C.【点评】解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.5.【答案】A【考点】根据实际问题列反比例函数关系式【解析】【解答】解:A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.应选A.【分析】此题应根据反比例函数的定义,解析式符合y=〔k≠0〕的形式为反比例函数6.【答案】B【考点】圆内接四边形的性质【解析】【解答】解:℃四边形ABCD为圆的内接四边形,℃℃A+℃C=180°.应选B.【分析】根据圆内接四边形的对角互补即可作答.7.【答案】C【考点】一次函数的性质【解析】【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】A、当x=-5时,y=-2x+3=13,点在函数图象上;B、当x=0.5时,y=-2x+3=2,点在函数图象上;C、当x=3时,y=-2x+3=-3,点不在函数图象上;D、当x=1时,y=-2x+3=1,点在函数图象上;应选C.【点评】此题考察了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上8.【答案】C【考点】坐标与图形变化-旋转【解析】【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.℃直线MN为:x=1,设直线CC′为y=kx+b,由题意:,℃ ,℃直线CC′为y= x+ ,℃直线EF℃CC′,经过CC′中点〔,〕,℃直线EF为y=﹣3x+2,由得,℃P〔1,﹣1〕.应选:C.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.9.【答案】C【考点】钟面角、方位角【解析】【解答】解:下午2点30分时,时针与分针相距3.5份,下午2点30分时下午2点30分时3.5×30°=105°,应选:C.【分析】根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.10.【答案】D【考点】平移的性质【解析】【解答】解:从图中可发现挪动形成的三角形ABC中,AB=AC=3,℃BAC=90°﹣30°=60°,故℃ABC是等边三角形.℃℃ACB=60°,℃℃2=90°﹣60°=30°.所以此题的答案为南偏东30°.应选D.【分析】根据方位角的概念,画图正确表示出方位角,利用等边三角形的断定与性质即可求解.11.【答案】B【考点】勾股定理,旋转的性质【解析】【分析】℃把三角板DCE绕着点C顺时针旋转15得到℃D1CE1,℃℃BCE1=15°,℃D1CE1=℃DCE=60°℃℃BCO=45°又℃℃B=45°℃OC=OB℃BOC=90°℃℃D1OA=90°℃℃ABC是等腰直角三角形℃AO=BO=AB=3℃CO=3又℃CD=7℃OD1=CD1-CO=CD-OC=4在Rt℃D1OA中,AD1=。
2021年九年级中考数学 冲刺集训:全等三角形(含答案)

2021中考数学 冲刺集训:全等三角形一、选择题1. 下列三角形中全等的是()A .①②B .②③C .③④D .①④2. 如图所示,AC ,BD是长方形ABCD 的对角线,过点D 作DE ∥AC 交BC 的延长线于点E ,则图中与△ABC 全等的三角形共有( )A .1个B .2个C .3个D .4个3. 如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF 的是( )A .∠A =∠DB .BC =EFC .∠ACB =∠FD .AC =DF4. 如图,点B ,E 在线段CD 上,若∠C=∠D ,则添加下列条件,不一定能使△ABC ≌△EFD 的是 ( )A .BC=FD ,AC=EDB .∠A=∠DEF ,AC=EDC .AC=ED ,AB=EFD .∠A=∠DEF ,BC=FD5. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A.0.5 B.1C.1.5 D.26. 如图,已知点A,B,C,D在同一条直线上,△AEC≌△DFB.如果AD=37 cm,BC=15 cm,那么AB的长为()A.10 cmB.11 cmC.12 cmD.13 cm7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c8. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于()A.90°B.120 C.135°D.150°二、填空题9. 如图,已知DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG =130°,则∠DGF=________°.10. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).11. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.12. 如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD交于点O,则∠AOB的度数为.13. 如图,P A⊥ON于点A,PB⊥OM于点B,且P A=PB.若∠MON=50°,∠OPC =30°,则∠PCA的大小为________.14. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.15. 如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC 的面积是.16. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、解答题17. 如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=________°.18. 如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.19. 如图,在△ABC 中,AB=AC ,∠BAC=90°,点D 是射线BC 上一动点,连接AD ,以AD 为直角边,在AD 的上方作等腰直角三角形ADF .(1)如图①,当点D 在线段BC 上时(不与点B 重合),求证:△ACF ≌△ABD ; (2)如图②,当点D 在线段BC 的延长线上时,猜想CF 与BD 的数量关系和位置关系,并说明理由.20. (2019•枣庄)在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:2AB AN AM +=.2021中考数学 冲刺集训:全等三角形-答案一、选择题1. 【答案】A[解析] ①②符合证明三角形全等的判定方法“SAS”.③④中相等的角所对的边不相等,所以不可能全等.故选A.2. 【答案】D[解析] 与已知三角形全等的三角形有△DCB ,△BAD ,△DCE ,△CDA.3. 【答案】D[解析] 已知∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用“ASA”可得△ABC ≌△DEF ; 添加BC =EF ,利用“SAS”可得△ABC ≌△DEF ; 添加∠ACB =∠F ,利用“AAS”可得△ABC ≌△DEF ; 添加AC =DF ,不能证明△ABC ≌△DEF.故选D.4. 【答案】C[解析] A .添加BC=FD ,AC=ED ,可利用“SAS”判定△ABC ≌△EFD ;B .添加∠A=∠DEF ,AC=ED ,可利用“ASA”判定△ABC ≌△EFD ; C .添加AC=ED ,AB=EF ,不能判定△ABC ≌△EFD ;D .添加∠A=∠DEF ,BC=FD ,可利用“AAS”判定△ABC ≌△EFD.5. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCEADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .6. 【答案】B[解析] ∵△AEC ≌△DFB ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=37 cm ,BC=15 cm ,∴AB==11(cm).7. 【答案】D[解析] ∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠CED =∠AFB =90°,∠A =∠C.又∵AB =CD ,∴△CED ≌△AFB.∴AF =CE =a ,DE =BF =b ,DF =DE -EF =b -c.∴AD =AF +DF =a +b -c.故选D.8. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.二、填空题9. 【答案】150[解析] ∵DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∴AD是∠BAC的平分线.∵∠BAC=40°,∴∠CAD=12∠BAC=20°.∴∠DGF=∠CAD+∠ADG=20°+130°=150°.10. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.11. 【答案】角的内部到角的两边距离相等的点在角的平分线上12. 【答案】120°[解析]如图,设AC,DB的交点为H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,∴△DCB≌△ACE,∴∠CAE=∠CDB,又∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOB=180°-∠AOH=120°.13. 【答案】55°[解析] ∵PA ⊥ON ,PB ⊥OM ,∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎨⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL). ∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.14. 【答案】12[解析] 如图,连接BE.∵D 为Rt △ABC 中斜边BC 上的一点,过点D 作BC 的垂线,交AC 于点E ,∴∠A=∠BDE=90°. 在Rt △DBE 和Rt △ABE 中,∴Rt △DBE ≌Rt △ABE (HL).∴DE=AE.∵AE=12 cm ,∴DE=12 cm .15. 【答案】8[解析]∵DC ⊥BC ,∴∠BCD=90°.∵∠ACB=120°, ∴∠ACD=30°.延长CD 到H 使DH=CD , ∵D 为AB 的中点, ∴AD=BD.在△ADH 与△BDC 中,∴△ADH ≌△BDC (SAS), ∴AH=BC=4,∠H=∠BCD=90°. ∵∠ACH=30°, ∴CH=AH=4,∴CD=2,∴△ABC 的面积=2S △BCD =2××4×2=8.16. 【答案】16[解析] ∵BF ∥AC ,∴∠EBF=∠EAD. 在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD. ∵当FD ⊥AC 时,FD 最短,此时FD=BC=5, ∴四边形FBCD 周长的最小值为5+11=16.三、解答题17. 【答案】(1)证明:在Rt △ACB 和Rt △BDA 中, ⎩⎨⎧BC =AD AB =BA,(3分) ∴Rt △ACB ≌△Rt △BDA(HL ). (2)20.(6分)【解法提示】∵∠ABC =35°,∴∠CAB =90°-35°=55°,由(1)知∠DAB =∠ABC =35°,∴∠CAO =∠CAB -∠DAB =20°.18. 