小波分析与实例
小波分析及其应用

小波分析及其应用小波分析是一种将信号分解成不同频率的方法,它具有时频局域性等优点,广泛应用于信号处理、模式识别、图像处理、生物医学工程等领域。
本文将从小波分析的概念、算法及其应用等方面进行详细介绍。
小波分析最早由法国数学家莫尔。
尼斯特雷(Morlet)于20世纪80年代初提出。
它可以将原始信号分解成不同频率的小波基函数,通过对小波基函数进行不同尺度的平移和伸缩来适配信号的不同频率成分。
与传统的傅里叶变换相比,小波分析可以提供更精确的时频信息,适用于非平稳信号的分析。
小波分析的算法主要有两种:连续小波变换(CWT)和离散小波变换(DWT)。
连续小波变换是将信号与连续的小波基函数进行卷积得到小波系数,然后通过小波系数的时频表示来分析信号。
离散小波变换则是通过对信号进行多级滤波和下采样得到不同频率的小波系数,然后通过小波系数的分解和重构来还原信号。
小波分析的应用非常广泛。
在信号处理领域,小波分析可用于信号的去噪、特征提取和模式分析等。
例如,在语音信号处理中,小波分析可以提取出语音信号的共振峰位置和共振器参数,从而实现语音识别和语音合成。
在图像处理领域,小波分析可用于图像的边缘检测、纹理分析和压缩等。
例如,在图像压缩中,小波变换可以将图像的低频和高频信息分开编码,从而实现更高的图像压缩比。
在模式识别领域,小波分析可以用于图案识别和模式分类。
例如,在人脸识别中,小波分析可以对人脸图像的尺度和方向进行多尺度和多方向的分析,从而提取出不同特征,进而实现人脸的识别。
在生物医学工程领域,小波分析可用于心电信号的分析和疾病检测等。
例如,在心电信号的分析中,小波分析可以提取出心电信号的不同频率成分,从而实现对心脏疾病的检测和分析。
总之,小波分析是一种重要的信号分析方法,具有时频局域性和多分辨率分析的特点,广泛应用于信号处理、模式识别、图像处理和生物医学工程等领域。
通过对小波基函数进行不同尺度的平移和伸缩,可以实现对信号不同频率成分的分解和分析,并提取出信号的时频特征,从而实现对信号的处理和分析。
小波分析-经典案例

时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
用matlab小波分析实例

1 绪论1.1概述小波分析是近15年来发展起来的一种新的时频分析方法。
其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。
而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。
从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。
这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。
但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。
其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。
换言之,短时傅立叶分析只能在一个分辨率上进行。
所以对很多应用来说不够精确,存在很大的缺陷。
而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。
因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。
用matlab小波分析的实例

1 绪论1.1概述小波分析是近15年来发展起来的一种新的时频分析方法。
其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。
而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。
从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。
这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。
但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。
其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。
换言之,短时傅立叶分析只能在一个分辨率上进行。
所以对很多应用来说不够精确,存在很大的缺陷。
而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。
因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。
15 小波分析方法

形,具有固定的面积4Δ(g)Δ(G),这个矩形的中心
坐标可用(b,ω)表示为(E(g)+b,E(G)+ω)。
*
对于任意的实数对 (a , b) ,其中,参数 a 必须 为非零实数,称如下形式的函数
X ) a ,b(
1 x b ( ) a a
为由小波母函数ψ (x)生成的依赖于参数(a,b) 的连续小波函数,简称为小波。其中, a 称为 伸缩尺度参数,b称为平移尺度参数。
几个比较典型的小波: ①Shannon小波
任意的函数f(x)小波变换是一个二元函数。对于任 意参数对(a,b),小波函数ψ (a,b)(x)在x=b的附近 存在明显的波动,远离x=b的地方将迅速地衰减到 0,Wf(a,b)的本质就是原来的函数或者信号f(x)在 x=b点附近按ψ(a,b)(x)进行加权的平均,体现的是以 ψ(a,b)(x)为标准快慢尺度的f(x)的变化情况,一般称 参数a为尺度参数,而参数b为时间中心参数。
2 da f ( x ) W ( a , b ) ( x ) db f ( a , b ) 2 0 C a
离散小波变换 ⑴ 二进小波和二进小波变换
如果小波函数ψ (x)满足稳定性条件
A
j j ( 2 ) B 2
R
其小波变换的反演公式是
k f( x ) 2 W b ) t ( x ) db k f( ( 2 , b ) k R
小波分析在信号处理中的应用

