物理化学课后答案-热力学第一定律之欧阳法创编

合集下载

物理化学第四版 第二章热力学第一定律习题(答案)

物理化学第四版 第二章热力学第一定律习题(答案)

p外
(
nRT2 p2
nRT1 ) p1
nCV ,m (T2
T1)
T2 174.8K
U 5.40 kJ, H -9.0 kJ , w 5.40kJ
2020/4/12
14
例3. 试求下列过程的U和H:
A(蒸气) n = 2mol T1 = 400K p1 = 50.663kPa
A(液体) n = 2mol T2 = 350K p2 = 101.325kPa
⑥ 任何绝热过程
W=ΔU
2020/4/12
4
(ⅱ)热量Q的计算:
QV= ∫nCV,mdT= ΔU Qp = ∫nCp,mdT= ΔH
相变热 Qp = ΔH (定温、定压)
ΔvapHm(T) ΔfusHm(T) …
2020/4/12
5
1.试写出实际气体的范德华方程

2.封闭系统的热力学第一定律的数学表达式为
= H + nRT =-79 kJ + 2 8.314 400 103 kJ
2020/4/12
=-72.35 kJ
16
例4:求反应CH3COOH(g)
CH4(g)+CO2(g)在
1000K时的标准摩尔反应焓 r H m,已知数据如下表:
物质
CH3COOH(g)
f
H
m
(298K
)
kJ.mol -1
He(g)
n= 4.403mol
T1=273K p1=1.0×106 Pa
V1=0.01m3
(1) Q = 0,可逆
(2) Q = 0 p外= p2
He(e)
n=4.403mol
T2=? P2=1.0×105Pa

物理化学-第一章-热力学第一定律-习题 (1)精选全文

物理化学-第一章-热力学第一定律-习题 (1)精选全文

3(1)1g水在100℃,101.325kPa下蒸发为蒸 汽(理气),吸收热量为2259J·g-1,问此过 程的Q、W、△U、△H值为多少?
(2)始态同上,外界压强恒为50.66kPa下, 将水等温蒸发后,再将50.66kPa下的气慢慢 加压为终态100℃,101.325kPa的水气,求Q、 W、△U、△H值为多少?
(3)
(3)T’2>T 2, V2’>V2
(4)T2’<T2 , V2’>V2
∵W(可逆) >W(不可逆) p2=p2’
∴T’2>T2 根据pV=nRT V与T成正比 ∴V’2>V2
4.某体系经历一个不可逆循环后,下列关系 式中不能成立的是 (1)△U=0 (2)Q=0
(3)△T=0 (4)△H=0
2.1mol理想气体从始态p1V1T1分别经过 (1)绝热可逆膨胀到p2, (2)经过反抗恒外压 (p环=p2)绝热膨胀至平衡,则两个过程间
有 WⅠ( < )WⅡ,△UⅠ(< ) △UⅡ, △HⅠ( < )△HⅡ。
∵△U=nCvm(T2-T1), ∵△H=nCpm(T2-T1), 绝热可逆过程温度降的更低
(
g
)
6CO2
(
g
)
3H
2O(l
)
∵ △rHmθ= △rUmθ+△nRT , △n=-3/2
8.已知H2O(l)的 △fHmθ(298K)=-285.84kJ·mol-1, 则H2(g)的△cHmθ(298K) =( -285.84 )kJ·mol-1。 9.已知反应C(s)+O2(g)=CO2(g)的 △rHmθ(298K)=-393.51 kJ·mol-1,若此反应 在一绝热钢瓶中进行,则此过程的 △T( > )0;△U( = )0;△H( > )

物理化学课后参考答案热力学定律

物理化学课后参考答案热力学定律

第二章热力学第一定律2.5 始态为25 ︒C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。

途经a先经绝热膨胀到 -28.47 ︒C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。

途径b为恒压加热过程。

求途径b的及。

解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2.6 4 mol的某理想气体,温度升高20 ︒C,求的值。

解:根据焓的定义2.10 2 mol某理想气体,。

由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。

求整个过程的。

解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律2.13 已知20 ︒C液态乙醇(C2H5OH,l)的体膨胀系数,等温压缩率,密度,摩尔定压热容。

求20 ︒C,液态乙醇的。

解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关系2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa的大气相通,以维持容器内空气的压力恒定。

