小波变换 学习笔记
第9章小波变换基础

a
与a无关。
定义: Q / 0 =带宽/中心频率
t 为小波 (t )的品质因数,对 ( ) ,其
/ a 带宽/中心频率= / a / 0 Q 0
a
第9章 小波变换基础
第9章 小波变换基础
不同尺度下小波变换所分析的时宽、带宽、时间 中心和频率中心的关系
分辨率要好,而时间的分辨率可以放宽,同时分析的中
心频率也应移到低频处。显然,小波变换的特点可以自
动满足这些客观实际的需要。
第9章 小波变换基础
用较小的a对信号作高频分析时,实际上是用高 频小波对信号作细致观察,用较大的a对信号作低 频分析时,实际上是用低频小波对信号作概貌观 察。小波变换的这一特点即既符合对信号作实际分 析时的规律,也符合人们的视觉特点。
WTx (a, b)第9章 小波变换基础
微分性质
如果x(t)的CWT是 WTx (a, b) ,令 y (t ) dt x(t ) , 则 WTy ( a, b) WTx ( a, b) b (9.3.3) 1 dx(t ) t b 证明: WT y (a, b) a dt ( a )dt
WTx (a, b)
a,b
给定一个基本函数,令
x(t ) (t )dt x(t ), a ,b (t )
1 t b x ( t ) ( )dt a a
(9.1.2)
第9章 小波变换基础
信号x(t )的小波变换 WT (a, b) 是a和b的函数, x
t / 2
(a 1/ 2) 2 0 (a 1)
2
t
2 t
0
/ 2
(a 2) 0 / 2
小波分析基础学习资料

(t)
1
1
x0,
1 2
x12
,1
(1.11)
数学上已经证明:
( 2 jt k ) |j ,k Z
(1.12)
构成L2(R)的一个正交基,通过规范化处理, j
小波级数、信 号的小波逼近
j,k(t)22 (2jtk) (j,k Z ) (1.13)
构成L2(R)的一个规范正交基。故任何一个能量有限信号 f(t)L2(R) 可以分解为
(4) 将所选择的小波函数尺度伸缩一个单位,然后重复 步骤(1)、(2)、(3),如图所示;
(5) 对所有的尺度伸缩重复步骤(1)、(2)、(3)、(4)。
❖ 尺度与频率的关系
尺度与频率的关系如下: ➢ 小尺度a 压缩的小波快速变换的细节高频部分 ➢ 大尺度a 拉伸的小波缓慢变换的粗部低频部分
College of Mathematics and Computer Science, Hebei University
傅立叶分析不能刻画时域信号的局部特性; 傅立叶分析对非平稳信号的处理效果不好。 下面通过例子来说明这两点。
例、歌声信号 歌声是一种声音震荡的波函数,其傅立叶变换就是将这个波函数转化成
某种乐谱。但遗憾地是,傅立叶变换无法反映信号在哪一时刻有高音,在 哪一时刻有低音,因此结果是所有的音符都挤在了一起,如图所示。
将a,b离散化,令
a 2 j, b 2 jk , j,k Z
(2.5)
可得离散小波变换:
(DW f)(j,k)f(t) , j,k(t)
(2.6)
j
j,k(t)22(2jtk),j,kZ
(2.7)
总结:小波即小区域的波,是一种特殊的长度有限、平均 值为零的波形。它有两个特点:一是“小”,即在时域具有 紧支集或近似紧支集;二是正负交替的“波动性”,也即支 流分量为零。傅立叶分析是将信号分解成一系列不同频率的 正弦波的叠加,同样小波分析是将信号分解为一系列小波函 数的叠加,而这些小波函数都是由一个母小波函数经过平移 和尺度伸缩得来的。
小波分析学习心得

小波分析学习心得学习小波分析这门课程已经有一段时间了,我对于这一门课程已经有了一定程度的认识。
由于学科专业所限,我平时接触小波分析的机会并不是很多,很高兴在这个学期能够有机会专门学习小波分析。
经过这一段时间小波分析的学习,虽然我还不能说是精通小波分析,不过也是对其中的一些基本概念有了一定的理解。
后文中,我将会对在小波分析学习过程中所得到的一些学习心得进行总结。
我们通常说的波一般指的是物质的一种运动方式,在数学中它对应于时间域或空间域的震荡方程。
正弦波就是一种最为常见的波,它的振幅均匀的分布时域中,并不收敛,所具有的能量是无穷的。
小波,顾名思义,就是小的波,它的能量是有限的,相对于正弦波而言,它的振幅在时域上是收敛的,能量并不是无穷的。
傅里叶变换将函数投影到正弦波上,将函数分解成了不同频率的正弦波,这是一个非常伟大的发现,但是在大量的应用中,傅里叶变换的局限性却日趋明显,事实上在光滑平稳信号的表示中,傅里叶变换已经达到了近似最优表示,但是日常生活中的信号却并不是一直光滑的,傅里叶变换在奇异点的表现就令人非常不满意,从对方波的傅里叶逼近就可以看出来,用了大量不同频率的正弦波去逼近其系数衰减程度相当缓慢。
其内在的原因是其基底为全局性基底,没有局部化能力,以至局部一个小小的摆动也会影响全局的系数。
很多应用场合要求比较精确的时频定位,傅里叶变换的缺点就越来越突出了。
窗口傅里叶变换将信号乘上一个局部窗,然后再做傅里叶变换,获得比较好的时频定位特性,再沿时间轴滑动窗口,得到整个时间轴上的频率分布,似乎到这里就应该结束了,因为我们可以把窗设计小点获得较高的时间分辨率,并期望有同样高的频率分辨率,但测不准原理无情的告诉我们,没有这么好的窗能在时间和频率都任意小的,最优的就是高斯窗了(窗的选取还需满足频率域也为窗函数,并不是每个时窗都满足这个条件的)。
通过短时傅里叶变换我们可以画出时频图,但是存在问题:当我们分析频率较高部分信号时应该用更窄的窗,反之用宽窗,但短时傅里叶变换一旦选定窗过后,分辨率就固定了,若要其他分辨率则需要更换窗。
小波变换去噪基础知识整理

1.小波变换的概念小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
有人把小波变换称为“数学显微镜”。
2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么?有几种定义小波(或者小波族)的方法:缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。
在双正交小波的情况,分解和重建的滤波器分别定义。
高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。
例如Daubechies和Symlet 小波。
缩放函数:小波由时域中的小波函数(即母小波)和缩放函数(也称为父小波)来定义。
小波函数实际上是带通滤波器,每一级缩放将带宽减半。
这产生了一个问题,如果要覆盖整个谱需要无穷多的级。
缩放函数滤掉变换的最低级并保证整个谱被覆盖到。
对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。
例如Meyer小波。
小波函数:小波只有时域表示,作为小波函数。
例如墨西哥帽小波。
3.小波变换分类小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。
两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。
DWT用于信号编码而CWT用于信号分析。
所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。
4.小波变换的优点从图像处理的角度看,小波变换存在以下几个优点:(1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述)(2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性(3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)(4)小波变换实现上有快速算法(Mallat小波分解算法)另:1) 低熵性变化后的熵很低;2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性3) 去相关性域更利于去噪;4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。
小波包变换(WaveletPacketTransform)的学习笔记

⼩波包变换(WaveletPacketTransform)的学习笔记对于⼀个连续的周期信号,可以将其分解为⼀组频率不同的三⾓函数信号的线性组合,这就是傅⾥叶级数的本质,将信号从时域投影到频域中的不同频段上来完成分解。
当这个周期信号的周期趋近于⽆穷⼤时,傅⾥叶级数就变成了傅⾥叶变换。
此时的信号本质上是⼀个连续⾮周期信号,傅⾥叶变换的意义就在于对其进⾏分解,同样也是以⼀组三⾓函数作为正交基,并通过这组三⾓函数基的线性组合来表⽰原信号。
数学表达为:由于三⾓函数是⼀个⽆限长的信号,在时域上不具有局部性,因此以其作为正交基对信号进⾏拟合时,具有以下两个不⾜:第⼀,对于突变信号,如阶跃信号或尖峰信号,其需要⼤量的三⾓函数基进⾏组合才能完成较好的信号拟合;第⼆,由于三⾓函数不具备在时域上的局部性,因此在对信号进⾏傅⾥叶变换时,仅仅只能获取到信号在频域上的分布信息,并不能获取到这些不同频率的信号分量在时域上出现的位置。
因此傅⾥叶变换对于⾮平稳信号的分解会遗失其在时域上的变化信息。
⼩波变换就是为了解决对⾮平稳信号的分解问题⽽产⽣的数学⽅法。
相⽐于傅⾥叶变换使⽤⼀组⽆限长的三⾓函数基进⾏信号拟合,⼩波变换使⽤的是⼀组正交的、迅速衰减的⼩波函数基进⾏信号拟合。
这种⼩波函数基可通过其尺度变量和平移变量,获得不同的频率和时间位置。
因此在利⽤这种⼩波函数基对信号进⾏分解时,可以⽤较少的⼩波函数基就拟合出突变信号(稀疏编码特性),同时也能获得不同频率的信号分量在时域上的出现位置。
⽤于⽣成⼀组不同频率和时移的⼩波函数的⼩波函数,称为基本⼩波(Basic Wavelet),由其⽣成的⼀组⼩波函数,是该基本⼩波的⼀个⼩波族(Wavelet Family),表⽰为:,其中为尺度参数,通过伸缩控制⼩波的尺度(频率),为平移参数,通过移位控制⼩波在时域中的出现位置。
这两个参数的作⽤顺序是先作平移,再作伸缩。
对这⼀族⼩波函数进⾏归⼀化,即得到⼀组⼩波函数基。
小波变换轻松入门(我的理解说明)

⼩波变换轻松⼊门(我的理解说明)⼩波变换轻松⼊门(我的理解说明)第⼀节⼀个很简单的例⼦还谈不上正式⼊门但他具备了部分的思想。
[x0,x1,x2,x3]=[90,70,100,70]为达到压缩我们可取 (x0+x1)/2 (x0-x1)/2 来代表 x0,x1 这样[90,70] 可表⽰为 [80,10] 80即平均数 10是⼩范围波动数(可想象出⼀种波的形状) [90,70] --〉[80,10] , [100,70] --〉 [85,15] 可以想象80 和85 都是局部的平均值 反映⼤的总体的状态,低频部分的值;⽽10、15是⼩范围波动的值局部变换是变化相对缓慢的值,可以认为他们是低频部分⾼频部分的值。
较快 可以认为他们是⾼频部分1. FIRST: 把[90,70,100,70] 写成 [80,85,10,15] 即把低频部分写在⼀起(记频率L)⾼频部分写在⼀起(H)2. (90+70)/2,(100+70)/2,(90-70)/2,(100-70)/23. L=[80,85],H=[10,15]4. SECOND: ⽽[80,85] ⼜可经同样的变换--> [82.5, -2.5] 这样 82.5表⽰更低频的信息(记频率LL) -1.5则表⽰了频率L上的波动5. 最后90,70,100,70] --〉[82.5, -2.5, 10, 15] (LL,LH,H,H) 这样信息就可被压缩了(数字范围⼩了)这就是⼆级变换 同样的你可以进⾏更⾼级的变换。
呵呵,很简单吧?现在再来扩展⼀下 [90,70]---> [80,10] 写成矩阵[90,70] * [1/2, 1/2] [1/2 ,-1/2] Haar转换矩阵[1,1]H= [1,-1] /2第⼀步就可写成矩阵M1 [1/2, 0, 1/2, 0] [1/2, 0, -1/2, 0] [0, 1/2,如果是[90,70,100,70] 第⼀步就可写成矩阵 0, 1/2] [0 , 1/2, 0, -1/2]M1=[0.5000 0 0.5000 00.5000 0 -0.5000 00 0.5000 0 0.50000 0.5000 0 -0.5000]第⼆步只对低频 L操作⾼频不变故可写成M2 1/2, 1/2, 0, 0 1/2, -1/2, 0, 0 0, 0, 1, 0 0, 0, 0, 1M2=[0.5000 0.5000 0 00.5000 -0.5000 0 00 0 1.0000 00 0 0 1.0000]令M=M1*M2 则可对4*4 的点阵操作0.2500 0.2500 0.5000 00.2500 0.2500 -0.5000 00.2500 -0.2500 0 0.50000.2500 -0.2500 0 -0.5000]。
小波分析知识点总结
小波分析知识点总结小波分析的基本思想是利用小波函数对信号进行分解,得到不同尺度和频率的成分,然后对这些成分进行分析。
小波函数通常具有局部化特性,能够反映信号的局部特征,在时域和频域上都具有一定的分辨率,因此可以更准确地描述信号的时频特性。
小波分析主要包括小波变换、小波系数的选择、小波包分析、小波域滤波等内容。
下面将从这些方面对小波分析进行介绍。
1. 小波变换小波变换是小波分析的核心内容,它将信号分解成不同尺度和频率的成分。
小波变换包括连续小波变换和离散小波变换两种形式。
连续小波变换将信号分解成不同尺度和频率的成分,并且可以实现任意精细程度的分解。
但是由于小波函数是连续的,计算复杂度较高,因此应用较为有限。
离散小波变换是将连续小波变换进行离散化处理,从而降低计算复杂度。
离散小波变换可以通过小波分解和小波重构过程来实现信号的分解和重构,具有较好的实用性和计算效率。
小波变换具有多重分辨率分析的特点,可以在不同尺度和频率上对信号进行分析,具有较好的时频局部化特性。
2. 小波系数的选择小波系数对信号的分解和重构效果具有重要影响。
通常情况下,小波系数是由小波函数的形状和尺度决定的,不同的小波函数对信号的分解和重构效果有一定的影响。
常用的小波函数包括哈尔小波、Daubechies小波、Meyer小波、Gabor小波等。
这些小波函数具有不同的形状和尺度特性,可以适用于不同类型的信号。
在选择小波系数时,需要考虑信号的特点和分析的目的,选择合适的小波函数和尺度参数,以实现更好的分解效果。
3. 小波包分析小波包分析是小波变换的一种扩展形式,它能够对信号进行更为细致的分解。
小波包分析将信号进行逐层分解,得到更为丰富的频率成分,能够更准确地描述信号的时频特性。
小波包分析通常采用二叉树结构进行信号分解,在每层分解中都能够获得更为细致的频率分量。
小波包分析可以实现任意精细程度的频率分解,能够更充分地利用小波函数的局部化特性,对信号进行更为全面的时频分析。
小波分析学习笔记
小波分析学习笔记小波变换是克服其他信号处理技术缺陷的一种分析信号的方法。
小波由一族小波基函数 构成,它可以描述信号时间(空间)和频率(尺度)域的局部特性。
采用小波分析最大优点 是可对信号进行实施局部分析,可在任意的时间或空间域中分析信号。
小波分析具有发现其 他信号分析方法所不能识别的、隐藏于数据之中的表现结构特性的信息,而这些特性对机械 故障和材料的损伤等识别是尤为重要的。
如何选择小波基函数目前还没有一个理论标准,常用的小波函数有 Haar 、 Daubechies(dbN)、 Morlet 、 Meryer 、Symlet 、Coiflet 、Biorthogonal 小波等15种。
但是小波变换的小波系数为如何选择小波基函数提供了依据。
小波变换后的系数比较大,就表明了小波和信号的波形相似程度较大;反之则比较小。
另外还要根据信号处理的目的来决定尺度的大小。
如果小波变换仅仅反映信号整体的近似特征,往往选用较大的尺度;反映信号细节的变换则选用尺度不大的小波。
由于小波函数家族成员较多,进行小波变换目的各异,目前没有一个通用的标准。
小波基:一般从线性相位,消失矩,相似性,紧支撑等来选择。
二进离散小波变换是最常用的离散小波变换,它对变换域的尺度参数a ,平移参数b 进行二进离散化处理,即a=2j ,b=k2j ; j,k ∈Z 。
其小波函数及变换系数表达式如下:二进小波函数:()-j/2-j j,k ψ(t)=2ψ2t-k ;二进小波变换: ()()()-j/2+j j -j -WT 2,k2=2ψ2t-k dt ff t ∞∞⎰; 二进小波逆变换: ()()++-12a,b ψf --da=C ψt WT a,b db a ()f t ∞∞∞∞⎰⎰()2+ψ-ˆψωC =d ωω;∞∞⎰其中()()ˆψω=FT ψ(t); 多分辨率分析(Multi Resolution Analysis, MRA )通过构造在频率上高度逼近L 2(R)空间的正交小波基(相当于带宽各异的带通滤波器组),将信号分解为低频部分(近似分量)和高频部分(细节分量)。
小波变换总结
小波理论总结目录一、基础知识 (4)1.起源与发展 (4)2.傅里叶分析 (4)(1)傅里叶变换(FT)定义 (4)(2)傅里叶变换的性质 (5)(3)离散傅里叶变换(DFT) (5)3.泛函分析 (6)(1)函数空间 (6)(2)基底及展开 (7)(3)正交基 (7)(4)双正交基 (7)(5)框架 (8)(6)Riesz基 (8)(7)紧支撑 (8)二、窗口傅里叶变换 (9)1.傅里叶变换的缺点 (9)2.Gabor变换 (9)3.时窗/频窗处理 (10)4.基本定义 (10)5.Gabor变换的缺点 (10)三、小波变换 (10)1.连续小波变换 (11)1)母小波 (11)2)小波基函数 (11)3)连续小波变换 (11)4)性质 (12)2.离散小波变换 (12)(1)二进小波变换 (12)(2)小波框架 (13)(3)对偶小波 (13)(4)小波逆变换 (14)四、多分辨分析 (14)1.多分辨分析 (15)2.正交小波变换 (16)3.正交小波变换的具体实现 (17)4.双正交小波变换 (17)5.一维Mallat算法 (18)6.二维Mallat算法 (20)五、小波包分析 (22)1) 小波包的定义 (23)2) 小波包的性质 (23)3) 小波包的空间分解 (24)4) 小波库 (25)5) 小波包算法 (25)六、小波基选择标准 (26)1、支撑长度 (26)2、对称性 (26)3、消失矩 (26)4、正则性 (27)5、相似性 (27)六、常用的连续小波基函数 (27)1. 常用的连续小波基函数 (27)(1)Haar小波 (27)(2)Daubechies(dbN)小波系 (28)(3)Biorthogonal(bior N r.N d)小波系 (29)(4)Coiflet(coif N)小波系 (30)(5)Morlet 小波 (30)(6)Marr小波(Mexcian hat) (31)(7)DOG(Difference of Gaussian)小波 (32)(7)Meyer函数 (32)2. 信号的连续小波变换 (33)七、第二代小波变换 (34)1.提升方案 (34)2.把小波变换分解成基本的提升步骤 (36)3.整数小波变换 (39)4.第二代小波变换具体实现 (40)八、小波图像编码 (41)1.小波变换图像编码的基本框架 (41)1) 解相关变换过程 (42)2) 量化过程 (42)3) 熵编码过程 (43)2.SPIHT算法 (43)1) 嵌入式零树编码(EZW)算法 (43)2) 在层次树中的集划分(SPIHT)算法 (45)一、基础知识1.起源与发展小波理论是建立在傅里叶分析和泛函分析基础之上的时频分析工具之一。
小波分析笔记一。
小波方法率参数,b 是时空参数。
在实际应用中,常选取h 与hˆ为在有界区间外为0或衰减较快的函数,所以小波可以实现时频的局部化。
加上小波的自适应能力,可使小波在描述信号时具有变焦的能力,这就解决了傅里叶函数和傅里叶加窗函数不能满足的特性。
概括的来说小波变换就是能满足这样要求的一种变换,小波函数中存在与局部频率相对应的尺度因子,可以改变时频窗口的形状,却不改变窗口的面积,当尺度因子逐渐减小时,小波函数的频谱便渐趋高频方向,而其宽度则渐趋狭小。
据此满足了信号的频度愈高,它在时空域上的分辨率愈高的要求。
小波分析由于对高频成分采用逐步精细的时域或空域取样步长,从而可以聚焦到对象的任意细节,故赢得了“数学显微镜”得美誉。
虽然从原则上讲,以往使用付里叶分析的场合现在都可采用小波分析,尤其对非平稳信号的处理,小波分析因能更好地反映其频率特性而取得更好的结果。
但小波分析并不能完全取代付里叶分析,在处理渐变信号时,付里叶或加窗付里叶分析较之小波分析更为有效。
二者配合才可适应任意信号的分析与处理。
二、小波方法1、尺度函数空间假设是在三维空间里表达一个向量,我们需要建立一个三维的坐标系,只要坐标系建立我们就可以用三个点(x,y,z )来简单的表示一个向量,同样的在一个信号我们设为f(t),要想表示它,我们可以用一个个正交的简单函数来构建坐标系,然后将f(t)映射在这些简单的正交函数上,产生一个系数,这些系数我们就可以等同于(x,y,z),只是由于它的维数是超过3维的不好想象。
总之就是利用相互正交的简单函数,构建一个表达信号的空间“坐标系”,然后就可以用这些系数和正交函数来表示f(t)。
这就是小波的核心思想,在小波分析中这个构建坐标系的函数,就是小波函数,但是在小波函数来表示一个信号的时候,它其实是将信号映射在了时频平面内的,这里面就有一个问题,在实现过程中需要对一个频域的底座和平台,来让信号f(t)与之做映射后是在一定的频率分辨率上进行的,这个起到底座的函数就是尺度函数,在尺度函数的平台下对频率的分析,或者说对信号的f(t)的表达就是小波函数的作用了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.与傅里叶变换比较:
Fourier变换:全局性变换。
不具备局部分析能力,不能分析非平稳信号。
小波变换:时间和频域的局域变换,能有效从信号中提取信息,通过伸缩和平移等对函数或信号多尺度细化分析。
能充分突出问题某些方面的特征。
2.小波wavelet
小区域,长度有限,均值为0的波形。
小指衰减性;波指波动性。
最终达到高频处时间细分(短的时间间隔),低频处频率细分(长的时间间隔)。
3.信号去噪与压缩
在小波变换域上进行阈值处理:
多层小波分解—阈值处理—多层小波重构
4.多小波的概念
其基本思想是将单小波中由单个尺度函数生成的多分辨分析空间,扩展为由多个尺度函数生成,以此来获得更大的自由度。
5. 小波的缩放因子与信号频率之间的关系可以这样来理解。
缩放因子小,表示小波比较窄,度量的是信号细节,表示频率w 比较高;相反,缩放因子大,表示小波比较宽,度量的是信号的粗糙程度,表示频率w 比较低。
6.在计算连续小波变换时,实际上也是用离散的数据进行计算
的,只是所用的缩放因子和平移参数比较小而已。
不难想象,连续小波变换的计算量是惊人的。
为了解决计算量的问题,缩放因子和平移参数都选择2 ^j( j>0的整数)的倍数。
使用这样的缩放因子和平移参数的小波变换叫做双尺度小波变换(dyadic wavelet transform),它是离散小波变换(discrete wavelet transform,DWT)的一种形式
7.小波消噪方法:
将信号映射到小波域,根据噪声和噪声的小波系数在不同尺度上具有不同的性质和机理,对含噪信号的小波系数进行处理。
A.对实际信号进行小波分解,选择小波并确定分解层次为N,噪声通常在高频中。
B.对小波分解的高频系数进行门限阈值量化处理。
C.根据小波分解的第N层低频系数和经过量化后的1——N层高频系数进行小波重构。
恢复真实信号。
强制消噪处理:高频成分全变为零。
默认阈值消噪处理:利用ddencmp函数产生默认阈值,用wden 函数消噪处理。
8.支撑长度:即当时间或频率趋向无穷大时,从一个有限值收敛到零的速度。
9.在小波分析中,近似值是大的缩放因子产生的系数,表示信
号的低频分量。
而细节值是小的缩放因子产生的系数,表示信号的高频分量。