小波分析在信号处理中的应用随着现代通信技术和电子设备的不断发展,我们所接收到的各种信号越来越复杂。
为了更好地处理这些信号,人们就开始了对信号进行分析和处理的研究。
其中,小波分析就是一种被广泛应用的信号处理方法。
小波分析起源于上世纪70年代初,最初是为了处理地震信号而发明的。
后来,由于其可适用性和高效性,小波分析开始在其它领域得到广泛的应用,如图像处理、语音处理、金融分析等。
由于其独特的分析方式和处理方法,小波分析已经成为传统信号处理的重要组成部分。
一、小波分析的原理小波分析采用一种图形化处理的思路,把信号波形划分成不同尺度的小波,并进行分析。
这种处理可以简单地理解为把一条曲线分解成一系列不同频率的正弦曲线,进而可以对每条正弦曲线进行分析和处理。
小波分析的特点在于它不像傅里叶变换那样只能处理静态的信号,而可以处理时变的信号。
小波分析利用的是具有局部性的函数来分析信号,使得它的分析结果更加准确独特。
同时,小波分析还可以根据信号的性质、噪声情况等对信号进行有针对性的分析和处理。
二、小波分析的应用小波分析在信号处理中有着广泛的应用,下面分几个方面进行介绍。
1、音频信号处理在音频信号处理中,小波分析可以对音频信号进行分析和压缩。
例如,对于一段音频信号,可以将其分解成不同频率段的小波,并对每个小波分别进行处理。
通过这种方式,可以将音频信号进行去噪和压缩,从而获得更好的音质效果。
2、图像处理在图像处理中,小波分析可以分解图像,并进行特征提取、去噪或图像压缩等处理。
小波分析可以把图像分成不同的频率段,通过不同频率段间的差异来提取、去除图像的某些特征,从而得到更加清晰准确的图像。
3、金融分析在金融分析中,小波分析可以对股票、期货等金融数据进行分析。
例如,可以利用小波分析来捕捉股票价格过程的多尺度移动性特征,也可以用小波分析来提取金融数据的周期性和趋势性。
4、医学信号处理在医学信号处理中,小波分析可以用来分析生理信号,例如心电信号、脑电信号等。
小波分析-经典解读