【答案】证明:连接CD ,如解图,(1分)∵ △ABC 是直角三角形,AC =BC ,D 是AB 的中点, ∴ CD =BD ,∠CDB =90°, ∴∠CDE +∠CDF =90°,∠CDF +∠BDF =90°, ∴∠CDE =∠BDF ,(7分) 在△CDE 和△BDF 中,⎩⎨⎧∠ECD =∠BCD =BD∠CDE =∠BDF, ∴ △CDE ≌△BDF(ASA ),(9分) ∴ DE =DF.(10分)19. 【答案】解:(1)证明:∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠BAD +∠CAD=90°, ∠CAF +∠CAD=90°, ∴∠CAF=∠BAD.在△ACF 和△ABD 中,∴△ACF ≌△ABD (SAS).(2)CF=BD 且CF ⊥BD ,理由如下: ∵∠CAB=∠DAF=90°,∴∠CAB +∠CAD=∠DAF +∠CAD , 即∠CAF=∠BAD.在△ACF 和△ABD 中,∴△ACF ≌△ABD (SAS), ∴CF=BD ,∠ACF=∠ABD. ∵AB=AC ,∠BAC=90°, ∴∠ABD=∠ACB=45°,∴∠BCF=∠ACF +∠ACB=∠ABD +∠ACB=45°+45°=90°,∴CF ⊥BD.20. 【答案】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴2,AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)2)DM DM -=,解得23DM ∴232AM AD DM =-=(2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒, 则2AE AB =,45E ∠=︒,∴ME MA =, ∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =, ∴2AB AN AB BE AE AM +=+==.。
2020-2021学年人教版九年级中考数学冲刺试卷(含答案)

2020-2021学年人教新版中考数学冲刺试卷一.选择题(共9小题,满分27分,每小题3分)1.比赛用的乒乓球的质量有严格的规定,但实际生产的乒乓球的质量可能会有一些偏差.以下检验记录(“+”表示超出标准质量,“﹣”表示不足标准质量)中,质量最接近标准质量乒乓球是()编号1234偏差/g+0.01﹣0.02﹣0.03+0.04 A.1号B.2号C.3号D.4号2.如图的三视图对应的物体是()A.B.C.D.3.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.5m,当它的一端B着地时,另一端A离地面的高度AC为()A.1.25m B.1 m C.0.75 m D.0.50 m5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=46.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,87.一辆客车从酒泉出发开往兰州,设客车出发t小时后与兰州的距离为s千米,下列图象能大致反映s与t之间的函数关系的是()A.B.C.D.8.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y 9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA =.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A.10B.24C.48D.50二.填空题(共8小题,满分24分,每小题3分)10.函数y=的自变量x的取值范围是.11.若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.12.从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为.13.已知a,b,c是△ABC的三条边的长度,且满足a2﹣b2=c(a﹣b),则△ABC一定是三角形.14.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.15.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.17.已知函数y=kx2+2kx+1,当﹣3≤x≤2时,函数有最大值为4,则k =.三.解答题(共10小题,满分96分)18.(1)计算﹣(﹣1)0+12×3﹣1﹣|﹣5|(2)化简1﹣.19.解下列关于x的不等式组,并把解集表示在数轴上,写出其正整数解.20.如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后到达A处,此时发现灯塔C在它的北偏东75°方向上,求此时轮船与灯塔C的距离.(结果保留根号)21.某校组织全校1400名学生进行了“八礼四仪”掌握情况问卷测试.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数.满分为100分),并绘制了频数分布表和频数分布直方图(不完整).分组50.5≤x<60.560.5≤x<70.570.5≤x<80.580.5≤x<90.590.5≤x<100.5合计频数2048a104148400根据所给信息,回答下列问题:(1)频数分布表中,a=.(2)补全频数分布直方图;(3)学校将对分数x在90.5≤x<100.5范围内的学生进行奖励,请你估算出全校获奖学生的人数.22.为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.23.如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.24.已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A 旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.26.建立模型:(1)如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A 作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.模型应用:(2)如图2,在直角坐标系中,直线l1:y=x+8与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(3)如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.27.如图1,在平面直角坐标系中,抛物线y=﹣x2+2x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO 的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.参考答案与试题解析一.选择题(共9小题,满分27分,每小题3分)1.解:|+0.01|=0.01,|﹣0.02|=0.02,|﹣0.03|=0.03,|+0.04|=0.04,0.04>0.03>0.02>0.01,绝对值越小越接近标准.所以最接近标准质量是1号乒乓球.故选:A.2.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点,故选:D.3.解:3100000=3.1×106,故选:D.4.解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,∴OD是△ABC的中位线,∴AC=2OD=2×0.5=1(m).故选:B.5.解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣35°=25°,故B选项正确;故选:D.6.解:将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,即8;故选:D.7.解:根据出发时与终点这两个特殊点的意义,图象能大致反映s与t之间的函数关系的是应选A.故选:A.8.解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.9.解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)∵若反比例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.二.填空题(共8小题,满分24分,每小题3分)10.解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.11.解:∵x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,∴x1x2=﹣3.故答案为﹣3.12.解:从长度分别为3,4,6,9的四条线段中任取三条的所有可能性是:(3,4,6)、(3,4,9)、(3,6,9)、(4,6,9),能组成三角形的可能性是:(3,4,6)、(4,6,9),∴能组成三角形的概率为:=,故答案为.13.解:由a2﹣b2=c(a﹣b),(a+b)(a﹣b)=c(a﹣b),(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,∵三角形两边之和大于第三边,即a+b>c,∴a+b﹣c≠0,∴a﹣b=0,即a=b,即△ABC一定是等腰三角形.故答案为:等腰.14.解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==215.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.16.解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.17.解:∵函数y=kx2+2kx+1=k(x+1)2﹣k+1,当﹣3≤x≤2时,函数有最大值为4,∴该函数的对称轴是直线x=﹣1,当k<0时,x=﹣1时,函数取得最大值,即﹣k+1=4,得k=﹣3;当k>0时,x=2时,函数取得最大值,即9k﹣k+1=4,解得,k=,故答案为:﹣3或.三.解答题(共10小题,满分96分)18.解:(1)原式=8﹣1+12×﹣5=8﹣1+4﹣5=6;(2)原式=1﹣•=1﹣==﹣.19.解:解不等式①得:x<3,解不等式②得:x≥﹣,故不等式组的解集为﹣≤<3,将不等式解集表示在数轴上如下图所示:故正整数解为1,2.20.解:过点A作AD⊥BC于点D.由题意,AB=×40=20(海里)∵∠PAC=∠B+∠C,∴∠C=∠PAC﹣∠B=75°﹣45°=30°,在Rt△ABD中,sin B=,∴AD=AB•sin B=20×=10(海里),在Rt△ACD中,∵∠C=30°,∴AC=2AD=20(海里),答:此时轮船与灯塔C的距离为20海里.21.解:(1)a=400﹣(20+48+104+148)=80,故答案为:80;(2)补全频数分布直方图如下:(3)1400×=518(人),答:估计全校获奖学生的人数为518人.22.解:(1)用列表法表示所有可能结果如下:(2)共有6种等可能情形,恰好选中医生甲和护士A只有一种情形,P(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.23.解:连接AO,交BC于点E,连接BO,∵AB=AC,∴=,又∵OA是半径,∴OA⊥BC,BC=2BE,在Rt△ABE中,∵tan∠ABC=,∴=,设AE=x,则BE=3x,OE=5﹣x,在Rt△EO中,BE2+OE2=OB2,∴(3x)2+(5﹣x)2=52,解得:x1=0(舍去),x2=1,∴BE=3x=3,∴BC=2BE=6.24.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.25.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3)700÷30=(分钟),所以乌龟用了分钟追上了正在睡觉的兔子.(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5﹣2﹣2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.26.解:(1)如图1,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(2)∵直线y=x+8与y轴交于点A,与x轴交于点B,∴A(0,8)、B(﹣6,0),如图2,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴,在△BDC和△AOB中,∴△BDC≌△AOB(AAS),∴CD=BO=6,BD=AO=8,∴OD=OB+BD=6+8=14,∴C点坐标为(﹣14,6),设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得,∴l2的函数表达式为y=x+8;(3)∵点Q(a,2a﹣6),∴点Q是直线y=2x﹣6上一点,当点Q在AB下方时,如图3,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),∴AE=QF,即8﹣(2a﹣6)=10﹣a,解得a=4;当点Q在线段AB上方时,如图4,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,则AE=2a﹣14,FQ=10﹣a.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),AE=QF,即2a﹣14=10﹣a,解得a=8;综上可知,A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为4或8.27.解:(1)∵抛物线y=﹣x2+2x﹣与y轴交于点C,∴C(0,﹣),∵y=﹣x2+2x﹣=﹣(x﹣2)2+,∴顶点D(2,),对称轴x=2,∴E(2,0),设CE解析式y=kx+b,∴,解得:,∴直线CE的解析式:y=x﹣;(2)∵直线CE交抛物线于点F(异于点C),∴x﹣=﹣(x﹣2)2+,∴x1=0,x2=3,∴F(3,),过P作PH⊥x轴,交CE于H,如图1,设P(a,﹣a2+2a﹣)则H(a,a﹣),∴PH=﹣a2+2a﹣﹣(a﹣),=﹣a2+,=PH×3=﹣a2+,∵S△CFP∴当a=时,S面积最大,△CFP如图2,作点M关于对称轴的对称点M',过F点作FG∥MM',FG=1,即G(4,),∵M的横坐标为,且M与M'关于对称轴x=2对称,∴M'的横坐标为,∴MM'=1,∴MM'=FG,且FG∥MM',∴FGM'M是平行四边形,∴FM=GM',∴FM+MN+ON=GM'+NM'+ON,根据两点之间线段最短可知:当O,N,M',G四点共线时,GM'+NM'+ON的值最短,即FM+MN+ON的值最小,∴FM+MN+ON=OG==;(3)如图3,设CD解析式y=mx+n,则,解得:,∴CD解析式y=x﹣,∴当y=0时,x=1.即G(1,0),∴DG==2,∵tan∠DGI==,∴∠DGI=60°,∵DI⊥DG,∴∠GDI=90°,∠GID=30°,∴GI=2DG=4∴I(5,0),∵将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,连接D'I,∴G'D'=D'I=DG=2,∠D'G'I=∠DGI=60°,∴△G'D'I是等边三角形,∴G'I=2,G'K=2D'G'=4,∴G'(3,0),如图4,当G''与I、K重合,△GKL为以∠LGK为底角的等腰三角形,∠LGK=∠GLK =30°,∴GL=D'G+D'L=4;如图5,L与G''重合,△GKL为以∠LGK为底角的等腰三角形,∴GL=GD'+D'L=2+2综上,GL的长为4或2+2.。
2021年中考数学专题复习:新定义和阅读理解题

2021年中考数学专题复习:新定义和阅读理解题“新定义”题指给出一个从未接触过的新规定,要求现学现用,“给什么,用什么”是应用新“定义”解题的基本思路.这类试题的特点:源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等等.在解决它们过程中又可产生了许多新方法、新观念,增强了学生创新意识.阅读理解题源于课本,高于课本,既考查阅读能力,又综合考查学生的数学意识和数学综合应用能力,尤其侧重于考查学生的数学思维能力和创新意识. 这类题目的结构一般为:给出一段阅读材料,学生通过阅读,将材料所给的信息加以搜集整理,在此基础上,按照题目的要求进行推理解答.一、新定义1.对于任意两个不相等的数a,b定义一种新运算“⊕”如下:a⊕b=a+ba-b,如:3⊕2=3+23-2=5,那么12⊕4=________.2.定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4-3)-1=7-1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=________.4.用⊕定义一种新运算:对于任意实数m和n,规定m⊕n=m2n-mn-3n,如:1⊕2=12×2-1×2-3×2=-6.(1)求(-2)⊕3;(2)若3⊕m≥-6,求m的取值范围,并在所给的数轴上表示出解集.5.定义:分数nm(m,n为正整数且互为质数)的连分数1a1+1a2+1a3+…(其中a1,a2,a3,…为整数,且等式右边的每一个分数的分子都为1),记作n m =⊕ 1a 1+1a 2+1a 3+…,例如719=⊕1197=12+57=12+175=12+11+25=12+11+152=12+11+12+12,719的连分数为12+11+12+12,记作719=⊕12+11+12+12,则________=⊕11+12+13.6.定义一种新运算⎠⎛b a n·x n -1dx =a n -b n ,例如⎠⎛n k 2xdx =k 2-n 2,若⎠⎛5mm -x -2dx =-2,则m=( )A .-2 B. -25 C .2 D.257.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )A .y =-xB .y =x +2C .y =2xD .y =x 2-2x8.对于一个函数,自变量x 取c 时,函数值y 等于0,则称c 为这个函数的零点.若关于x 的二次函数y =-x 2-10x +m(m≠0)有两个不相等的零点x 1,x 2(x 1<x 2),关于x 的方程x 2+10x -m -2=0有两个不相等的非零实数根x 3,x 4(x 3<x 4),则下列关系式一定正确的是( A )A .0<x 1x 3<1 B.x 1x 3>1 C .0<x 2x 4<1 D.x 2x 4>1二、阅读理解题1.阅读理解:已知两点M(x 1,y 1),N(x 2,y 2),则线段MN 的中点K(x ,y)的坐标公式为:x =x 1+x 22,y =y 1+y 22.如图,已知点O 为坐标原点,点A(-3,0),⊕O 经过点A ,点B 为弦PA 的中点.若点P(a ,b),则有a ,b 满足等式:a 2+b 2=9.设B(m ,n),则m ,n 满足的等式是( )A .m 2+n 2=9 B.922322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-n mC .(2m +3)2+(2n)2=3D .(2m +3)2+4n 2=9 2.已知点P(x 0,y 0)到直线y =kx +b 的距离可表示为d =||kx 0+b -y 01+k 2,例如:点(0,1)到直线y =2x +6的距离d =||2×0+6-11+22= 5.据此进一步可得两条平行线y =x 和y =x -4之间的距离为________.3.阅读材料:设a→=(x 1,y 1),b→=(x 2,y 2),如果a→⊕b→,则x 1·y 2=x 2·y 1.根据该材料填空,已知a→=(4,3),b→=(8,m),且a→⊕b→,则m =________. 4.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x =N(a >0且a≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 525可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a (M·N)=log a M +log a N(a >0,a≠1,M >0,N >0),理由如下: 设log a M =m ,log a N =n ,则M =a m ,N =a n , ⊕M·N =a m ·a n =a m+n,由对数的定义得m +n =log a (M·N) 又⊕m +n =log a M +log a N , ⊕log a (M·N)=log a M +log a N. 根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式___________________________________;(2)log a MN =__________.(a >0,a≠1,M >0,N >0) (3)拓展运用:计算log 69+log 68-log 62=________. 5.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依次类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为________,第5项是________.(2)如果一个数列a 1,a 2,a 3,…,a n …,是等差数列,且公差为d ,那么根据定义可得到:a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,…,a n -a n -1=d ,….所以 a 2=a 1+da 3=a 2+d =(a 1+d)+d =a 1+2d , a 4=a 3+d =(a 1+2d)+d =a 1+3d , ……由此,请你填空完成等差数列的通项公式: a n =a 1+(________)d.(3)-4041是等差数列-5,-7,-9…的第________项. 6.阅读下面的材料:如果函数y =f(x)满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f(x 1)<f(x 2),则称f(x)是增函数; (2)若x 1<x 2,都有f(x 1)>f(x 2),则称f(x)是减函数. 例题:证明函数f(x)=6x (x >0)是减函数. 证明:设0<x 1<x 2,f(x 1)-f(x 2)=6x 1-6x 2=6x 2-6x 1x 1x 2=6(x 2-x 1)x 1x 2. ⊕0<x 1<x 2,⊕x 2-x 1>0,x 1x 2>0.⊕6(x 2-x 1)x 1x 2>0.即f(x 1)-f(x 2)>0. ⊕f(x 1)>f(x 2).⊕函数f(x)=6x (x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f(x)=1x2+x(x <0),f(-1)=1(-1)2+(-1)=0,f(-2)=1(-2)2+(-2)=-74. (1)计算:f(-3)=________,f(-4)=________;(2)猜想:函数f(x)=1x 2+x(x <0)是________函数(填“增”或“减”).参考答案一 1.2 2.C 3.1.14.解:(1)(-2)※3=(-2)2×3-(-2)×3-33=43+23-33=3 3.(2)∵3※m ≥-6,∴32·m -3m -3m ≥-6. 解得:m ≥-2.将解集表示在数轴上如下:5.710 6.B 7.B 8.A二 1.D 2.22 3.6 4.(1)4=log 381(或log 381=4) (2)log a M -log a N (3)2 5.(1)5 25 (2)n -1 (3)2019 6.(1)-269 -6316 (2)增。
2021年九年级数学中考专题冲刺训练:二次函数的图象及其性质(含答案)

2021 中考专题冲刺训练:二次函数的图象及其性质一、选择题1. (2019•哈尔滨)将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为 A .22(2)3y x =++ B .22(2)3y x =-+ C .22(2)3y x =-- D .22(2)3y x =+-2. 海滨广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的水的最大高度为3米,此时喷水的水平距离为12米.在如图所示的平面直角坐标系中,这支喷泉喷出的水在空中划出的曲线满足的函数解析式是( )A .y =-⎝ ⎛⎭⎪⎫x -122+3B .y =3⎝ ⎛⎭⎪⎫x -122+1C .y =-8⎝ ⎛⎭⎪⎫x -122+3D .y =-8⎝ ⎛⎭⎪⎫x +122+33. 将抛物线y =x 2-6x +5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式是( ) A .y =(x -4)2-6 B .y =(x -1)2-3 C .y =(x -2)2-2D .y =(x -4)2-24. (2019•雅安)在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2y x 的图象向右平移2个单位长度,再向上平移1个单位长度得到5. (2020·温州)9.已知(﹣3,1y ),(﹣2,2y ),(1,3y )是抛物线2312y xx m=--+上的点,则A .3y <2y <1yB .3y <1y <2yC .2y <3y <1yD .1y <3y <2y6. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =cx 的图象可能是( )7. 二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.有下列结论:①abc <0;②3a +c >0;③(a +c)2-b 2<0;④a +b≤m(am +b)(m 为实数).其中正确结论的个数为( )A .1B .2C .3D .48. 如图,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A ′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数解析式是( )A .y =12(x -2)2-2 B .y =12(x -2)2+7 C .y =12(x -2)2-5D .y =12(x -2)2+4二、填空题9. 若二次函数y=ax 2+bx 的图象开口向下,则a 0(填“=”或“>”或“<”).10. 已知函数y=-(x -1)2图象上两点A (2,y 1),B (a ,y 2),其中a>2,则y 1与y 2的大小关系是y 1 y 2(填“<”“>”或“=”).11. 已知A (0,3),B (2,3)是抛物线y=-x 2+bx+c 上两点,该抛物线的顶点坐标是 .12. 已知抛物线y =2(x -1)2上有两点(x 1,y 1),(x 2,y 2),且1<x 1<x 2,则y 1与y 2的大小关系是________.13. (2019•株洲)若二次函数2y ax bx =+的图象开口向下,则__________0(填“=”或“>”或“<”).14. 已知抛物线y=ax 2+bx+c (a ≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a -b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是 (填写序号).15. 如图,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B (m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是________.16. 如图,在平面直角坐标系中,抛物线y=ax2(a>0)与y=a(x-2)2交于点B,抛物线y=a(x-2)2交y轴于点E,过点B作x轴的平行线与两条抛物线分别交于D,C两点.若A是x轴上两条抛物线顶点之间的一点,连接AD,AC,EC,ED,则四边形ACED的面积为________.(用含a的代数式表示)三、解答题17. 已知抛物线y=2x2-4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.18. (2019·山东枣庄)已知抛物线234 2y ax x=++的对称轴是直线3x=,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBDC的面积最大?若存在,求点P的坐标及四边形PBDC面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当3MN=时,求点M的坐标.19. 如图,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.20. 正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O,P,A三点坐标;②求抛物线L 的解析式;(2)求△OAE与△OCE面积之和的最大值.21. 如图,抛物线y =ax 2-2ax +c (a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 坐标为(4,0). (1)求抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK +KN 最小,并求出点K 的坐标;(3)已知D 是OA 的中点,点P 在第一象限的抛物线上,过点P 作x 轴的平行线,交直线AC 于点F ,连接OF ,DF .当OF =DF 时,求点P 的坐标.2021 中考专题冲刺训练:二次函数的图象及其性质-答案一、选择题 1. 【答案】B【解析】将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为()2223y x =-+, 故选B .2. 【答案】C3. 【答案】D[解析] y =x 2-6x +5=(x -3)2-4,将其向上平移2个单位长度,再向右平移1个单位长度后,得y =(x -3-1)2-4+2,即y =(x -4)2-2.4. 【答案】C【解析】二次函数22()1y x =-+,10a =>,∴该函数的图象开口向上,对称轴为直线2x =,顶点为(2,1),当2x =时,y 有最小值1,当2x >时,y 的值随x 值的增大而增大,当2x <时,y 的值随x 值的增大而减小;故选项A 、B 的说法正确,C 的说法错误;根据平移的规律,2yx 的图象向右平移2个单位长度得到2(2)y x =-,再向上平移1个单位长度得到22()1y x =-+, 故选项D 的说法正确, 故选C .5. 【答案】B【解析】本题考查了二次函数的增减性,当a >0,在对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0时,在对称轴左侧,y 随x 的增大而增大,在对称轴右侧,y 随x 的增大而减小,由对称轴x =12222(3)b a --=-=-⨯-,知(-3,y 1)和(-1,y 1)对称,因为a =-3<0,所以当x ≥-2时,y 随x 的增大而减小,-2<-1<1,所以y 2>y 1>y 3,因此本题选B .6. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.7. 【答案】C [解析] ①∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴右侧,∴b <0. ∵抛物线与y 轴交于负半轴, ∴c<0,∴abc>0,所以①错误.②当x =-1时,y >0,∴a -b +c >0. ∵-b2a=1,∴b =-2a.把b =-2a 代入a -b +c >0中,得3a +c >0,所以②正确. ③当x =1时,y <0,∴a +b +c <0. 当x =-1时,y>0,∴a -b +c>0, ∴(a +b +c)(a -b +c)<0, 即(a +c)2-b 2<0,所以③正确. ④∵抛物线的对称轴为直线x =1, ∴x =1时,函数的最小值为a +b +c , ∴a +b +c≤am 2+bm +c(m 为实数), 即a +b≤m(am +b),所以④正确. 故选C.8. 【答案】D[解析] 如图,连接AB,A′B′,则S阴影=S四边形ABB′A′.由平移可知,AA′=BB′,AA′∥BB′,所以四边形ABB′A′是平行四边形.分别延长A′A,B′B 交x轴于点M,N,因为A(1,m),B(4,n),所以MN=4-1=3.因为S阴影=AA′·MN,所以9=3AA′,解得AA′=3,即原抛物线沿y轴向上平移了3个单位长度,所以新图象的函数解析式为y=12(x-2)2+4.二、填空题9. 【答案】<10. 【答案】>[解析]因为二次项系数为-1,小于0,所以在对称轴x=1的左侧,y随x的增大而增大;在对称轴x=1的右侧,y随x的增大而减小,因为a>2>1,所以y1>y2.故填“>”.11. 【答案】(1,4)[解析]∵A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,∴代入得解得∴y=-x2+2x+3=-(x-1)2+4,顶点坐标为(1,4).12. 【答案】y1<y2[解析] ∵抛物线的解析式是y=2(x-1)2,∴其对称轴是直线x=1,抛物线的开口向上,∴在对称轴右侧,y随x的增大而增大.又∵抛物线y=2(x-1)2上有两点(x1,y1),(x2,y2),且1<x1<x2,∴y1<y2.13. 【答案】<【解析】∵二次函数2y ax bx=+的图象开口向下,∴0a<.故答案为:<.14. 【答案】①③④ [解析]根据图象可得:a<0,c>0,对称轴:直线x=-=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax 2+bx +c ,得y=a -b +c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a -b +c=0,故②错误;当x=1时,y=a +b +c>0.∵b=-2a ,∴-+b +c>0,即b +2c>0,故③正确; 由图象可以直接看出④正确.故答案为:①③④.15. 【答案】(-2,0)【解析】如解图,过D 作DM ⊥x 轴于点M ,∴M(m ,0),又B(m +2,0),∴MB =2,由C(0,c),D(m ,c)知:OC =DM ,即点C 、D 关于对称轴对称,故点O 、M 也关于对称轴对称,∴OA =MB =2,∴A(-2,0).16. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.三、解答题17. 【答案】解:(1)∵抛物线y =2x 2-4x +c 与x 轴有两个不同的交点, ∴Δ=b 2-4ac =16-8c >0,∴c <2.(2)m<n.理由:∵抛物线y =2x 2-4x +c 的对称轴为直线x =1, ∴点A(2,m)和点B(3,n)都在对称轴的右侧. 又∵当x≥1时,y 随x 的增大而增大, ∴m <n.18. 【答案】(1)抛物线的对称轴是直线3x =,3232a∴-=,解得14a =-,∴∴抛物线的解析式为:213442y x x =-++. 当0y =时,2134042x x -++=,解得12x =-,28x =,∴点A 的坐标为()2,0-,点B 的坐标为()8,0.答:抛物线的解析式为:213442y x x =-++;点A 的坐标为()2,0-,点B 的坐标为()8,0.(2)当0x =时,2134442y x x =-++=,∴点C 的坐标为()0,4.设直线BC 的解析式为(0)y kx b k =+≠,将()8,0B ,()0,4C 代入y kx b =+得804k b b +==⎧⎨⎩,解得124k b =-=⎧⎪⎨⎪⎩, ∴直线BC 的解析式为142y x =-+. 假设存在点P ,使四边形PBOC 的面积最大,设点P 的坐标为213,442x x x ⎛⎫-++⎪⎝⎭,如图所示,过点P 作PD y ∥轴,交直线BC 于点D ,则点D 的坐标为1,42x x ⎛⎫-+ ⎪⎝⎭,则2213114424224PD x x x x x ⎛⎫=-++--+=-+ ⎪⎝⎭,BOC PBC PBOC S S S ∆∆∴=+四边形1184?22PD OB =⨯⨯+ 211168224x x ⎛⎫=+⨯-+ ⎪⎝⎭2816x x =-++2(4)32x =--+∴当4x =时,四边形PBOC 的面积最大,最大值是3208x <<,∴存在点()4,6P ,使得四边形PBOC 的面积最大.答:存在点P ,使四边形PBOC 的面积最大;点P 的坐标为()4,6,四边形PBOC 面积的最大值为32.(3)设点M 的坐标为213,442m m m ⎛⎫-++ ⎪⎝⎭,则点N 的坐标为1,42m m ⎛⎫-+ ⎪⎝⎭,2213114424224MN m m m m m ⎛⎫∴=-++--+=-+ ⎪⎝⎭,又3MN =,21234m m ∴-+=,当08m <<时,212304m m -+-=,解得12m =,26m =,∴点M 的坐标为()2,6或()6,4;当0m <或8m >时,212304m m -++=,解得3427m =-4427m =+∴点M 的坐标为()427,71-或()427,71+-.答:点M 的坐标为()2,6、()6,4、()427,71--或()427,71+--. 【名师点睛】本题属于二次函数压轴题,综合考查了待定系数法求解析式,解析法求面积及点的坐标的存在性,最大值等问题,难度较大.19. 【答案】(1)将A (0, 1)、B (4, 3)分别代入y =-x 2+bx +c ,得1,164 3.c b c =⎧⎨-++=⎩ 解得92b =,c =1. 所以抛物线的解析式是2912y x x =-++.(2)在Rt △BOC 中,OC =4,BC =3,所以OB =5.如图2,过点A 作AH ⊥OB ,垂足为H .在Rt △AOH 中,OA =1,4sin sin 5AOH OBC ∠=∠=, 所以4sin 5AH OA AOH =⋅∠=. 图2 所以35OH =,225BH OB OH =-=.在Rt △ABH 中,4222tan 5511AH ABO BH ∠==÷=.(3)直线AB 的解析式为112y x =+.设点M 的坐标为29(,1)2x x x -++,点N 的坐标为1(,1)2x x +,那么2291(1)(1)422MN x x x x x =-++-+=-+.当四边形MNCB 是平行四边形时,MN =BC =3.解方程-x 2+4x =3,得x =1或x =3.因为x =3在对称轴的右侧(如图4),所以符合题意的点M 的坐标为9(1,)2(如图3).图3 图4考点伸展第(3)题如果改为:点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点M 的坐标. 那么求点M 的坐标要考虑两种情况:MN =y M -y N 或MN =y N -y M . 由y N -y M =4x -x 2,解方程x 2-4x =3,得27x =±(如图5). 所以符合题意的点M 有4个:9(1,)2,11(3,)2,57(27,)--,57(27,)++.图520. 【答案】(1)【思路分析】①建立坐标系时应使正方形内抛物线上点的坐标是正数,以点O为坐标原点建立平面直角坐标系,即可表示出O 、P 、A 三点的坐标;②用待定系数法即可求得抛物线的解析式.解:如解图,以OA 所在的直线为横轴,水平向右为正方向,以OC 所在直线为纵轴,垂直向上为正方向,建立平面直角坐标系.①O(0,0),P(2,2),A(4,0);(3分) ②设抛物线L 的解析式为y =ax 2+bx +c ,将点O ,P ,A 的坐标分别代入y =ax 2+bx +c ,得⎩⎨⎧c =04a +2b +c =216a +4b +c =0,解得⎩⎪⎨⎪⎧a =-12b =2c =0,∴抛物线L 的解析式为y =-12x 2+2x.(6分)(2)【思路分析】用点E 的横坐标表示△OAE 与△OCE 的面积之和,根据二次函数的性质即可确定最大值. 解:设点E 的横坐标为m.∵点E 在正方形内的抛物线上,∴点E 的纵坐标为-12m 2+2m,∴S △OAE +S △OCE =12×4×(-12m 2+2m)+12×4×m =-m 2+6m =-(m -3)2+9.(10分)∴当m =3时,△OAE 与△OCE 的面积之和的值最大,最大值是9.(12分)21. 【答案】(1)∵抛物线y =ax 2-2ax +c 经过点A (4,0),C (0,4),∴,40816⎩⎨⎧==+-c c a a 解得,421⎪⎩⎪⎨⎧=-=c a∴抛物线的解析式为y =-12x 2+x +4; (2)∵y =-12x 2+x +4=-12(x -1)2+92 ∴N (1,92),如解图①,作点C 关于x 轴的对称点C ′,解图①则C ′(0,-4),连接C ′N 交x 轴于点K ,则K 点即为使CK +KN 最小的K 点位置.设直线C ′N 的解析式为y =kx +b (k ≠0),将点C ′(0,-4),N (1,92)代入,得⎩⎪⎨⎪⎧b =-4k +b =92,解得⎩⎪⎨⎪⎧k =172b =-4, ∴直线C ′N 的解析式为y =172x -4,令y =0,即172x -4=0,解得x =817,∴点K 的坐标为(817,0);(3)如解图②,过F 作FM ⊥x 轴于M ,解图②∵D 是OA 的中点, ∴D (2,0), ∵OF =DF , ∴OM =MD , ∴M (1,0),∴点F 的横坐标是1.设直线AC 的解析式为y =mx +n , 将点A (4,0),C (0,4)代入,∴直线AC 的解析式为y =-x +4, ∴点F 的坐标为(1,3),设P (t ,-12t 2+t +4),则 -12t 2+t +4=3,解得t =1+3或t =1-3(舍去), ∴点P 的坐标为(1+3,3).。
2021年江苏省中考三轮冲刺数学训练—专题2整式_因式分解

2021年江苏中考数学冲刺专题训练——专题2整式、因式分解一.选择题(共2小题)1.(2021•龙岗区模拟)如图,矩形ABCD的周长是10cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为17cm2,那么矩形ABCD 的面积是()A.3cm2B.4cm2C.5cm2D.6cm2 2.(2019•安徽)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0二.填空题(共8小题)3.(2021春•鼓楼区期中)如图是A型卡片(边长为a的正方形)、B型卡片(长为a、宽为b的长方形)、C型卡片(边长为b的正方形).现有4张A卡片,11张B卡片,7张C 卡片,选用它们无缝隙、无重叠地拼正方形或长方形,下列说法正确的是.(只填序号)①可拼成边长为a+2b的正方形;②可拼成边长为2a+3b的正方形;③可拼成长、宽分别为2a+4b、2a+b的长方形;④用所有卡片可拼成一个大长方形.4.(2021春•南京月考)三种不同类型的地砖的长、宽如图所示,若现有A型地砖4块,B 型地砖4块,C型地砖2块,要拼成一个正方形,则应去掉1块地砖;这样的地砖拼法可以得到一个关于m,n的恒等式为.5.(2020秋•江汉区期末)将两张边长分别为6和5的正方形纸片按图1和图2的两种方式放置在长方形ABCD内,长方形ABCD内未被这两张正方形纸片覆盖的部分用阴影表示,设图1中的阴影面积为S1,图2中的阴影面积为S2,当AD﹣AB=3时,S2﹣S1的值是.6.(2020春•沭阳县期末)因式分解:2m2﹣4mn+2n2=.7.(2020•张家界)因式分解:x2﹣9=.8.(2020•浙江自主招生)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.9.(2019春•江宁区期中)已知a=12018+2017,b=12018+2018,c=12018+2019,则代数式a2+b2+c2﹣ab﹣bc﹣ca=.10.(2019•徐州二模)因式分解4x2﹣4=.三.解答题(共20小题)11.(2021春•南京期中)探究活动:(1)如图①,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图②,若将图①中阴影部分裁剪下来,重新拼成一个长方形,面积是(写成多项式乘法的形式);(3)比较图①,图②阴影部分的面积,可以得到公式.知识应用:运用你得到的公式解决以下问题:(4)计算:(Ⅰ)(a+b﹣2c)(a+b+2c);(Ⅱ)(2a+b﹣3c)(﹣2a+b+3c).12.(2021春•鼓楼区校级月考)阅读:若x满足(80﹣x)(x﹣60)=30,求(80﹣x)2+(x﹣60)2的值.解:设(80﹣x)=a,(x﹣60)=b,则(80﹣x)(x﹣60)=ab=,a+b=(80﹣x)+(x﹣60)=,所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=.请仿照上例解决下面的问题:(1)补全题目中横线处;(2)已知(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值;(3)若x满足(2021﹣x)2+(2020﹣x)2=2019,求(2021﹣x)(x﹣2020)的值;(4)如图,正方形ABCD的边长为x,AE=10,CG=25,长方形EFGD的面积是400,四边形NGDH和MEDQ都是正方形,PQDH是长方形,求图中阴影部分的面积(结果必须是一个具体数值).13.(2021春•秦淮区校级期中)先化简,再求值:(3a﹣2b)(2a+3b)−12(3a+2b)2﹣a(32a﹣2b),其中|a+12|+|b+1|=0.14.(2021春•宜兴市期中)计算或化简:(1)﹣22+(23)﹣1+(π﹣3)0(2)a⋅a2⋅a3+(﹣2a3)2﹣a9÷(﹣a)3(3)(x+3)(x﹣3)﹣(x﹣2)2(4)(m+2n﹣3)(m﹣2n+3)15.(2021•滨湖区一模)(1)计算:|3−2|﹣(12)﹣2+2sin60°;(2)化简:(a+b)2﹣a(a+2b).16.(2021春•徐州期中)计算:(1)(﹣1)2021+(﹣2)0+(12)﹣3;(2)a•a3•a4﹣4a10÷a2+(﹣3a4)2;(3)(x+5)(x﹣3)﹣x(x+2);(4)20212﹣2020×2022.17.(2021春•鼓楼区校级月考)计算:(1)(﹣3a3)2÷a2;(2)(﹣2a)3﹣(﹣a)•(3a)2;(3)﹣22+30﹣(−12)﹣1;(4)(318)12×(825)11×(﹣2)3.18.(2021春•鼓楼区校级月考)计算:(1)(﹣3y)5÷(﹣3y)2;(2)2a2•4a4﹣(﹣3a2)3;(3)(π﹣3)0﹣(−12)﹣2+25×(﹣1)﹣2021;(4)x(x+y)﹣(2x+3y)2;(5)(3a﹣2b)(2b+3a)﹣(2a)2.19.(2021春•邗江区月考)规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(5,125)=,(﹣2,﹣32)=;②若( ,116)=−4,则x=.(2)若(4,5)=a,(4,6)=b,(4,30)=c,试说明下列等式成立的理由:a+b=c.20.(2021春•南京月考)计算:(1)|−2|+( −3)0−(13)−2+(−1)2021;(2)(﹣2×1012)×(﹣2×102)3÷(0.5×103)3;(3)(−12 2)×(23 2 −6 );(4)(a﹣2b+3c)×(a+2b﹣3c);(5)(﹣2m﹣3)2(3﹣2m)2;(6)4×1.632+6.52×6.74+6.742.(用乘法公式计算)21.(2021•滨湖区模拟)计算:(1)2﹣1﹣(﹣0.5)0−4;(2)(x﹣3)2+x(x﹣2)22.(2020秋•江都区期末)先化简,再求值:12x﹣2(x−13y2)+(−32 +13 2),其中x=﹣2,y=23.23.(2020秋•渑池县期末)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是.(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)24.(2021春•秦淮区校级期中)因式分解:(1)25(a+b)2﹣9(a﹣b)2;(2)16ab2﹣6a3﹣4ab2;(3)(x2﹣4x)2+8(x2﹣4x)+16.25.(2021春•玄武区期中)把下列各式分解因式:(1)ax3﹣16ax;(2)(2x﹣3y)2﹣2x(2x﹣3y)+x2;(3)(m2+1)2﹣4m2.26.(2021春•吴江区期中)整式乘法与多项式因式分解是既有联系又有区别的两种变形.例如,a(b+c+d)=ab+ac+ad是单项式乘多项式的法则;把这个法则反过来,得到sb+ac+ad =a(b+c+d),这是运用提取公因式法把多项式因式分解.又如(a±b)2=a2±2ab+b2、(a+b)(a﹣b)=a2﹣b2是多项式的乘法公式;把这些公式反过来,得到a2±2ab+b2=(a±b)2、a2﹣b2=(a+b)(a﹣b),这是运用公式法把多项式因式分解.把多项式乘多项式法则(a+b)(c+d)=ac+ad+bc+bd反过来,将得到什么呢?事实上,ac+ad+bc+bd=a(c+d)+b(c+d)=(a+b)(c+d),这样多项式ac+ad+bc+bd 就分解为两个因式(a+b)与(c+d)的乘积.类似地,ac+bc+3a+3b=c(a+b)+3(a+b)=(a+b)(c+3).问题一:因式分解:(1)a2﹣ab+ac﹣bc;(2)9a2﹣6a+2b﹣b2.问题二:探究对x、y定义一种新运算F,规定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均为非零常数).当x2≠y2时,F(x,y)=F(y,x)对任意有理数x、y都成立,试探究m,n 的数量关系.27.(2020春•赣榆区期中)对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:=;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c =﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)28.(2020春•玄武区期中)把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b.②研究①拼图发现,可以分解因式2a2+5ab+2b2=.29.(2019秋•海门市期末)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q (p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的完美分解.并规定:F(n)= .例如18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的完美分解,所以F(18)=36=12.(1)F(13)=,F(24)=;(2)如果一个两位正整数t,其个位数字是a,十位数字为b﹣1,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F(t)的最大值.30.(2019秋•柘城县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.2021年江苏中考数学冲刺专题训练——专题2整式、因式分解参考答案与试题解析一.选择题(共2小题)1.【解答】解:设AB=x,AD=y,∵正方形ABEF和ADGH的面积之和为17cm2∴x2+y2=17,∵矩形ABCD的周长是10cm∴2(x+y)=10,∵(x+y)2=x2+2xy+y2,∴25=17+2xy,∴xy=4,∴矩形ABCD的面积为:xy=4cm2,故选:B.2.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b= + 2,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac=( + 2)2− = 2+2 + 24−ac= 2−2 + 24=( − 2)2≥0,即b<0,b2﹣ac≥0,故选:D.二.填空题(共8小题)3.【解答】①(a+2b)2=a2+4ab+4b2,要用A型卡片1张,B型卡片4张,C型卡片4张,所以可拼成边长为a+2b的正方形.②(2a+3b)2=4a2+12ab+9b2,要用A型卡片4张,B型卡片12张,C型卡片9张,因为B型卡片只有11张,C型卡片只有7张,所以不能拼成边长为2a+3b的正方形.③(2a+4b)(2a+b)=4a2+2ab+8ab+4b2=4a2+10ab+4b2,可得A型卡片4张,B型卡片10张,C型卡片4张,所以可拼成长、宽分别为2a+4b、2a+b的长方形.④所有卡片面积和为4a2+11ab+7b2=(4a+7b)(a+b).所以所有卡片可拼长长为(4a+7b),宽为(a+b)的长方形.故答案为:①③④.4.【解答】解:4块A的面积为:4×m×m=4m2;4块B的面积为:4×m×n=4mn;2块C的面积为2×n×n=2n2;那么这三种类型的砖的总面积应该是:4m2+4mn+2n2=4m2+4mn+n2+n2=(2m+n)2+n2,因此,多出了一块C型地砖,去掉一块C型地砖,这两个数的平方为(2m+n)2.这样的地砖拼法可以得到一个关于m,n的恒等式为:4m2+4mn+n2=(2m+n)2故答案为:4m2+4mn+n2=(2m+n)2.5.【解答】解:设AB=CD=x,AD=BC=y,则S1=6(AB﹣6)+(CD﹣5)(BC﹣6)=6(x﹣6)+(x﹣5)(y﹣6),S2=6(BC﹣6)+(BC﹣5)(CD﹣6)=6(y﹣6)+(y﹣5)(x﹣6),∴S2﹣S1=6(y﹣6)+(y﹣5)(x﹣6)﹣6(x﹣6)﹣(x﹣5)(y﹣6)=6y﹣36+xy﹣6y﹣5x+30﹣6x+36﹣xy+6x+5y﹣30=5y﹣5x=5(y﹣x),∵AD﹣AB=3,∴y﹣x=3,∴原式=5×3=15,故答案为:15.6.【解答】解:原式=2(m2﹣2mn+n2)=2(m﹣n)2,故答案为:2(m﹣n)27.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).8.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.9.【解答】解:∵a=12018+2017,b=12018+2018,c=12018+2019,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣bc﹣ca=12×(2 2+2 2+2 2−2 −2 −2 )=12[( − )2+( − )2+( − )2]=12×[(−1)2+(−1)2+(−2)2]=12×(1+1+4)=12×6=3,故答案为:3.10.【解答】解:原式=4(x2﹣1)=4(x+1)(x﹣1),故答案为:4(x+1)(x﹣1)三.解答题(共20小题)11.【解答】解:(1)阴影部分的面积为两个正方形的面积差,即a2﹣b2;故答案为:a2﹣b2;(2)拼成的长方形的长为(a+b),宽为(a﹣b),所以面积为(a+b)(a﹣b);故答案为:(a+b)(a﹣b);(3)由(1)(2)可得,a2﹣b2=(a+b)(a﹣b);故答案为:a2﹣b2=(a+b)(a﹣b);(4)(Ⅰ)(a+b﹣2c)(a+b+2c)=[(a+b)﹣2c][(a+b)+2c]=(a+b)2﹣(2c)2=a2+2ab+b2﹣4c2;(Ⅱ)(2a+b﹣3c)(﹣2a+b+3c)=[b+(2a﹣3c)][b﹣(2a﹣3c)]=b2﹣(2a﹣3c)2=b2﹣4a2+12ac﹣9c2.12.【解答】解:(1)设(80﹣x)=a,(x﹣60)=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=400﹣60=340;故答案为:30,20,340;(2)设30﹣x=a,x﹣20=b,则ab=﹣10,a+b=10,∴(30﹣x)2+(x﹣20)2=a2+b2=(a+b)2﹣2ab=102﹣2×(﹣10)=120;(3)设2021﹣x=m,2020﹣x=n,则m2+n2=2019,m﹣n=1,∵(m﹣n)2=m2﹣2mn+n2,∴1=2019﹣2mn,∴mn=1009,即(2021﹣x)(x﹣2020)=﹣1009;(4)由题意得:DE=x﹣10,DG=x﹣25,则(x﹣10)(x﹣25)=400,设a=x﹣10,b=x﹣25,则a﹣b=15,ab=400,=(a+b)2=(a﹣b)2+4ab=152+4×400=1825.∴S阴13.【解答】解:原式=6a2+9ab﹣4ab﹣6b2−12(9a2+12ab+4b2)−32a2+2ab =6a2+9ab﹣4ab﹣6b2−92a2﹣6ab﹣2b2−32a2+2ab=ab﹣8b2,∵|a+12|+|b+1|=0,∴a+12=0,b+1=0,解得:a=−12,b=﹣1,当a=−12,b=﹣1时,原式=−12×(﹣1)﹣8×(﹣1)2=﹣712.14.【解答】解:(1)﹣22+(23)﹣1+(π﹣3)0=﹣4+32+1=−32;(2)a⋅a2⋅a3+(﹣2a3)2﹣a9÷(﹣a)3=a6+4a6﹣a9÷(﹣a3)=a6+4a6+a6=6a6;(3)(x+3)(x﹣3)﹣(x﹣2)2=x2﹣9﹣x2+4x﹣4=4x﹣13;(4)(m+2n﹣3)(m﹣2n+3)=[m+(2n﹣3)][m﹣(2n﹣3)]=m2﹣(2n﹣3)=m2﹣4n2+12n﹣9.15.【解答】解:(1)原式=3−3−4+2=3−3−4+3=﹣1;(2)原式=a2+2ab+b2﹣a2﹣2ab=b2.16.【解答】解:(1)(﹣1)2021+(﹣2)0+(12)﹣3=(﹣1)+1+8=8;(2)a•a3•a4﹣4a10÷a2+(﹣3a4)2=a8﹣4a8+9a8=6a8;(3)(x+5)(x﹣3)﹣x(x+2)=x2+2x﹣15﹣x2﹣2x=﹣15;(4)20212﹣2020×2022=20212﹣(2021﹣1)×(2021+1)=20212﹣20212+1=1.17.【解答】解:(1)原式=9a6÷a2=9a4;(2)原式=﹣8a3+a•9a2=﹣8a3+9a3=a3;(3)原式=﹣4+1+2=﹣1;(4)原式=258×(258×825)11×(﹣8)=258×111×(﹣8)=258×1×(﹣8)=﹣25.18.【解答】解:(1)原式=(﹣3y)3=﹣27y3;(2)原式=8a6+27a6=35a6;(3)原式=1﹣4+32×(﹣1)=1﹣4﹣32=﹣35;(4)原式=x2+xy﹣(4x2+12xy+9y2)=x2+xy﹣4x2﹣12xy﹣9y2=﹣3x2﹣11xy﹣9y2;(5)原式=9a2﹣4b2﹣4a2=5a2﹣4b2.19.【解答】解:(1)①因为53=125,所以(5,125)=3;因为(﹣2)5=﹣32,所以(﹣2,﹣32)=5;②由新定义的运算可得,x﹣4=116,因为(±2)﹣4=1(±2)4=116,所以x=±2,故答案为:①3,5;②±2;(2)因为(4,5)=a,(4,6)=b,(4,30)=c,所以4a=5,4b=6,4c=30,因为5×6=30,所以4a•4b=4c,所以a+b=c.20.【解答】解:(1)|−2|+( −3)0−(13)−2+(−1)2021=2+1﹣9+(﹣1)=﹣7;(2)(﹣2×1012)×(﹣2×102)3÷(0.5×103)3=(﹣2×1012)×(﹣23×106)÷(123×109)=27×109=128×109=1.28×1011;(3)(−12 2)×(23 2 −6 )=−13x3y3+3x2y3;(4)(a﹣2b+3c)×(a+2b﹣3c)=[a﹣(2b﹣3c)][a+(2b﹣3c)]=a2﹣(2b﹣3c)2=a2﹣4b2+12bc﹣9c2;(5)(﹣2m﹣3)2(3﹣2m)2=(2m+3)2•(3﹣2m)2=[(3+2m)(3﹣2m)]2=(9﹣4m2)2=81﹣72m2+16m4;(6)4×1.632+6.52×6.74+6.742=(2×1.63)2+2×3.26×6.74+6.742=3.262+2×3.26×6.74+6.742=(3.26+6.74)2=102=100.21.【解答】解:(1)2﹣1﹣(﹣0.5)0−4=12−1﹣2=−52;(2)(x﹣3)2+x(x﹣2)=x2﹣6x+9+x2﹣2x=2x2﹣8x+9.22.【解答】解:原式=12x﹣2x+23y2−32x+13y2=12x﹣2x+23y2−32x+13y2=﹣3x+y2,把x=﹣2,y=23代入得:原式=649.23.【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.3)×(10﹣0.3)=102﹣0.32=100﹣0.09=99.91;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)]=(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2.24.【解答】解:(1)25(a+b)2﹣9(a﹣b)2=(5a+5b)2﹣(3a﹣3b)2.=(5a+5b+3a﹣3b)[5a+5b﹣(3a﹣3b)]=(8a+2b)(2a+8b).=4(4a+b)(a+4b).(2)16ab2﹣6a3﹣4ab2=12ab2﹣6a3=6a(2b2﹣a2)=6a(2b+a)(2b﹣a).(3)原式=(x2﹣4x+4)2=[(x﹣2)2]2=(x﹣2)425.【解答】解:(1)原式=ax(x2﹣16)=ax(x+4)(x﹣4);(2)原式=(2x﹣3y﹣x)2=(x﹣3y)2;(3)原式=(m2+1+2m)(m2+1﹣2m)=(m+1)2(m﹣1)2.26.【解答】解:问题一、(1)a2﹣ab+ac﹣bc=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c);(2)9a2﹣6a+2b﹣b2,=(3a+b)(3a﹣b)﹣2(3a﹣b)=(3a﹣b)(3a+b﹣2),问题二、∵F(x,y)=(mx+ny)(3x﹣y),F(y,x)=(my+nx)(3y﹣x),又∵F(x,y)=F(y,x),∴(mx+ny)(3x﹣y)=(my+nx)(3y﹣x),3mx2+(3n﹣m)xy﹣ny2=﹣nx2+(3n﹣m)xy+3my2,∵x2≠y2,∴3m=﹣n.27.【解答】解:(1)正方形的面积可表示为=(a+b+c)2;正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ac,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(2)∵a=7k﹣5,b=﹣4k+2,c=﹣3k+4,a2+b2+c2=37,∴(7k﹣5﹣4k+2﹣3k+4)2=37+2(ab+bc+ac),∴ab+bc+ac=﹣18;(3)如图所示:2a2+7ab+3b2=(a+3b)(2a+b).∴m=7.28.【解答】解:(1)由题意得,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S=a2+b2−12(a+b)•b−12a2=12a2+12b2−12ab=12(a+b)2−32ab=12×102−32×20=阴影50﹣30=20;(4)①根据题意,作出图形如下:②由上面图形可知,2a2+5ab+2b2=(a+2b)(2a+b).故答案为(a+2b)(2a+b).29.【解答】解:(1)∵13=1×13,∴F(13)=113∵24=1×24=2×12=3×8=4×624﹣1>12﹣2>8﹣3>6﹣4∴F(24)=46=23故答案为:113;23.(2)原两位数可表示为10(b﹣1)+a,新两位数可表示为10a+b﹣1∴10a+b﹣1﹣10(b﹣1)﹣a=36∴10a+b﹣1﹣10b+10﹣a=36∴9a﹣9b=27∴a﹣b=3∴a=b+3(1<b<6且b为正整数)∴b=2,a=5;b=3,a=6,b=4,a=7,b=5,a=8b=6,a=9∴和谐数为15,26,37,48,59(3)∵F(15)=35,F(26)=213,F(37)=137,F(48)=68=34,F(59)=159.∵34>35>213>137>159,∴所有“和谐数”中,F(t)的最大值是34.30.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4;(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。
2021年九年级中考数学 冲刺集训:直角三角形与勾股定理(含答案)

2021中考数学 冲刺集训:直角三角形与勾股定理一、选择题1. 如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8,则BC 的长是( ) A . 433B . 4C . 8 3D . 4 32. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,则sin ∠BAC 的值为 ( )A .B .C .D .3. 如图,在△ABC中,AB =AC =5,BC =8,D 是线段BC 上的动点(不含端点B ,C),若线段AD 长为正整数...,则点D 的个数共有( )A . 5个B . 4个C . 3个D . 2个4. 如图,在△ABC中,∠B=30°,∠C=45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E.若DE=1,则BC 的长为 ( )A .2+B .+C .2+D .35. 如图①,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图②是此时的示意图,则图②中水面高度为 ()A.B.C.D.6. 我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为 ()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米7. 公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形的面积是25,则(sinθ-cosθ)2=()A.B.C.D.8. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.332C.32D. 不能确定二、填空题9. 三角形三边长分别为3,4,5,那么最长边上的中线长等于.10. 如图,已知Rt △ABC 中,CD 是斜边AB 上的高,AC=4,BC=3,则AD= .11. 如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A ,B ,P 是网格线交点).12. 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积分别为2,5,1,2,则最大的正方形E 的面积是 .13. 无盖圆柱形杯子的展开图如图K20-7所示.将一根长为20 cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 cm .14. (2019•盐城)如图,在ABC △中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为__________.15. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当BDE△是直角三角形时,则CD的长为__________.16. 如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD =5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC= ;(2)求线段DB的长度.18. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.19. 如图,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E 在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x 的值;若不存在直线EF,请说明理由.备用图20. 如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2.点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分的面积为S.(1)当t=1时,正方形EFGH的边长是________;当t=3时,正方形EFGH的边长是________;(2)当1<t≤2时,求S与t的函数关系式;(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?2021中考数学冲刺集训:直角三角形与勾股定理-答案一、选择题1. 【答案】D【解析】∵Rt△ABC中,∠B=30°,AB=8,∴AC=12AB=4,∴BC=AB2-AC2=64-16=4 3.2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.4. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.5. 【答案】A[解析]如图所示.设DM=x,则CM=8-x,根据题意得:(8-x+8)×3×3=3×3×6,解得x=4,∴DM=4.∵∠D=90°.∴由勾股定理得:BM===5.过点B作BH⊥水平桌面于H,∵∠HBA+∠ABM=∠ABM+∠DBM=90°,∴∠HBA=∠DBM,∵∠AHB=∠D=90°,∴△ABH∽△MBD,∴=,即=,解得BH=,即水面高度为.6. 【答案】A[解析]将里换算为千米,则三角形沙田的三边长分别为2.5千米,6千米,6.5千米,因为2.52+62=6.52,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=×6×2.5=7.5(平方千米),故选A.7. 【答案】A[解析]∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选A.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接PA,PB,PC,则S△PAB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=33 2.二、填空题9. 【答案】2.5[解析]根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半知最长边上的中线长=×5=2.5.10. 【答案】[解析]在Rt△ABC中,AB==5,由等面积法得AC·BC=CD·AB,CD===,∴AD===.11. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠PAB+∠PBA=∠BPQ=45°,故答案为45.12. 【答案】10[解析]根据题意可得A,B的面积和为S1,C,D的面积和为S2,于是S3=S1+S2,即S3=2+5+1+2=10.13. 【答案】5[解析]由题意可得:杯子内的木筷最大长度为:=15,∴木筷露在杯子外面的部分最少为:20-15=5(cm).14. 【答案】2【解析】如图,过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==, 则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.故答案为:2.15. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△, ∴6AE AC ==,1064BE =-=, 设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-, 解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EFED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.16. 【答案】78【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC =90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12. 法一:BC ·AH =AB ·AC ,AH =AB ·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S△ABE =12×12×13=78.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°, ∴△CAD 是等边三角形, ∴CD=AC=4,∠ACD=60°. 过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°. 在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt △DEB 中,由勾股定理得DB=.18. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形, ∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎨⎧EC =DC∠ACE =∠BCD AC =BC,(3分) ∴△ACE ≌△BCD(SAS ).(4分) (2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分) ∴∠EAD =∠EAC +∠CAD =90°, 在Rt △EAD 中,ED 2=AD 2+AE 2, ∴ED 2=AD 2+BD 2,(8分) 又ED 2=EC 2+CD 2=2CD 2, ∴2CD 2=AD 2+DB 2.(10分)19. 【答案】(1) 在Rt △ABC 中, AC =3,BC =4,所以AB =5.在Rt △ACD 中,39cos 355AD AC A ==⨯=.(2) ①如图2,当F 在AC 上时,905x <<.在Rt △AEF 中,4tan 3EF AE A x ==.所以21223y AE EF x =⋅=.如图3,当F 在BC 上时,955x <≤.在Rt △BEF 中,3tan (5)4EF BE B x ==-.所以21315288y AE EF x x =⋅=-+.②当905x <<时,223y x =的最大值为5425;当955x <≤时,231588y x x =-+23575)8232x =--+(的最大值为7532. 因此,当52x =时,y 的最大值为7532.图2 图3 图4(3)△ABC 的周长等于12,面积等于6. 先假设EF 平分△ABC 的周长,那么AE =x ,AF =6-x ,x 的变化范围为3<x ≤5.因此1142sin (6)(6)2255AEF S AE AF A x x x x ∆=⋅⋅=-⨯=--.解方程2(6)35x x --=,得1362x =±.因为1362x =+在3≤x ≤5范围内(如图4),因此存在直线EF 将△ABC 的周长和面积同时平分. 考点伸展如果把第(3)题的条件“点F 在直角边AC 上”改为“点F 在直角边BC 上”,那么就不存在直线EF 将△ABC 的周长和面积同时平分.先假设EF 平分△ABC 的周长,那么AE =x ,BE =5-x ,BF =x +1.因此21133sin (5)(1)(45)22510BEF S BE BF B x x x x ∆=⋅⋅=-+⨯=---.解方程23(45)310x x ---=.整理,得2450x x -+=.此方程无实数根.20. 【答案】(1)当t =1时,EF =2;当t =3时,EF =4. (2)①如图1,当6011t <≤时,2EF t =.所以24S t =.②如图2,当66115t <≤时,2EF EH t ==,2AE t =-,33(2)44NE AE t ==-.于是31132(2)442NH EH NE t t t =-=--=-,211422233NHQS NH QH NH NH NH =⨯=⨯=△22113342t ⎛⎫=- ⎪⎝⎭. 所以22221132511343422422S t t t t ⎛⎫=--=-+- ⎪⎝⎭. ③如图3,当625t <≤时,4EF =,2AE t =-,2AF t =+.所以2233388AFM AEN S S S AF AE t =-=-=△△.图2 图3 图4(3)如图4,图5,图6,图7,重叠部分的最大面积是图6所示的六边形EFNDQN ,S 的最大值为110275,此时14625t =.图5 图6 图7 考点伸展第(2)题中t 的临界时刻是这样求的:如图8,当H 落在AC 上时,2AE t =-,2EH EF t ==,由2324t t =-,得611t =.如图9,当G 落在AC 上时,2AF t =+,2GF EF t ==,由2324t t =+,得65t =.图8 图9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综上所述:x 5 或 10. 2
故选 B.
y 5.定义新运算 f:f(x,y)= x y ,则 f(a,b)﹣f(b,a)=( )
A.0 【答案】C
B.a2﹣b2
ab
C.
ab
ab
D.
ab
【解析】
原式
=
a
b
b
b
a
a
=ab . ab
故选:C.
6.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,
a※b
a
a
b
,a
b
.若 5※x=2,则 x 的值为(
)
b
b
a
,a
b
5
A.
2
【答案】B
5
B. 或 10
2
C.10
5 15
D. 或
22
【解析】
当 x<5 时, 5 2,解得:x 5 ,经检验,x 5 是原分式方程的解;
5 x
2
2
当 x>5 时, x 2,解得:x=10,经检验,x=10 是原分式方程的解; x5
现有如下的运算法则: logn na
a
,logNM=
log n log n
M N
(n>0,n≠1,N>0,N≠1,M>0).
例如:log223=3,log25=
log10 log10
5 2
,则
log100
1000
=
.
3
【答案】
2
【解析】 log100 1000
=
log10 1000 log10 100
=
log10 103 log10 102
=
3 2
.故答案为:
3 2
.
11.对于实数
a
、b
,定义运算:
ab
ab (a b,a 0),
a
b
a
b,a
0,例如
23
2-3
1 ,4 2 8
42
16 ,照此定
义的运算方式计算: 2 4 4 1 =_____________.
【答案】 1 4
【解析】
根据题意得:2 (−4)= 24 1 ,(−4) (−1) (4)1 4, 16
x 结合解析式,可知 B.
故选:B.
8.在平面直角坐标系中,对于平面内一点(m,n)规定以下两种变换,
①f(m,n)=(m,–n),如 f(2,1)=(2,–1);
②g(m,n)=(–m,–n),如 g(2,1)=(–2,–1).
按照以上变换,则经过点 f[g(3,4)],点 g[f(–3,2)]的直线方程为
B. 2
C.2
5
2
D.
5
【答案】B
【解析】
根据题意得,
5m
x2dx
m1 (5m)1
1
1
2 ,
m
m 5m
则m2 , 5
经检验, m 2 是方程的解, 5
故选 B.
2.定义:形如 a bi 的数称为复数(其中 a 和 b 为实数,i 为虚数单位,规定 i2 1),a 称为复数的实部, b 称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如 (1 3i)2 12 2 1 3i (3i)2 1 6i 9i2 1 6i 9 8 6i ,因此,(1 3i)2 的实部是﹣8,虚部是 6.已
2017
1923 2
1
48
个数.∴A2017=(32,48).故选
C.
m n(m n)
7.对于不为零的两个实数 m,n,我们定义:m⊗
n=
n m
(m
n)
,那么函数 y=x⊗
3 的图象大致是(
)
A.
B.
C.
D.
【答案】B
【解析】
当 x≥3 时,y=x﹣3,图象是一次函数的一段, 当 x<3 时, y 3 ,图象是反比例函数的一部分;
(1 2n 1)n ≥1009,解得:n2≥1009.当 n=31 时,n2=961<1009;当 n=32 时,n2=1024>1009.∴第 1009 个 2
数 在 第 32 组 . ∵ 第 32 组 的 第 一 个 数 为 : (1 3 5 61) 2 1 1923 , ∴ 2017 是 第 32 组 的
21,23,25,27,29,31),…,现用等式 AM=(i,j)表示正奇数 M 是第 i 组第 j 个数(从左往右数),
如 A7=(2,3),则 A = 2017
A.(45,77)
B.(45,39)
C.(32,48)
D.(32,25)
【答案】C
【 解 析 】 2017 是 第 2017 1 1009 个 奇 数 , 设 2017 在 第 n 组 , 则 1+3+5+7+…+ ( 2n–1 ) ≥1009 , 即 2
阅读理解问题
一、选择题(本大题共 8 个小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个选项是符
合题目要求的)
a
k
m
1.定义一种新运算: n xn1dx an bn ,例如: 2 xdx k 2 h2 ,若 x2dx 2 ,则 m ( )
b
h
5m
A.-2
,解得
3 ,故选 A.
b 3
二、填空题(本大题共 4 个小题,每小题 6 分,共 24 分) 9.规定 a※b=a2+(b-1),则[(-2)※6]※(+2)的值为__________.
【答案】82 【解析】根据题意可得:(-2)※6=(-2)2+(6-1)=4+5=9,因此[(-2)※6]※(+2)=9※(+2)=92+ (2-1)=81+1=82,故答案为:82. 10.规定:logab(a>0,a≠1,b>0)表示 a,b 之间的一种运算.
知复数 (3 mi)2 的虚部是 12,则实部是( )
A.﹣6
B.6
C.5
D.﹣5
【答案】C
【解析】
∵ (3 mi)2 32 2 3 mi (mi)2 9 6mi m2i2 9 m2 6mi
∴复数 (3 mi)2 的实部是 9 m2 ,虚部是 6m , ∴ 6m 12 , ∴ m 2 , ∴ 9 m2 9 (2)2 9 4 5 .
故选:C.
a 2b
2 21
3.定义一种新的运算:a•b=
,如 2•1=
=2,则(2•3)•1=( )a25
A.
2
3
B.
2
9
C.
4
19
D.
8
【答案】B
【解析】
∵ a b a 2b , a
∴(2•3)•1
2 2 3 •1 2
=4•1
4 21 4
3, 2
故选 B.
4.定义运算“※”:
A.y=– 1 x+3 3
C.y=– 1 x–3 3
B.y= 1 x+3 3
D.y= 1 x–3 3
【答案】A
【解析】根据题意得:f[g(3,4)]=f(–3,–4)=(–3,4),点 g[f(–3,2)]=g(–3,–2)=(3,
2),
3k b 4
k 1
设直线方程的解析式为 y=kx+b,得到 3k b 2