今利用加热器件使器内的空气由0 ︒C加热至20 ︒C,问需供给容器内的空气多少热量。

已知空气的。

假设空气为理想气体,加热过程中容器内空气的温度均匀。

解:在该问题中,容器内的空气的压力恒定,但物质量随温度而改变注:在上述问题中不能应用,虽然容器的体积恒定。

这是因为,从小孔中排出去的空气要对环境作功。

所作功计算如下:在温度T时,升高系统温度 d T,排出容器的空气的物质量为所作功这正等于用和所计算热量之差。

2.15 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 ︒C,4 mol 的Ar(g)及150 ︒C,2 mol的Cu(s)。

现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。

已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。

物理化学第二章热力学第一定律

物理化学第二章热力学第一定律

第二章热力学第一定律一.基本要求1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。

2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的Q,W, U和 H的值。

3.了解为什么要定义焓,记住公式U Q V , H Q p的适用条件。

4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中,U, H, W, Q的计算。

二.把握学习要点的建议学好热力学第一定律是学好化学热力学的基础。

热力学第一定律解决了在恒定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一些基本概念。

这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。

例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。

功和热的计算一定要与变化的过程联系在一起。

譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨”是一个与过程联系的名词。

在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。

功和热都只是能量的一种形式,但是,它们一定要与传递的过程相联系。

在系统与环境之间因温度不同而被传递的能量称为热,除热以外,其余在系统与环境之间被传递的能量称为功。

传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种形式变为另一种形式。

同样,在环境内部传递的能量,也是不能称为功(或热)的。

例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所以 Q 0, W 0, U 0 。

高一化学必修一课后习题答案之欧阳计创编

高一化学必修一课后习题答案之欧阳计创编

《化学(必修)1》课后习题参考答案第一章第一节1.C 2.C 3.CD 4.略5.乳化原理或萃取原理6.利用和稀盐酸反应产生气体7.不可靠,因为碳酸钡也是白色沉淀,碳酸根干扰了硫酸根的检验。

由于硫酸钡是难溶的强酸盐,不溶于强酸,而碳酸钡是难溶弱酸盐,可溶于强酸,因此可先取样,再滴入氯化钡溶液和几滴稀硝酸或稀盐酸,如果出现白色沉淀,说明有硫酸根。

第一章第二节1.D 2.B 3.B 4.B5.65 mg/dL ~110mg/dL (1mmol=10-3mol)6.这种操作会使得结果偏低,因为倒出去的溶液中含有溶质,相当于容量瓶内的溶质有损失。

7.14mL8.n(Ca):n(Mg):n(Cu):n(Fe)=224:140:35:29.1)0.2mol 2)Cu2+:0.2mol Cl-:0.4mol10.40 (M=40 g/mol,该气体的相对分子质量为40。

)第一章复习题欧阳计创编 2021..02.11欧阳计创编 2021..02.111.C 2.B 3.A 4.BC 5.C 6.(1) 不正确。

(标况下)(2)不正确。

(溶液体积不为1L ) (3)不正确。

(水标况下不是气体)(4)正确。

(同温同压下气体的体积比即为物质的量之比,也就是分子个数比) 7.(1)5% (2)0.28mol/L 8.9.1.42 g ,操作步骤略。

第二章第一节1.②⑧ ①④ ⑤ ⑥ ⑦⑩ ⑨2.树状分类法 略 5.分散系 分散质粒子大小 主要特征举例 浊液 >100 nm 不稳定,不均一 泥浆水溶液 <1 nm 稳定,均一 饱和NaCl 溶液 胶体1~100 nm较稳定,均一豆浆6.BD7.胶体区别于其他分散系得本质特征是胶体粒子的大小在1~100nm 范围。

胶体的应用,例如明矾净水、豆浆加石膏成豆腐、静电除尘、江河入海口易形成沙洲、血液透析、饱和氯化铁溶液用于应急性止血等。

第二章第二节1.水溶液 熔融状态 电离 阴阳离子 阳离子 H + 阴离子 OH -金属离子或铵根离子 酸根离子 H + + OH -=H 2O铁 粉 过 滤Fe 、CuFeSO 4溶液稀硫酸过 滤FeSO 4溶液蒸发 结晶2.两种电解质在溶液中相互交换离子的反应生成难溶物、易挥发物质、弱电解质3.C 4.C 5.C 6.B 7.D8.(1) NaOH=Na++OH-(2) CuCl2=Cu2++2Cl-(3) Fe2(SO4)3=2Fe3++3SO42-(4) Ba(NO3)2=Ba2++2NO3-9.(1) SO42-+Ba2+=BaSO4(2) 2Al+3Hg2+=3Hg+2Al3+(3) CO32-+2H+=H2O+CO2 (4) 不反应。

高中物理热力学第一定律课后习题答案及解析

高中物理热力学第一定律课后习题答案及解析

高中物理热力学第一定律课后习题答案及解析练习与应用1.用活塞压缩汽缸里的空气,对空气做了900 J的功,同时汽缸向外散热210 J,汽缸里空气的内能改变了多少?解析:依题意可得:W=900J,Q=-210J由△U=W+Q得:△U=900+(-210)J=690J答:汽缸里空气的内增加了690J.2.如图3.2-4,在汽缸内活塞左边封闭着一定量的空气,压强与大气压相同。

把汽缸和活塞固定,使汽缸内空气升高一定的温度,空气吸收的热量为Q1。

如果让活塞可以自由滑动(活塞与汽缸间无摩擦、不漏气),也使汽缸内空气温度升高相同温度,其吸收的热量为Q2。

图 3.2-4(1)Q1和Q2哪个大些?(2)气体在定容下的比热容与在定压下的比热容为什么会有不同?解析:(1)题中两种不同情况下,质量的一定的气体升高相同的温度,气体内能增加量相同(温度是分子平均动能的标志),第一种情况气体对外不做功,W1=0第二种情况下,气体对外做功,W2<0。

由热力学第一定律可知,△U=W1+Q1,△U=W2+Q2,比较两式可知,Q2大些;(2)由于在一定量的空气升高相同温度的情况下,Q2>Q1,由根据比热容公式Q=Cm△t得:Q1=C1m△t,Q2=C2m△t,故C2>C1,即气体在定容下的比热容小于在定压下的比热容。

3.某风景区有一处约20层楼高的瀑布,甚为壮观。

请估计:瀑布上、下水潭的水温因瀑布的机械能转化成内能而相差多少?水的比热容c为4.2×103 J/(kg·℃)。

解析:设水的质量为m,上、下水潭的水温差为△t,由能量守恒定律有:mgh=Cm△t;△t=gℎ代入数据解得:△t≈0.14℃;C答:瀑布上、下水潭的水温因瀑布的机械能转化成内能而相差0.14℃。

4.奶牛的心脏停止跳动后,大约在1 h内体温由37.0 ℃降低到33.5 ℃。

请你由此估算,在这种环境下饲养奶牛,要维持一个体重400 kg奶牛的内能不变,每天喂养奶牛的食物至少要能为它提供多少热量?计算时,可以认为奶牛体内绝大部分是水。

大学物理课后习题答案(赵近芳)下册之欧阳地创编

习题八时间:2021.03.04 创作:欧阳地8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 解得q q 33-=' (2)与三角形边长无关.题8-1图题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解:如题8-2图示解得θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解:题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p=,场点到偶极子中心O 点的距离为r ,矢量r与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证:如题8-5所示,将p 分解为与r平行的分量θsin p 和垂直于r的分量θsin p .∵l r >>∴场点P 在r 方向场强分量垂直于r 方向,即θ方向场强分量 题8-5图题8-6图 8-6 长l =15.0cm的直导线AB 上均匀地分布着线密度λ=5.0x10-9C·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解:如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)同理2220d d π41d +=x xE Q λε方向如题8-6图所示由于对称性⎰=l Qx E 0d ,即Q E只有y 分量,∵22222220dd d d π41d ++=x x x E Qyλε以9100.5-⨯=λ1cm C -⋅,15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d RR E εϕλ=方向沿半径向外 则ϕϕελϕd sin π4sin d d 0RE E x==积分RR E x 000π2d sin π4ελϕϕελπ==⎰∴RE E x0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解:如8-8图示,正方形一条边上电荷4q 在P 点产生物强P Ed 方向如图,大小为 ∵22cos 221l r l +=θ∴24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴424π4d 2222220l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为 ∵lq 4=λ ∴2)4(π422220l r l r qrE P ++=ε方向沿8-9(1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xR arctan =α)解: (1)由高斯定理0d εqS E s ⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴各面电通量06εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e=Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe=Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图题8-9(b)图题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积* ∴)(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图8-10均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C·m -3求距球心5cm ,8cm ,12cm 各点的场强.解:高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅,方向沿半径向外.12=r cm时,3π4∑=ρq -3(外r )内3r ∴()420331010.4π43π4⨯≈-=rr r E ερ内外1C N -⋅沿半径向外. 8-11半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则rl E S E Sπ2d =⋅⎰对(1)1R r <0,0==∑E q (2)21R r R <<λl q =∑ ∴rE 0π2ελ=沿径向向外(3)2R r >0=∑q∴0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间,n E )(21210σσε-=1σ面外,n E )(21210σσε+-=2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解:将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1)ρ+球在O 点产生电场010=E,ρ-球在O 点产生电场'd π4π3430320OO r E ερ= ∴O 点电场'd 33030OO r E ερ= ; (2)ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴O '点电场003ερ='E 'OO 题8-13图(a)题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则03ερr E PO =,3ερr E O P '-=' , ∴0003'3)(3ερερερd OO r r E E E O P PO P =='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解:∵电偶极子p 在外场E 中受力矩 ∴qlE pE M ==max 代入数字8-15两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 外力需作的功61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示∴R q q U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E d 如图,由于对称性,O 点场强沿y 轴负方向题8-17图R 0π4ελ=[)2sin(π-2sin π-] (2)AB 电荷在O 点产生电势,以0=∞U 同理CD 产生2ln π402ελ=U 半圆环产生0034π4πελελ==R R U ∴0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解:设均匀带电直线电荷密度为λ,在电子轨道处场强 电子受力大小r e eE F e0π2ελ== ∴rv m r e 20π2=ελ 得1320105.12π2-⨯==e mv ελ1m C -⋅ 8-19空气可以承受的场强的最大值为E =30kV·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解:(1)点电荷r q U 0π4ε= 题8-20 图 ∴0200π4r r q r r U E ε=∂∂-=0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势∴()i x R qx i x U E 2/3220π4+=∂∂-=ε(3)偶极子l q p =在l r >>处的一点电势∴30π2cos rp r U E r εθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有∴+2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即又∵+2σ03=σ∴1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解:如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵AB ACU U =,即 ∴AB AB ACAC E E d d = ∴2d d 21===ACAB AB AC E E σσ 且1σ+2σS q A =得,32S q A =σSq A 321=σ 而7110232-⨯-=-=-=A C q S q σCC 10172-⨯-=-=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV 8-23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且得q R R q 21=' 外球壳上电势8-24半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:得-='q 3q 8-25有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知2020π4rq F ε= (1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电 ∴此时小球1与小球2间相互作用力(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解:依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图解得Sq 261==σσ 所以CB 间电场S qd U E 00422εεσ+==注意:因为C 片带电,所以2UU C ≠,若C 片不带电,显然2U U C =8-27在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解:利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强 (2)介质外)(2R r >电势 介质内)(21R r R <<电势(3)金属球的电势8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解:如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而101E D ε=,202E D r εε= ∴r D D εσσ==1212 题8-28图题8-29图8-29两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解:取半径为r 的同轴圆柱面)(S则rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴rlQD π2=(1)电场能量密度22222π82l r Q D w εε==薄壳中rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量(3)电容:∵CQ W 22=∴)/ln(π22122R R lW Q C ε== *8-30金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度; (2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即但2q 处于金属球壳中心,它受合力为零,没有加速度.(2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图题8-31图8-31如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴355025231123232⨯===C U C C Q U 8-321C 和2C 两电容器分别标明“200pF、500 V”和“300 pF、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1)1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U ∴6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q 解得(1)=1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解:如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域在21R r R <<时 301π4r rQ E ε=3R r >时302π4rrQ E ε=∴在21R r R <<区域 在3R r >区域∴总能量)111(π83210221R R R Q W W W +-=+=ε(2)导体壳接地时,只有21R r R <<时30π4r r Q E ε =,02=W∴4210211001.1)11(π8-⨯=-==R R Q W W εJ(3)电容器电容 )11/(π422102R R Q W C -==ε 习题九9-1在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B= ∴21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解:我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ 外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场? 解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解:如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是(2)通过befc 面积2S 的磁通量(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题9-7图9-7如题9-7图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B 、CD三部分电流产生.其中AB 产生01=BCD 产生R I B 1202μ=,方向垂直向里 CD段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里(2)设0=B 在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

高一化学必修一课后习题答案之欧阳化创编

《化学(必修)1》课后习题参考答案第一章第一节1.C 2.C 3.CD 4.略5.乳化原理或萃取原理6.利用和稀盐酸反应产生气体7.不可靠,因为碳酸钡也是白色沉淀,碳酸根干扰了硫酸根的检验。

由于硫酸钡是难溶的强酸盐,不溶于强酸,而碳酸钡是难溶弱酸盐,可溶于强酸,因此可先取样,再滴入氯化钡溶液和几滴稀硝酸或稀盐酸,如果出现白色沉淀,说明有硫酸根。

第一章第二节1.D 2.B 3.B 4.B5.65 mg/dL ~110mg/dL (1mmol=10-3mol)6.这种操作会使得结果偏低,因为倒出去的溶液中含有溶质,相当于容量瓶内的溶质有损失。

7.14mL8.n(Ca):n(Mg):n(Cu):n(Fe)=224:140:35:29.1)0.2mol 2)Cu2+:0.2mol Cl-:0.4mol欧阳化创编 2021.02.0610.40 (M=40 g/mol,该气体的相对分子质量为40。

)第一章复习题1.C 2.B 3.A 4.BC 5.C 6.(1) 不正确。

(标况下)(2)不正确。

(溶液体积不为)(3)不正确。

(水标况下不是气体)(4)正确。

(同温同压下气体的体积比即为物质的量之比,也就是分子个数比)7.(1)5% (2)0.28mol/L8.9.1.42 g,操作步骤略。

第二章第一节1.②⑧ ①④ ⑤ ⑥ ⑦⑩ ⑨ 2.树状分类法略5.分散系分散质粒子大小主要特征举例浊液>100 nm不稳定,不均一泥浆水溶液<1 nm稳定,均一饱和NaCl溶液胶体1~100 nm 较稳定,均一豆浆6.BD7.胶体区别于其他分散系得本质特征是胶体粒子的大小在1~100nm范围。

胶体的应用,例如明矾净水、豆浆加石膏成豆腐、静电除尘、江河入海口易形成沙洲、血液透析、饱和氯化铁溶液用于应急性止血等。

第二章第二节铁粉过滤Fe、CuFeSO4溶液稀硫酸过滤FeSO4溶液蒸发结晶欧阳化创编 2021.02.061.水溶液熔融状态电离阴阳离子阳离子 H+阴离子 OH-金属离子或铵根离子酸根离子H++ OH-=H2O2.两种电解质在溶液中相互交换离子的反应生成难溶物、易挥发物质、弱电解质3.C 4.C 5.C 6.B 7.D 8.(1) NaOH=Na++OH-(2) CuCl2=Cu2++2Cl-(3) Fe2(SO4)3=2Fe3++3SO42- (4) Ba(NO3)2=Ba2++2NO3-9.(1) SO42-+Ba2+=BaSO4 (2) 2Al+3Hg2+=3Hg+2Al3+(3) CO32-+2H+=H2O+CO2 (4) 不反应。

化学工业出版社物理化学答案 热力学第一定律

第2章 热力学第一定律习题答案1. 1mol 水蒸气在100℃,101.325 kPa 下全部凝结成液态水,求过程的功,假设:相对于水蒸气的体积,液态水的体积可以忽略不计。

解:此过程为恒压,由体积功的定义式可得)(g l V V p V p W −−=∆−=≈g pV 假设水蒸气为理想气体,则kJ J nRT pV W g 102.3)15.373314.81(=××===2. 系统由A 态变化到B 态,沿途径Ⅰ放热J 100,环境对系统做功J 50,问:(1) 由A 态沿途径Ⅱ到B 态,系统做功J 80,则过程的热量2Q 为多少?(2) 如果系统再由B 态沿途径Ⅲ回到A 态,环境对系统做功J 50,则过程热量3Q 是多少? 解:途径Ⅰ:J 1001−=Q ,J 501=W根据热力学第一定律,系统热力学能的变化为J 505010011AB −=+−=+=∆J J W Q U(1)对途径Ⅱ:J 802−=W根据热力学第一定律有22AB W Q U +=∆,所以J 30)80(502AB 2=−−−=−∆=J J W U Q(2)对途径Ⅲ:J 503=W因该过程是途径Ⅰ的逆过程,故J 50AB BA =∆−=∆U U由33W Q U BA +=∆得J 050503BA 3=−=−∆=J J W U Q3. 计算1mol 理想气体在下列四个过程中所做的体积功。

已知始态体积为25dm 3,末态体积为100dm 3,始态及末态温度均为100℃。

(1)恒温可逆膨胀; (2)向真空膨胀;(3)在外压恒定为气体终态的压力下膨胀;(4)先在外压恒定为体积等于50dm 3时气体的平衡压力下膨胀,当膨胀到50dm 3(此时温度仍为100℃)以后,再在外压等于100dm 3时气体的平衡压力下膨胀。

试比较这四个过程的功。

比较的结果说明什么?解:(1)121ln d d 2121V V nRT V V nRTV p W V V V V −=−=−=∫∫kJ J 102.310025ln15.373314.81(=×××=(2) 因为0=amb p ,所以∫=−=2102V V amb dV p W(3)()∫−−=−=211223V V amb V V p dV p W )1()(21122−=−−=V V nRT V V V nRTkJ J 327.2)]110025(15.373314.81[−=−×××= (4)()∫−−−−=−=21)'(''d 2214V V amb V V p V V p V p W)1()1(2''1−+−=V V nRT V V nRTJ )]2100505025(15.373314.81[−+×××= kJ 102.3−=显然,1W >4W >3W >2W 。

(完整版)《物理化学》第二章热力学第一定律练习题(含答案)

(完整版)《物理化学》第⼆章热⼒学第⼀定律练习题(含答案)第⼆章练习题⼀、填空题1、根据体系和环境之间能量和物质的交换情况,可将体系分成、、。

2、强度性质表现体系的特征,与物质的数量⽆关。

容量性质表现体系的特征,与物质的数量有关,具有性。

3、热⼒学平衡状态同时达到四种平衡,分别是、、、。

4、体系状态发⽣变化的称为过程。

常见的过程有、、、、。

5、从统计热⼒学观点看,功的微观本质是,热的微观本质是。

6、⽓体各真空膨胀膨胀功W= 07、在绝热钢瓶中化学反应△U= 08、焓的定义式为。

⼆、判断题(说法对否):1、当体系的状态⼀定时,所有的状态函数都有⼀定的数值。

(√)2、当体系的状态发⽣变化时,所有的状态函数的数值也随之发⽣变化。

(χ)3.因= ΔH, = ΔU,所以与都是状态函数。

(χ)4、封闭系统在压⼒恒定的过程中吸收的热等于该系统的焓。

(χ)错。

只有封闭系统不做⾮膨胀功等压过程ΔH=Q P5、状态给定后,状态函数就有定值;状态函数确定后,状态也就确定了。

(√)6、热⼒学过程中W的值应由具体过程决定( √ )7、1mol理想⽓体从同⼀始态经过不同的循环途径后回到初始状态,其热⼒学能不变。

( √ )三、单选题1、体系的下列各组物理量中都是状态函数的是( C )A 、T、P、V、QB 、m、W、P、HC、T、P、V、n、D、T、P、U、W2、对于内能是体系的单值函数概念,错误理解是( C )A体系处于⼀定的状态,具有⼀定的内能B对应于某⼀状态,内能只能有⼀数值不能有两个以上的数值C状态发⽣变化,内能也⼀定跟着变化D对应于⼀个内能值,可以有多个状态3下列叙述中不具有状态函数特征的是(D )A体系状态确定后,状态函数的值也确定B体系变化时,状态函数的改变值只由体系的始终态决定C经循环过程,状态函数的值不变D状态函数均有加和性4、下列叙述中正确的是( A )A物体温度越⾼,说明其内能越⼤B物体温度越⾼,说明其所含热量越多C凡体系温度升⾼,就肯定是它吸收了热D凡体系温度不变,说明它既不吸热也不放热5、下列哪⼀种说法错误( D )A焓是定义的⼀种具有能量量纲的热⼒学量B只有在某些特定条件下,焓变△H才与体系吸热相等C焓是状态函数D焓是体系能与环境能进⾏热交换的能量6、热⼒学第⼀定律仅适⽤于什么途径(A)A同⼀过程的任何途径B同⼀过程的可逆途径C同⼀过程的不可逆途径D不同过程的任何途径7. 如图,将CuSO4⽔溶液置于绝热箱中,插⼊两个铜电极,以蓄电池为电源进⾏电解,可以看作封闭系统的是(A)(A) 绝热箱中所有物质; (B) 两个铜电极;(C) 蓄电池和铜电极;(D) CuSO4⽔溶液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021.03.09 欧阳法创编 2021.03.09

2021.03.09 欧阳法创编 2021.03.09

第二章 热力学第一定律 时间:2021.03.09 创作:欧阳法 【复习题】

【1】 判断下列说法是否正确。 (1)状态给定后,状态函数就有一定的值,反之亦

然。 (2)状态函数改变后,状态一定改变。 (3)状态改变后,状态函数一定都改变。 (4)因为△U=Qv, △H =Qp,所以Qv,Qp是特定条件下的状态函数。 (5)恒温过程一定是可逆过程。 (6)汽缸内有一定量的理想气体,反抗一定外压做绝热膨胀,则△H= Qp=0。 (7)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。 (8)系统从状态Ⅰ变化到状态Ⅱ,若△T=0,则Q=0,无热量交换。 2021.03.09 欧阳法创编 2021.03.09

2021.03.09 欧阳法创编 2021.03.09

(9)在等压下,机械搅拌绝热容器中的液体,使其温度上升,则△H =Qp=0。 (10)理想气体绝热变化过程中,W=△U,即WR=△U=CV△T,WIR=△U=CV△T,所以WR=WIR。 (11)有一个封闭系统,当始态和终态确定后; (a)若经历一个绝热过程,则功有定值; (b)若经历一个等容过程,则Q有定值(设不做非膨胀力); (c)若经历一个等温过程,则热力学能有定值; (d)若经历一个多方过程,则热和功的代数和有定值。 (12)某一化学反应在烧杯中进行,放热Q1,焓变为△H1,若安排成可逆电池,使终态和终态都相同,这时放热Q2,焓变为△H2,则△H1=△H2。 【答】(1)正确,因为状态函数是体系的单质函数,体系确定后,体系的一系列状态函数就确定。相反如果体系的一系列状态函数确定后,体系的状态也就被惟一确定。 2021.03.09 欧阳法创编 2021.03.09

2021.03.09 欧阳法创编 2021.03.09

(2)正确,根据状态函数的单值性,当体系的某一状态函数改变了,则状态函数必定发生改变。 (3)不正确,因为状态改变后,有些状态函数不一定改变,例如理想气体的等温变化,内能就不变。 (4)不正确,ΔH=Qp,只说明Qp 等于状态函数H的变化值 ΔH,仅是数值上相等,并不意味着Qp 具有状态函数的性质。ΔH=Qp 只能说在恒压而不做非体积功的特定条件下,Qp 的数值等于体系状态函数 H 的改变,而不能认为 Qp 也是状态函数。 (5)正确,因为恒温过程是体系与环境的温度始终保持相等且恒定,是一个自始至终保热平衡的过程,由于只有同时满足力学平衡、相平衡、化学平衡才能保持热平衡,所以这种过程必然是一个保持连续平衡状态的过程,即为可逆过程。恒温过程不同与等温过程,后者只需始终态温度相同即可,而不管中间经历的状态如何。等温可逆过程则一定是恒温过程。 (6)不正确,因为这是外压一定,不是体系的压力一定,绝热膨胀时,Q=0,不是Qp=0。绝热膨胀后,p2<p1,T2<T1,理想气体的焓是温度的函数,所以该过程中△H<0。 2021.03.09 欧阳法创编 2021.03.09

2021.03.09 欧阳法创编 2021.03.09

(7)不正确,因为还可以降低体系的温度来对外作功。 (8)不正确,因为△T=0时只能说明体系的内能不变,而根据热力学第一定律,只有当功为零的时候,热才是零。 (9)不正确,在等压下,机械搅拌绝热容器中的液体,是环境对体系做功,Wf>0,使其△H ≠Qp。 (10)不正确,虽然不管是否可逆,WR=△U=CV△T,但可逆与不可逆过程的最终温度不同,所以WR≠WIR。 (11)(a)正确,因为始终态确定后,△U就确定,又是绝热过程,则Q=0,根据热力学第一定律,W=△U有定值; (b)正确,因为始终态确定后,△U就确定,又是等容过程,则W=0,根据热力学第一定律, Q=△U有定值; (c)不正确,只有理想气体的等温过程,热力学能才有定值; (d)正确,因为始终态确定后,△U就确定,即热2021.03.09 欧阳法创编 2021.03.09

2021.03.09 欧阳法创编 2021.03.09

和功的代数和有定值。 (12)正确,因为体系的始终态确定后,可以通过不同的过程来实现,一般在不同的过程中W、Q的数值不同,但焓是状态函数,而状态函数的变化与过程无关。即△H1=△H2。 【2】回答下列问题。 (1)在盛水槽中放置一个盛水的封闭试管,加热盛水槽中之水,使其达到沸点。试问试管中的水是否会沸腾,为什么? (2)夏天将室内电冰箱的门打开,接通电源并紧闭门窗(设墙壁、门窗都不传热),能否使室内温度降低,为什么? (3)可逆热机的效率最高,在其他条件都相同的前提下,用可逆热机去牵引火车,能否使火车的速度加快,为什么? (4)Zn与稀硫酸作用,(a)在敞口的容器中进行;(b)在密闭的容器中进行。哪一种情况放热较多,为什么? (5)在一铝制筒中装有压缩空气,温度与环境平衡。突然打开筒盖,使气体冲出,当压力与外2021.03.09 欧阳法创编 2021.03.09

2021.03.09 欧阳法创编 2021.03.09

界相等时,立即盖上筒盖,过一会儿,筒中气体压力有何变化? (6)在N2和N1的物质的量之比为1 :3的反应条件下合成氨,实验测得在温度T1和T2时放出的热量分别为QP(T1)和QP(T2),用Kirchhoff定律验证时,与下述公式的计算结果不符,试解释原因。△rHm(T2)=△rHm(T1)+ 21

T

rPT

CdT

(7)从同一始态A出发,经历三种不同途径到达不同的终态:(1)经等温可逆过程从A→B;(2)经绝热可逆过程从A→C;(3)经绝热不可逆过程从A→D。试问: (a)若使终态的体积相同,D点应位于BC虚线的什么位置,为什么? (b)若使终态的压力相同,D点应位于BC虚线的什么位置,为什么,参见图2.16。 (8)在一个玻璃瓶中发生如下反应:

22()()2()hvHgClgHClg 反应前后T,p,V均未发生变化,设所有的气体都可以

看作是理想气体。因为理想气体的热力学能仅2021.03.09 欧阳法创编 2021.03.09

2021.03.09 欧阳法创编 2021.03.09

是温度的函数,U=U(T),所以该反应的△U=0。这个结论对不对?为什么? 【答】(1)不会,因为要使液体沸腾,必须有一个大于沸点的环境热源,而槽中水的温度与试管中水的沸点温度相同无法使其沸腾。 (2)不能,因为将室内看成是一个绝热的封闭体系,接通电源后相当于环境对体系做电功Wf,QV=0;We=0; △U=QV+ We+ Wf= Wf>0,所以室内温度将会升高,而不是降低。 (3)不能,因为可逆热机的效率是指热效率,即热转换为功的效率,而不是运动速率,热力学没有时间的坐标,所以没有速度的概念,而可逆途径的特点之一就是变化无限缓慢,所以只能使火车的速度减慢而不能加快火车的速度。 (4)在密闭的容器中放热较多,因为Zn与稀硫酸作用,在敞口的容器中进行时放出的热为QP,在密闭的容器中进行时放出的热为QV,而QP=QV+△n(RT),△n=1,QP和QV均为负值,所以|QV|>|QP| 。 (5)压缩空气突然冲出筒外,可视为决热膨胀过2021.03.09 欧阳法创编 2021.03.09

2021.03.09 欧阳法创编 2021.03.09

程,终态为室内气压pθ ,筒内温度降低,盖上筒盖,过一会儿,温度升至室温,压力大于pθ 。 (6)Kirchhoff定律中的△rHm(T2)和△rHm(T1)是按反应计量系数完全进行到底,即ξ=1mol 时的热效应,实验测得的热量是反应达到平衡时放出的热量,即ξ<1mol,它们之间的关系为△rHm =△rH /ξ ,所以△rH 的值不符合Kirchhoff定律。 (7)从同一始态出发经一绝热可逆膨胀过程和一经绝热不可逆膨胀过程,当到达相同的终态体积V2或相同的终态压力p2时,绝热可逆过程比绝热不可逆过程作功大,又因为W(绝热)=CV

(T2-T1),所以T2(绝热不可逆)大于T2(绝

热可逆),在V2相同时,p=nRT/V,则p2(绝热不可逆)大于 p2(绝热可逆)。在终态p2相同时,V =nRT/p ,V2(绝热不可逆)大于 V2

(绝热可逆)。

不可逆过程与等温可逆过程相比较:由于等温可逆过程温度不变,绝热膨胀温度下降,所以T22021.03.09 欧阳法创编 2021.03.09

2021.03.09 欧阳法创编 2021.03.09

(等温可逆)大于T2(绝热不可逆);在V2相同时, p2(等温可逆)大于 p2(绝热不可逆)。在p2相同时,V2(等温可逆)大于 V2(绝热不可逆)。 综上所述,从同一始态出发经三种不同过程, 当V2相同时,D点在B、C之间,p2(等温可逆)>p2(绝热不可逆)> p2(绝热可逆) 当p2相同时,D点在B、C之间,V2(等温可逆)> V2(绝热不可逆)>V2(绝热可逆)。 (8)由热力学第一定律:

efdUQWQWW,而0Q,体积没有

变,所以0eW,fW为非体积功,在该反应中h为光能,是另一种形式的功,所以0dU,所以该判断不对。 【3】.可逆过程有哪些基本特征?请识别下列过程中哪些是可逆过程。 (1)摩擦生热; (2)室温和大气压力(101.3 kPa)下,水蒸发为同温、同压的气;

相关文档
最新文档