时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
小波分析MATLAB实例

到小波分析1 背景传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。
在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。
小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。
小波变换是近年发展起来的一种基于时频域的信号分析工具,它具有良好的时频局部性、选基灵活性和去相关性等优点,可用于光谱信号的噪声滤波和基线校正等。
此后,多位物理、数学家的合作共同奠定了小波变换的理论和应用基础。
由于小波变换能够更精确地分析信号的局部特征,在很多领域得到了越来越多地应用。
小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图象处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。
在信号分析方面的滤波、去噪声、压缩、传递等。
在图象处理方面的图象压缩、分类、识别与诊断,去污等。
以及在医学方面的应用,如核磁共振成像时间、提高CT 、B超等分辨率。
2 小波变换的产生及去噪的必要性我们在一维信号分析中,可知傅里叶变换将信号分解成一系列不同频率的正弦或余弦波的叠加,与之类似,小波变换也可将信号分解成一系列小波函数的叠加,这一系列小波函数都由某个母小波函数经过平移和尺度变换得来。
以不规则的小波信号来逼近局部信号显然比用光滑的正弦信号逼近程度要好,而用不同尺度小波对同一信号进行逼近又有利于对信号进行逐步细致的分析,这正是小波分析的基本思想。
小波变换采用变化的时频窗,窗口面积固定,但形状可变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做 紧支撑集。
比如:在(-1,1)之间的高斯函数。 ②L² (R):满足 f的全体。
f (t ) dt 成立的自变量为实数的实值或复值函数
2 0
2
L² (0,2π):f(x+2π)=f(x),
f (t ) dt
一个信号离散信号x(n)经过这一系列带通滤波器滤波后, 将得到一组系数Vi(n)。如下图所示:
这样,我们就把一个信号分解成了不同频率的分量。只要 这些带通滤波器的频率能够覆盖整个原信号x(n)的频谱范 围,反变换时,把这些不同频率信号,按其分量大小组合 起来,就可得到原信号x(n)。这样一组带通滤波器就称为 滤波器族。
jZ jZ
R
f (t ) * (2 j t k )dt
f (t ) W2 j f (k ) 2 j (t ) W2 j f ( x) 2 j (2 j t k )dk
3、多尺度分析与Mallat算法
多分辨分析
为了改变信号的分辨率使得人们可以根据特定的目标处 理相关的细节,1983年,P.J.Burt与E.A.Adelson在计算机 视觉的应用中引进了一个能够处理低分辨率图像,同时根 据需要进一步提高图像分辨率的多分辨率Laplace塔式算 法。1986年Mallat和Meyer构造了多分辨分析公式。随着 多分辨分析的出现,构造小波的困难得到了较圆满的解决。 为了对信号进行较高分辨率的处理,需要一种所谓的“增量 信息”。为此,Mallat选用正交小波基作为对“增量信息”进 行数学描述,并最终发展成为了多分辨分析。
小波的3 个特点
小波变换,既具有频率分析的性质,又能表示 发生的时间。有利于分析确定时间发生的现象。 (傅里叶变换只具有频率分析的性质) 小波变换的多分辨度的变换,有利于各分辨度 不同特征的提取(图象压缩,边缘抽取,噪声 过滤等) 小波变换比快速Fourier变换还要快一个数量 级。信号长度为M时, Fourier变换(左)和 小波变换(右)计算复杂性分别如下公式:
事件相关电位
股市折线图
1、傅里叶变换与小波分析
加窗傅里叶变换(短时傅里叶变换STFT)
1、傅里叶变换与小波分析
窗划分太窄,窗内的信号太短,会导致频率分析不够精准,频率分辨率差。
窗划分太宽,时域上又不够精细,时间分辨率低。
1、傅里叶变换与小波分析
小波定义: ①小 ②波动性: ( x)dx 0
3、多尺度分析与Mallat算法
这里仍然有个问题。每次都将频谱分为剩下的一半, 那实际上,我们永远也取不到整个频段。就好比一杯 水,每次都只许喝一半,那将永远无法把它完全喝完 。所以,这样分割后的函数仍然是无限多的。为解决 这个问题,终于引出了我们最初想讨论的尺度函数的 概念。 在上图中,我们对频域进行分割,当分割到某个频 率j时,不再继续分割了,剩下的所有低频部分由一个 低通滤波器来表示,这就可以实现对信号频谱的完整 分割。这个剩余低通滤波器就是尺度函数。事实上, 很容易看出,尺度函数无非就是某级多分辨率分析中 的低通滤波器。也就是图中最下面一级的LP。
3、多尺度分析与Mallat算法
滤波器族能实现将信号分为不同频率分量,从而实现分 解信号并分析信号的目的。但是在滤波器族的计算中, 我们需要指定频域分割方式。研究者们给出了一种分割 方式,即均分法,从而引出了子带编码的概念。 子带编码通过使用均分频域的滤波器,将信号分解为若 干个子带。这样是可以实现无冗余且无误差地对数据分 解及重建目的。但是Mallat在1989年的研究表明,如果 只分为2个子带,可以实现更高效的分解效率。从而引 入了多分辨率分析(MRA)。
Daubechies(dbN)小波系 (多贝西)
多贝西小波是以英格丽· 多贝西的名字命名的一种小波 函数,多贝西小波主要应用在离散型的小波转换,是最常 使用到的小波变换。多贝西小波是一种正交小波,所以它 很容易进行正交变换。 对于有限长度的小波,应用于快速小波变换时,会有 两个实数组成的数列:一是作为高通滤波器的系数,称作 小波滤波器;二是低通滤波器的系数,称为调整滤波器 (尺度滤波器)。 我们通常以滤波器长度N来形容滤波器为dbN,例如 N=2的多贝西小波写作db2;N=4的多贝西小波写作db4。
3、多尺度分析与Mallat算法
3、多尺度分析与Mallat算法
参考: M. Vetterli, ”Wavelets and Subband Coding “, Prentice Hall PTR, 1995 p.11
3、多尺度分析与Mallat算法
滤波器族:下图是一系列带通滤波器的频域图
3、多尺度分析与Mallat算法
对于平稳信号,做完FFT(快速傅里叶变换)后,可以在频谱上看到 清晰的四条线,信号包含四个频率成分。
1、傅里叶变换与小波分析
频率随着时间变化的非平稳信号,进行FFT后:
如左图,最上边的是频 率始终不变的平稳信号。 而下边两个则是频率随 着时间改变的非平稳信 号,它们同样包含和最 上信号相同频率的四个 成分。做FFT后,我们 发现这三个时域上有巨 大差异的信号,频谱 (幅值谱)却非常一致。 尤其是下边两个非平稳 信号,我们从频谱上无 法区分它们,因为它们 包含的四个频率的信号 的成分确实是一样的, 只是出现的先后顺序不 同。
2、小波分析的基本知识—连续小波变换
例: 已知一信号f(t)=3sin(100t)+2sin(68t)+ 5cos(72t),且该信号混有白噪声,对该信号进行连续 小波变换。小波函数取db3,尺度为1、1.2、1.4、 1.6、…、3。其MATLAB程序如下: t=0:0.01:1; f=3*sin(100*pi*t)+2*sin(68*pi*t)+ 5*cos(72*pi*t)+randn(1,length(t)); coefs=cwt(f,[1:0.2:3],db3,plot); title(对不同的尺度小波变换系数值); Ylabel(尺度); Xlabel(时间);
C
Ψ ( )
0
d
2、小波分析的基本知识—二进小波变换
2、小波分析的基本知识—二进小波变 换
2 ,且满足 定义:设yj,k(t)∈L2(R)
( )
jZ
1
(1.64)
由此得到的小波j,k(t)称为二进正交小波。
1 W2 j f (k ) f (t ), 2 j (k ) j 2
草帽函数又称为Marr小波。其在时域、频域都有很好的局部特性,但它的 正交性尺度函数不存在,主要用于信号处理和边缘检测。
23
一维连续小波的例子:
3. Morlet小波:
(t) e e
jt -t 2 / 2
式中,i表示虚数,w表示常数。Morlet小波不具有正交性的同时也不 具有紧支集。其特点是能够获取信号中的幅值和相应的信息,广泛应用于 地球物理信号处理中。
2、小波分析的基本知识
小波正变换:
小波逆变换:
W f (a, b) f (t ) ( a,b ) (t )dt
f (t ) L2 ( R)
1 f (ta,b) (t ) a2
Wf (a, b) 是f(t)在函数 ( a,b) (t ) 上的投影。
小波运算的步骤
• (4)将所选择的小波函数尺度伸缩一个单位,然后重复 步骤(1)、(2)、(3); • (5)对所有的伸缩尺度重复步骤(1)、(2)、(3)、 (4)。
2、小波分析的基本知识 小波基础术语:
①紧支撑:对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到 值;而在此之外,f(x)取值为0。
t b a ,b t a a
1 2
b R, a R 0
称为依赖参数a,b的连续小波,叫基本小波或 小波。若是窗函数,就叫为窗口小波函数,一般我 们恒假定为窗口小波函数。
2、小波分析的基本知识
a为尺度参数
2、小波分析的基本知识
b为位移参数
1、傅里叶变换与小波分析
可见,傅里叶变换处理非平稳信号有天生缺陷。它只能获取一段信 号总体上包含哪些频率的成分,但是对各成分出现的时刻并无所知。因 此时域相差很大的两个信号,可能频谱图一样。然而平稳信号大多是人 为制造出来的,自然界的大量信号几乎都是非平稳的,所以在比如生物 医学信号分析等领域的论文中,基本看不到单纯傅里叶变换这样简单的 方法。
2、小波分析的基本知识—连续小波变换
小波变换的系数如图所示的灰度值图表征,横坐标表示变换系数的系号,纵 坐标表示尺度,灰度颜色越深,表示系数的值越大。
2、小波分析的基本知识—离散小波变换
离散小波变换: 在实际运用中,尤其是在计算机上实现,连续小波 必须加以离散化。因此,有必要讨论一下连续小波a, b(t)和连续小波变换Wf(a,b)的离散化。需要强调指出 的是,这一离散化都是针对连续的尺度参数a和连续平 移参数b的,而不是针对时间变量t的。 t b 1 / 2 在连续小波中,考虑函数 a ,b (t ) a ( ) 这里,b∈R,a∈R+,且a≠0,是容许的,为方便起a 见,在离散化中,总限制a只取正值,这样相容性条件 就变为
小波分析
小波分析讲解
傅里叶变换与小波分析
小波分析的基本知识 多尺度分析与Mallat算法
小波分析的应用
1、傅里叶变换与小波分析
小波分析是近年来迅速发展起来的一个数学分支。除了 在数学学科本身中的价值外,小波分析在许多非数学的 领域也有着广泛的应用。
1、傅里叶变换与小波分析
一、傅里叶变换
21
一维连续小波的例子:
1. Haar小波: