自然数数列前n项和公式证明
(名师导学)2020版高考数学总复习第六章数列第34讲等差数列及其前n项和练习理(含解析)新人教A版

第34讲 等差数列及其前n 项和夯实基础 【p 73】【学习目标】1.掌握等差数列的定义与性质、通项公式、前n 项和公式等. 2.掌握等差数列的判断方法. 3.掌握等差数列求和的方法. 【基础检测】1.数列{a n }是等差数列,a 1=1,a 4=8,则a 5=( )A .16B .-16C .32D .313【解析】因为a 4=8,所以a 1+3d =8, 又因为a 1=1,所以d =73,可得a 5=a 1+4d =313.【答案】D2.已知等差数列{a n }中,若a 4=15,则它的前7项和为( )A .120B .115C .110D .105【解析】由题得S 7=72(a 1+a 7)=72·2a 4=7a 4=7×15=105.【答案】D3.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n【解析】由2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n.【答案】A4.记S n 为等差数列{}a n 的前n 项和,若S 9=45,a 3+a 8=12,则a 7等于( ) A .10 B .9 C .8 D .7【解析】S 9=9a 5=45a 5=5,而a 3+a 8=12a 5+a 6=12,a 6=7. ∵2a 6=a 5+a 7,∴a 7=9. 【答案】B5.设等差数列{a n }的前n 项和为S n ,若a 1=-11, a 3+a 7=-6,则当S n 取得最小值时,n 等于( )A .6B .7C .8D .9【解析】由题设⎩⎪⎨⎪⎧a 1=-112a 1+8d =-6d =2,则S n =n 2+(-11-1)n =n 2-12n ,所以当n =6时,S n =n 2-12n 最小.【答案】A 【知识要点】 1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d__表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d (n∈N *). 3.等差中项如果A =a +b 2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a k +(n -k)d(n ,k ∈N *).(2)若{a n }为等差数列,且m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . (3)若{a n }是等差数列,公差为d ,则a n ,a n +m ,a n +2m ,…(n ,m ∈N *)是公差为__md __的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d(n∈N *).6.等差数列的前n 项和公式与函数的关系 S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n(n∈N *).数列{a n }是等差数列S n =An 2+Bn (A 、B 为常数,n ∈N *). 7.等差数列的前n 项和的最值在等差数列{a n }中,若a 1>0,d<0,则S n 存在最__大__值;若a 1<0,d>0,则S n 存在最__小__值.典例剖析 【p 73】考点1 等差数列基本量的计算例1(1)已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A .5B .4C .3D .2【解析】写出数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.由此得:⎩⎪⎨⎪⎧5a 1+20d =155a 1+25d =30d =3.【答案】C(2)已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 【解析】a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1, S k =k +k (k -1)2×2=k 2=9.又k∈N *,故k =3.【答案】3【点评】在求解等差数列的基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加简捷. 考点2 等差数列的性质及应用例2(1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( ) A .18 B .99 C .198 D .297【解析】因为a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.【答案】B(2)已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________. 【解析】法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D.所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20.【答案】20【点评】一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *),只有当序号之和相等、项数相同时才成立.考点3 等差数列的判定与证明例3令 b n =2n ⎝ ⎛⎭⎪⎫n -12n +c ,数列{b n }为等差数列,则非零常数c 的值为________.【解析】∵b n =2n ⎝ ⎛⎭⎪⎫n -12n +c,c ≠0,数列{b n }为等差数列,∴b n =2n.得到c =-12.【答案】-12例4已知数列{a n }满足a 1=1,a n +1=2a n a n +2(n∈N ),b n =1a n .(1)证明:数列{b n }为等差数列. (2)求数列{a n }的通项公式.【解析】(1)∵a 1≠0,且有a n +1=2a n a n +2,所以有a n ≠0(n ∈N *),则有b n +1=1a n +1=a n +22a n=1 a n +12=b n+12,即b n+1-b n=12(n∈N*)且b1=1a1=1,所以{b n}是首项为1,公差为12的等差数列.(2)由(1)知b n=b1+(n-1)×12=1+n-12=n+12,即1a n=n+12,所以a n=2n+1.【点评】等差数列的判定与证明方法-1(n≥2,n∈N*)为同一常数{a n}{a n}是等差数列正整数n都成立{a n}是等差数任意的正整数n 都成立{a n }是考点4 等差数列前n 项和的最值问题例5已知{a n }是各项为正数的等差数列,S n 为其前n 项和,且4S n =(a n +1)2. (1)求a 1,a 2的值及{a n }的通项公式; (2)求数列⎝ ⎛⎭⎪⎫S n -72a n 的最小值. 【解析】(1)因为4S n =(a n +1)2,所以,当n =1时,4a 1=(a 1+1)2,解得a 1=1,所以,当n =2时,4(1+a 2)=(a 2+1)2,解得a 2=-1或a 2=3, 因为{a n }是各项为正数的等差数列,所以a 2=3, 所以{a n }的公差d =a 2-a 1=2,所以{a n }的通项公式a n =a 1+(n -1)d =2n -1. (2)因为4S n =(a n +1)2,所以S n =(2n -1+1)24=n 2,所以S n -72a n =n 2-72(2n -1)=n 2-7n +72=⎝ ⎛⎭⎪⎫n -722-354.所以,当n =3或n =4时,S n -72a n 取得最小值-172.方法总结 【p 74】1.等差数列的判定方法有定义法、中项公式法、通项公式法、前n 项和公式法,注意等差数列的证明只能用定义法.2.方程思想和基本量思想:在解有关等差数列问题时可以考虑化归为首项与公差等基本量,通过建立方程组获得解.3.用函数思想理解等差数列的通项公式和前n 项和公式,从而解最值问题.走进高考 【p 74】1.(2018·全国卷Ⅰ)设S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12【解析】法一:设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4, ∴3⎝ ⎛⎭⎪⎫3a 1+3×22d =2a 1+d +4a 1+4×32d ,解得d =-32a 1, ∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10.法二:设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3S 3=S 3-a 3+S 3+a 4,∴S 3=a 4-a 3,∴3a 1+3×22d =d ,∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10.【答案】B2.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.考点集训 【p 214】A 组题1.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20 D .19【解析】a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37.【答案】A2.记S n 为等差数列{}a n 的前n 项和,若a 7=1,a 1-S 4=9,则数列{}S n 中的最小项为( )A .S 1B .S 5,S 6C .S 4D .S 7【解析】令等差数列{}a n 的公差为d ,则⎩⎪⎨⎪⎧a 1+6d =1,a 1-4a 1-6d =9,解得a 1=-5,d =1,有a n =n -6,S n =n (n -11)2,则当n =5或6时,S n 最小.【答案】B3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23 D .24【解析】3a n +1=3a n -2a n +1=a n -23{a n }是等差数列,则a n =473-23n .∵a k ·a k +1<0,∴⎝⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23.【答案】C4.设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是( ) A. d <0 B. a 7=0 C. S 9>S 5D. S 6与S 7均为S n 的最大值【解析】由S 5<S 6得a 6=S 6-S 5>0,又S 6=S 7,所以a 7=0. 由S 7>S 8,得a 8<0,而C 选项S 9>S 5,即a 6+a 7+a 8+a 9>02(a 7+a 8)>0.由题设a 7=0,a 8<0,显然C 选项是错误的. 【答案】C5.设S n 为等差数列{a n }的前n 项和,若S 8=4a 3,a 7=-2,则a 9=________. 【解析】根据等差数列的定义和性质可得,S 8=4(a 3+a 6),又S 8=4a 3,所以a 6=0,又a 7=-2,所以a 8=-4,a 9=-6. 【答案】-66.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________. 【解析】因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m-S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0,解得正整数m 的值为5.【答案】57.已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.【解析】(1)由题意知(2a 1+d )(3a 1+3d )=36,将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4. 8.已知等差数列{a n }前三项的和为-9,前三项的积为-15.(1)求等差数列{a n }的通项公式;(2)若{a n }为递增数列,求数列{|a n |}的前n 项和S n .【解析】(1)设公差为d ,则依题意得a 2=-3,则a 1=-3-d ,a 3=-3+d ,∴(-3-d )(-3)(-3+d )=-15,得d 2=4,d =±2,∴a n =-2n +1或a n =2n -7.(2)由题意得a n =2n -7,所以|a n |=⎩⎪⎨⎪⎧7-2n ,n ≤3,2n -7,n ≥4, ①n ≤3时,S n =-(a 1+a 2+…+a n )=5+(7-2n )2n =6n -n 2; ②n ≥4时,S n =-a 1-a 2-a 3+a 4+…+a n =-2(a 1+a 2+a 3)+(a 1+a 2+…+a n )=18-6n +n 2.综上,数列{|a n |}的前n 项和S n =⎩⎪⎨⎪⎧-n 2+6n ,n ≤3,n 2-6n +18,n ≥4. B 组题1.已知正项数列{a n }中,a 1=1, a 2=2, 2a 2n +1=a 2n +2+a 2n ,则a 6等于( )A .16B .8C .4D .2 2【解析】由2a 2n +1=a 2n +2+a 2n 知,数列{a 2n }是等差数列,前两项为1,4,所以公差d =3,故a 26=1+5×3=16,所以a 6=4,故选C.【答案】C2.若等差数列{a n }的前n 项和S n 满足S 4≤4,S 6≥12,则a 4的最小值为( )A .2 B.72C .3 D.52【解析】S 4=2(a 1+a 4)≤42a 4-3d ≤2,① S 6=3(a 1+a 6)≥122a 4-d ≥4,即d -2a 4≤-43d -6a 4≤-12,②①②两式相加得:a 4≥52. 【答案】D3.设数列{a n }满足a 1=2,a 2=6,且a n +2-2a n +1+a n =2,用[x ]表示不超过x 的最大整数,如[0.6]=0,[1.2]=1,则⎣⎢⎡⎦⎥⎤m a 1+m a 2+…+m a m 的值用m (m 为整数)表示为__________. 【解析】由题设可得(a n +2-a n +1)-(a n +1-a n )=2,令b n =a n +1-a n ,则由等差数列的定义可知数列{}b n 是首项为b 1=a 2-a 1=4,公差为d =2的等差数列,即a n +1-a n =4+2(n -1)=2n +2,由此可得a 2-a 1=2×1+2,a 3-a 2=2×2+2,…,a n -a n -1=2(n -1)+2,将以上(n -1)个等式两边相加可得a n -a 1=2×(1+n -1)2(n -1)+2n -2=n (n -1)+2n -2,即a n =n (n +1),所以m a 1+m a 2+…+m a m =m -m 2+m 2-m 3+…+m m -1-m m =m -1,故⎣⎢⎡⎦⎥⎤m a 1+m a 2+…+ma m=m -1.【答案】m -14.设数列{a n }的前n 项和为S n ,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列;(2)求{a n }的前n 项和S n .【解析】(1)由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3,得4a n +1=a 2n +1-a 2n +2a n +1-2a n , 即(a n +1+a n )(a n +1-a n -2)=0. 当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1,又a 1,a 2,a 3,a 4,a 5成等比数列, 而a 5>0,所以a 1>0,从而a 1=3, 所以a n +1+a n =0(n ≤5),q =-1,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5, 所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.。
等比数列的前n项和

a11-q30 a11-q10 ∴S30= = (1+q10+q20) 1-q 1-q =10×(1+2+4)=70.
方法二:∵S10,S20-S10,S30-S20 仍成等比数列, 又 S10=10,S20=30, 30-102 ∴S30-S20=S30-30= , 10 即 S30=70.
2、公式的推导方法
(重在过程)
等比数列的前n项和(二)
回顾
1、求和公式
a1 (1 q n ) 当q≠1时, Sn 1 q
当q=1时,
Sn na1
a1 an q Sn 1 q
强调: ①注意分类讨论的思想! 等比数列求和时必须弄清q=1还是q≠1. ②运用方程的思想,五个量“知三求二”. ③注意运用整体运算的思想.
• 1.理解并掌握等比数列前n项和公式及其推导 过程. • 2.能够应用前n项和公式解决等比数列有关问 题. • 3.进一步提高解方程(组)的能力,以及整体代 换思想的应用能力.
复习:等比数列 {an}
(1) 等比数列: (2) 通项公式:
(3)a, G, b
an+1 an =q (定值) n-1 an=a1• q (a 0, q 0).
4
③
4 解得:q . 3
代入③得:n=5.
9 16 【例2】已知等比数列an 中,a1 , an , 16 9 781 Sn , 求公比q及项数n. 144
解法2
a1 an q 1. 9 16 q a1 qan 781 4 16 9 Sn 解得:q . 1 q 1 q 144 3
a1 1 q n Sn 1 q
⑵
说明:这种求和方法称为错位相减法 显然,当q=1时,
2013高考数学(理)一轮复习教案:第六篇_数列第2讲_等差数列及其前n项和

第2讲 等差数列及其前n 项和泊头一中韩俊华 【2013年高考会这样考】1.考查运用基本量法求解等差数列的基本量问题(知三求二问题,知三求一问题).2.考查等差数列的性质、前n 项和公式及综合应用. 【复习指导】1.掌握等差数列的定义与性质、通项公式、前n 项和公式等.2.掌握等差数列的判断方法,等差数列求和的方法.基础梳理1.等差数列的定义(1)文字定义:如果一个数列从第 项起,每一项与它的前一项的差都等于 ,那么这个数列就叫做等差数列,这个叫做 等差数列的 ,通常用字母d 表示(2)符号定义: ①. ② 2.等差数列的通项公式:n a = ,变式:d = ()1n ≠或n a = ,变式:d = ()n m ≠(其中*,m n N ∈)或n a = 。
(函数的一次式) 3.等差中项如果A =a +b2A 叫做a 与b 的等差中项.4 等差数列的判定方法 ①定义法:②等差中项法: ③通项公式法: 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则 (m ,n ,p ,q ∈N *).特别的若:m +n =2p ,则(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为 的等差数列(4)在有穷等差数列中与首末两项等距离的任意两项的和相等:即: (5)等差数列的单调性:若d >0,则数列{a n }为 若d=0,则数列{a n }为 若d <0,则数列{a n }为(6)等差数列中公差d= = (7)等差数列中a n =m ,a m =n 则a m+n =(8)若数列{a n } {b n }均为等差数列,则若{c a n +kb n }仍为 ,另外数列 (9)若项数为2n ,则 ①S S -=奇偶; ②S S =偶奇; ③2n S =(用1,n n a a +表示,1,n n a a +为中间两项) (10)若项数为21n +,则 ①S S -=奇偶; ②S S =奇偶; ③21n S +=(用1n a +表示,1n a +为中间项)(11)若等差数列{n a },{n b }的前n 项和分别为n n S T ,,则2121n n nn a S b T --=(12).23243m m m m m m m S S S S S S S --- ,,,,为等差数列。
数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

第2讲 等差数列及前n 项和考纲展示 命题探究1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2.3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( )A .1 B.53 C .2D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2.3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4. ∵a 1=2,∴d =a 2-a 1=4-2=2.∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50. 解得a 1=12,d =2.所以a n =2n +10;(2)由S n =na 1+n (n -1)2d ,S n =242,得方程12n +n (n -1)2×2=242,解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2,∴b n +1-b n =a n +2-a n +1-(a n +1-a n )=2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,累加法可得a n -a 1=1+3+5+…+(2n -3)=(n -1)2,∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )扫一扫·听名师解题A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,而S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),整理得2a1+1=0,解得a1=-1 2.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.等差数列及其前n项和的性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1=….(2)等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(3)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m∈N*).(4)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为n2d.(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a n a n +1. ②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( )(3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44答案 C 解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13.由a 3+a 6+a 9=27,得3a 6=27,a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C.[答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n=a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. (2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m +a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d=-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0, 即⎩⎪⎨⎪⎧ a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,≤n ≤n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确.2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能.∴a 2012>0,a 2013<0.再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0, 而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n 3n +1,则a n b n=( ) A.23B.2n -13n -1C.2n +13n +1D.2n -13n +4 答案 B解析 a n b n =2a n 2b n=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4.所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32. ∴当n =1或n =2时,S 1=S 2且最小. [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学猜题]已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.[2016·武邑中学仿真]已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C. 3.[2016·冀州中学期末]在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 A 解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .4.[2016·衡水中学预测]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27答案 B解析 S 3=9,S 6-S 3=36-9=27,根据S 3,S 6-S 3,S 9-S 6成等差数列,S 9-S 6=45,S 9-S 6=a 7+a 8+a 9=45,故选B.5.[2016·衡水二中期中]已知等差数列{a n }中,前四项和为60,最后四项和为260,且S n =520,则a 7=( )A .20B .40C .60D .80答案 B解析 前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n =520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a 7是中间项,所以a 7=40.6.[2016·枣强中学模拟]已知等差数列{a n }的前n 项和为S n ,且S 4S2=4,则S 6S 4=( )A.94B.32C.53 D .4答案 A解析 由S 4S 2=4,可设S 2=x ,S 4=4x .∵S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4).则S 6=3S 4-3S 2=12x -3x =9x ,因此,S 6S 4=9x 4x =94.7.[2016·衡水二中热身]设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =______.答案 13解析 由S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝ ⎛⎭⎪⎫-3+322=-212,解得k =13.8.[2016·武邑中学期末]设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案 14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n , ∴S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.[2016·衡水中学周测]已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________.答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39.10.[2016·冀州中学月考]设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.11.[2016·衡水中学模拟]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛ 110-3n -⎭⎪⎫113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12.[2016·冀州中学期中]已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n-1S n -1=2(n ≥2),又S 1=a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n=2+(n -1)×2=2n ,故S n =12n .∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). ∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.[2016·衡水中学猜题]已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.[2016·衡水中学一轮检测]已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B解析 ∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.15.[2016·武邑中学猜题]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n (20-2n +22)2=(21-n )n ;当n >11时,S n =S 11+2+4+…+(2n -22)=110+(n -11)(2+2n -22)2=n 2-21n +220. 综上所述,S n =⎩⎪⎨⎪⎧(21-n )n ,n ≤11n 2-21n +220,n >11.16.[2016·冀州中学仿真]已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解 (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1, 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.。
高考数学复习等差数列及其前n项和

第2讲 等差数列及其前n 项和最新考纲考向预测1.通过生活中的实例,理解等差数列的概念和通项公式的意义.2.探索并掌握等差数列的前n 项和公式,理解等差数列的通项公式与前n 项和公式的关系.3.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.4.体会等差数列与一元一次函数的关系.命题趋势等差数列的基本运算、基本性质,等差数列的证明是考查的热点.本讲内容在高考中既可以以选择、填空的形式进行考查,也可以以解答题的形式进行考查.解答题往往与数列的计算、证明、等比数列、数列求和、不等式等问题综合考查,难度中低档.核心素养数学抽象、逻辑推理1.等差数列与等差中项 (1)等差数列的定义:①文字语言:一个数列从第2项起,每一项与它的前一项的差都等于同一个常数;②符号语言:a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:若三个数a ,A ,b 组成等差数列,则A 叫做a ,b 的等差中项. 2.等差数列的通项公式与前n 项和公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 常用结论1.等差数列与函数的关系(1)通项公式:当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.(2)前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 是关于n 的二次函数且常数项为0.2.两个常用结论(1)关于等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1;②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.(2)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为S 2n -1T 2n -1=a nb n .常见误区1.当公差d ≠0时,等差数列的通项公式是n 的一次函数;当公差d =0时,a n 为常数.2.注意利用“a n -a n -1=d ”时加上条件“n ≥2”.1.判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.()(5)等差数列{a n }的单调性是由公差d 决定的.( )(6)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)×2.已知S n 为等差数列{a n }的前n 项和,a 2=2,S 4=14,则S 6等于( ) A .32 B .39 C .42D .45解析:选B.设公差为d ,由题意得⎩⎨⎧a 1+d =2,4a 1+4×32d =14,解得⎩⎨⎧a 1=-1,d =3,所以S 6=6a 1+5×62d =39.3.已知{a n }为等差数列,其前n 项和为S n ,若a 1=1,a 3=5,S n =64,则n =( )A .6B .7C .8D .9解析:选C.因为d =a 3-a 12=2,S n =na 1+n (n -1)2d =n +n (n -1)=64,解得n =8(负值舍去).故选C.4.(易错题)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的通项公式为__________.解析:当n ≥2时,a n =a n -1+12,所以{a n }是首项为1,公差为12的等差数列,则a n =1+(n -1)×12=12n +12.答案:a n =12n +125.(2020·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=____________.解析:通解:设等差数列{a n }的公差为d ,则由a 2+a 6=2,得a 1+d +a 1+5d =2,即-4+6d =2,解得d =1,所以S 10=10×(-2)+10×92×1=25.优解:设等差数列{a n }的公差为d ,因为a 2+a 6=2a 4=2,所以a 4=1,所以d =a 4-a 14-1=1-(-2)3=1,所以S 10=10×(-2)+10×92×1=25.答案:25等差数列的基本运算(1)(一题多解)(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n(2)(2020·河南部分重点高中联考)记等差数列{a n }的前n 项和为S n ,若3S 5-5S 3=135,则数列{a n }的公差d =________.【解析】 (1)方法一:设等差数列{a n }的公差为d ,因为⎩⎨⎧S 4=0,a 5=5,所以⎩⎨⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎨⎧a 1=-3,d =2,所以a n =a 1+(n -1)d=-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.方法二:设等差数列{a n }的公差为d ,因为⎩⎨⎧S 4=0,a 5=5,所以⎩⎨⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎨⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ; 选项C ,S 1=2-8=-6,排除C ; 选项D ,S 1=12-2=-32,排除D.故选A.(2)因为3S 5-5S 3=135,所以3⎝ ⎛⎭⎪⎫5a 1+5×42d - 5⎝⎛⎭⎪⎫3a 1+3×22d =135,所以15d =135,解得d =9. 【答案】 (1)A (2)9等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.1.(2020·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( )A .18B .16C .14D .12解析:选 C.设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 1+3d +5a 1+5×42d =2,7a 1+7×62d =14可得⎩⎨⎧6a 1+13d =2,a 1+3d =2,解得⎩⎨⎧a 1=-4,d =2,所以a 10=-4+9×2=14,选C. 2.(2020·合肥第一次教学检测)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 4=4S 2.(1)求数列{a n }的通项公式;(2)若a m +a m +1+a m +2+…+a m +9=180(m ∈N *),求m 的值. 解:(1)设等差数列{a n }的公差为d ,由S 4=4S 2得,4a 1+6d =8a 1+4d ,整理得d =2a 1, 又a 1=1,所以d =2,所以a n =a 1+(n -1)d =2n -1(n ∈N *).(2)a m +a m +1+a m +2+…+a m +9=180可化为10a m +45d =20m +80=180.解得m =5.等差数列的判定与证明已知数列{a n }中,a 1=14,其前n 项和为S n ,且满足a n =2S 2n2S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.【解】 (1)证明:当n ≥2时,S n -S n -1=2S 2n2S n -1.整理,得S n -1-S n =2S n S n -1. 两边同时除以S n S n -1,得1S n -1S n -1=2.又1S 1=1a 1=4,所以⎩⎨⎧⎭⎬⎫1S n 是以4为首项,以2为公差的等差数列.(2)由(1)可得数列⎩⎨⎧⎭⎬⎫1S n 的通项公式为1S n=4+(n -1)×2=2n +2,所以S n =12(n +1).当n ≥2时,a n =S n -S n -1=12(n +1)-12n =-12n (n +1).当n =1时,a 1=14,不适合上式. 所以a n =⎩⎪⎨⎪⎧14,n =1,-12n (n +1),n ≥2.【引申探究】 (变条件)本例的条件变为:a 1=14,S n =S n -12S n -1+1(n ≥2),证明⎩⎨⎧⎭⎬⎫1S n 是等差数列. 证明:因为S n =S n -12S n -1+1,所以2S n -1S n +S n =S n -1,即S n -1-S n =2S n S n -1,故1S n -1S n -1=2(n ≥2),又1S 1=1a 1=4,因此数列⎩⎨⎧⎭⎬⎫1S n 是首项为4,公差为2的等差数列.等差数列的判定与证明方法[注意]在解答题中证明一个数列为等差数列时,只能用定义法.1.已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B.由S n =an 2+bn (a ,b ∈R )可知数列{a n }是等差数列,依题意得,d =a 6-a 26-2=11-34=2,则a n =a 2+(n -2)d =2n -1,即a 1=1,a 7=13,所以S 7=a 1+a 72×7=1+132×7=49.2.数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1解析:选B.数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列, 设等差数列{a n }的公差为d . 因为a 2=-6,a 6=6, 所以4d =a 6-a 2=12,即d =3.所以a n=-6+3(n-2)=3n-12,所以S1=a1=-9,S3=a1+a2+a3=-9-6-3=-18,S4=a1+a2+a3+a4=-9-6-3+0=-18,所以S4<S1,S3=S4.故选B.等差数列的性质及应用角度一等差数列项的性质(1)在等差数列{a n}中,a2,a14是方程x2+6x+2=0的两个实数根,则a8a2a14=()A.-32B.-3C.-6 D.2(2)(多选)设{a n}是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论正确的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值【解析】(1)因为a2,a14是方程x2+6x+2=0的两个实数根,所以a2+a14=-6,a2a14=2,由等差数列的性质可知,a2+a14=2a8=-6,所以a8=-3,则a8a2a14=-32,故选A.(2)S6=S5+a6>S5,则a6>0,S7=S6+a7=S6,则a7=0,则d=a7-a6<0,S8=S7+a8<S7,a8<0.则a7+a8<0,所以S9=S5+a6+a7+a8+a9=S5+2(a7+a8)<S5,由a7=0,a6>0知S6,S7是S n中的最大值.从而ABD均正确.【答案】(1)A(2)ABD如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n等项时,可以利用此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.角度二等差数列前n项和的性质(1)已知等差数列{a n}的前10项和为30,它的前30项和为210,则前20项和为()A.100 B.120C.390 D.540(2)(2020·山东菏泽一中月考)已知等差数列{a n}的公差为4,其项数为偶数,所有奇数项的和为15,所有偶数项的和为55,则这个数列的项数为() A.10 B.20C.30 D.40【解析】(1)设S n为等差数列{a n}的前n项和,则S10,S20-S10,S30-S20成等差数列,所以2(S20-S10)=S10+(S30-S20),又等差数列{a n}的前10项和为30,前30项和为210,所以2(S20-30)=30+(210-S20),解得S20=100.(2)设等差数列{a n}的公差为d,项数为n,前n项和为S n,因为d=4,S奇=15,S偶=55,所以S偶-S奇=n2d=2n=40,所以n=20,即这个数列的项数为20.故选B.【答案】(1)A(2)B等差数列前n项和的性质在等差数列{a n}中,S n为其前n项和,则(1)S2n=n(a1+a2n)=…=n(a n+a n+1);(2)S2n-1=(2n-1)a n;(3)当项数为偶数2n时,S偶-S奇=nd;项数为奇数2n-1时,S奇-S偶=a中,S奇∶S偶=n∶(n-1).角度三等差数列的前n项和的最值(一题多解)(2020·广东省七校联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8【解析】 方法一:设数列{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2.所以a n =-2n +17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D.方法二:设数列{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2,则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D.【答案】 D求等差数列{a n }的前n 项和S n 的最值的方法1.等差数列{a n }的前n 项和为S n ,若a 1+a 3+a 5+a 7+a 9=20,则S 9=( ) A .27 B .36 C .45D .54解析:选B.依题意a 1+a 3+a 5+a 7+a 9=5a 5=20,a 5=4,所以S 9=a 1+a 92×9=9a 5=36.2.(2020·成都市诊断性检测)设公差不为0的等差数列{a n }的前n 项和为S n ,若a 5=3a 3,则S 9S 5=( )A.95B.59C.53D.275解析:选D.S 9S 5=9(a 1+a 9)25(a 1+a 5)2=9(a 1+a 9)5(a 1+a 5)=9a 55a 3=95×3=275.3.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C.因为在等差数列{a n }中a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.[A 级 基础练]1.若等差数列{a n }的公差为d ,则数列{a 2n -1}是( ) A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为nd 的等差数列 D .非等差数列解析:选B.数列{a 2n -1}其实就是a 1,a 3,a 5,a 7,…,奇数项组成的数列,它们之间相差2d .2.已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7=( ) A .2 B .7 C .14D .28解析:选C.因为2+a 5=a 6+a 3,所以2+a 4+d =a 4+2d +a 4-d .解得a 4=2,所以S 7=7(a 1+a 7)2=7a 4=14.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2,若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C.3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .因为a k ·a k +1<0,所以⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,所以452<k <472,所以k =23.4.(多选)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( )A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0解析:选AC.根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8,即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d ,又由a n =a 1+(n -1)d =(n -10)d ,则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确;又由S n =na 1+n (n -1)d 2=-9nd +n (n -1)d 2=d 2×(n 2-19n ),则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d ,因为d ≠0,所以S 20≠0,则D 不正确.5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=18C .S 9=81D .S 10=90解析:选B.因为对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), 所以S n +1-S n =S n -S n -1+2,所以a n +1-a n =2.所以数列{a n }在n ≥2时是等差数列,公差为2.又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选B.6.已知数列{a n }(n ∈N +)是等差数列,S n 是其前n 项和,若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )·(a 1+4d )+a 1+7d=a 21+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.答案:167.(应用型)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则剧场总共的座位数为________.解析:设第n 排的座位数为a n (n ∈N *),数列{a n }为等差数列,其公差d =2,则a n =a 1+(n -1)d =a 1+2(n -1).由已知a 20=60,得60=a 1+2×(20-1),解得a 1=22,则剧场总共的座位数为20(a 1+a 20)2=20×(22+60)2=820.答案:8208.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2nn 均为等差数列(n ∈N +),且a 1=2,则a 20=________.解析:设a n =2+(n -1)d ,所以a 2nn =[2+(n -1)d ]2n=d 2n 2+(4d -2d 2)n +(d -2)2n ,由于⎩⎨⎧⎭⎬⎫a 2n n 为等差数列,所以其通项是一个关于n 的一次函数,所以(d -2)2=0,所以d =2.所以a 20=2+(20-1)×2=40.答案:409.在①数列{S n -n 2}是公差为-3的等差数列,②S n =n 2+a n -5n +4,③数列{a n }是公差不为0的等差数列,且a 3a 6=a 24这三个条件中任意选择一个,添加到下面的题目中,然后解答补充完整的题目.已知数列{a n }中,a 1=-2,{a n }的前n 项和为S n ,且________. 求a n .解:若选择①,因为a 1=-2,所以S 1-12=a 1-1=-3.因为{S n-n2}是公差为-3的等差数列,所以S n-n2=-3-3(n-1)=-3n.所以S n=n2-3n.当n≥2时,a n=S n-S n-1=(n2-3n)-[(n-1)2-3(n-1)]=2n-4.当n=1时,a1=-2,符合上式.所以a n=2n-4.若选择②.因为S n=n2+a n-5n+4,所以当n≥2时,S n-1=(n-1)2+a n-1-5(n-1)+4,两式相减,得a n=n2-(n-1)2+a n-a n-1-5n+5(n-1),即a n-1=2n-6.所以a n=2n-4(n∈N*).若选择③,设等差数列{a n}的公差为d,由a3a6=a24可得(a1+2d)·(a1+5d)=(a1+3d)2.又a1=-2,d≠0,所以d=2,所以数列{a n}的通项公式为a n=2n-4.10.若数列{a n}的各项均为正数,对任意n∈N*,a2n+1=a n a n+2+t,t为常数,且2a3=a2+a4.(1)求a1+a3a2的值;(2)求证:数列{a n}为等差数列.解:(1)因为对任意n∈N*,a2n+1=a n a n+2+t,令n=2,得a23=a2a4+t.①令n=1,得a22=a1a3+t.②①-②得a23-a22=a2a4-a1a3,即a3(a3+a1)=a2(a2+a4),所以a1+a3a2=a2+a4a3=2.(2)证明:a2n+1=a n a n+2+t,a2n+2=a n+1a n+3+t,两式相减得a n+1+a n+3a n+2=a n+a n+2a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +a n +2a n +1为常数列,所以a n +a n +2a n +1=a 1+a 3a 2=2,所以a n +a n +2=2a n +1, 所以数列{a n }为等差数列.[B 级 综合练]11.(多选)设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .-247<d <-3C .当S n <0时,n 的最小值为13D .数列⎩⎨⎧⎭⎬⎫S n a n 中的最小项为第7项解析:选ABCD.由题意,得S 12=(a 1+a 12)2×12=6(a 6+a 7)>0.又a 7<0,所以a 6>0,所以A 正确.根据题意得⎩⎨⎧a 7=a 3+4d =12+4d <0,a 6=a 3+3d =12+3d >0,a 6+a 7=2a 3+7d =24+7d >0,解得-247<d <-3,所以B 正确.因为S 13=a 1+a 132×13=13a 7<0,又S 12>0,所以当S n <0时,n 的最小值为13,所以C 正确.由上述分析可知,当n ∈[1,6]时,a n >0,当n ∈[7,+∞)时,a n <0,当n ∈[1,12]时,S n >0,当n ∈[13,+∞)时,S n <0,所以当n ∈[1,6]时,S n a n >0,当n ∈[13,+∞)时,S na n >0,当n ∈[7,12]时,S na n<0,且当n ∈[7,12]时,{a n }为单调递减数列(a n <0),S n 为单调递减数列(S n >0),所以⎩⎨⎧⎭⎬⎫S n a n 中的最小项为第7项,所以D 正确.故选ABCD.12.若数列{a n }为等差数列,a n >0,前n 项和为S n ,且S 2n -1=2n -12n +1a 2n ,则a 9的值是________.解析:因为S 2n -1=2n -12n +1a 2n ,所以(a 1+a 2n -1)×(2n -1)2=2n -12n +1a 2n,即2a n ×(2n -1)2=2n -12n +1a 2n ,所以a n=12n +1a 2n ,又a n >0,所以a n =2n +1,所以a 9=19.答案:1913.(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{a n }的公差为d , 由S 9=-a 5得a 1+4d =0, 由a 3=4得a 1+2d =4, 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10. 所以n 的取值范围是{n |1≤n ≤10,n ∈N }.14.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解:(1)设公差为d ,因为{a n }为等差数列,所以a 1+a 5=a 2+a 4=18,又a 2a 4=65,所以a 2,a 4是方程x 2-18x +65=0的两个实数根,又公差d >0,所以a 2<a 4,所以a 2=5,a 4=13.所以⎩⎨⎧a 1+d =5,a 1+3d =13,所以⎩⎨⎧a 1=1,d =4,所以a n =4n -3.(2)存在.由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k ,得1+k+15+3k=26+2k,解得k=1.所以S n+kn=2n2=2n,当n≥2时,2n-2(n-1)=2,为常数,所以数列{S n+kn}为等差数列.故存在常数k=1,使得数列{S n+kn}为等差数列.[C级创新练]15.多环芳香烃化合物中有不少是致癌物质,学生钟爱的快餐油炸食品中会产生苯并芘,它是由苯和芘稠合而成的一类多环芳香烃,长期食用会致癌.下面是一组多环芳香烃的结构简式和分子式:名称萘蒽并四苯…并n苯结构简式……分子式C10H8C14H10C18H12……解析:因为多环芳香烃的分子式中C的下标分别是10,14,18,…,H的下标分别是8,10,12,…,所以多环芳香烃的分子式中C的下标是公差为4的等差数列,设C的下标构成的等差数列为{a n},其公差为d1,则a4=18,d1=4,故a n=4n+2,所以a10=42.多环芳香烃的分子式中H的下标是公差为2的等差数列,设H的下标构成的等差数列为{b n},其公差为d2,则b4=12,d2=2,故b n=2n+4.所以b10=24,所以并十苯的分子式为C42H24.答案:C42H2416.已知定义:在数列{a n}中,若a2n-a2n-1=p(n≥2,n∈N*,p为常数),则称{a n}为等方差数列.下列命题正确的是()A.若{a n}是等方差数列,则{a2n}是等差数列B.{(-1)n}是等方差数列C.若{a n}是等方差数列,则{a kn}(k∈N*,k为常数)不可能还是等方差数列D.若{a n}既是等方差数列,又是等差数列,则该数列为常数列解析:选ABD.若{a n}是等方差数列,则a2n-a2n-1=p,故{a2n}是等差数列,故A正确;a n=(-1)n时,a2n-a2n-1=(-1)2n-(-1)2(n-1)=0,故B正确;若{a n}是等方差数列,则由A 知{a 2n }是等差数列,从而{a 2kn }(k ∈N *,k 为常数)是等差数列,设其公差为d ,则有a 2kn -a 2k (n -1)=d ,由定义知{a kn }是等方差数列,故C 不正确;若{a n }既是等方差数列,又是等差数列,则a 2n -a 2n -1=p ,a n -a n -1=d ,所以a 2n -a 2n -1=(a n -a n -1)(a n +a n -1)=d (a n +a n -1)=p ,若d ≠0,则a n +a n -1=p d .又a n -a n -1=d ,解得a n =12⎝ ⎛⎭⎪⎫p d +d ,{a n }为常数列;若d =0,该数列也为常数列,故D 正确.第2讲 等差数列及其前n 项和最新考纲考向预测1.通过生活中的实例,理解等差数列的概念和通项公式的意义.2.探索并掌握等差数列的前n 项和公式,理解等差数列的通项公式与前n 项和公式的关系.3.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.4.体会等差数列与一元一次函数的关系.命题趋势等差数列的基本运算、基本性质,等差数列的证明是考查的热点.本讲内容在高考中既可以以选择、填空的形式进行考查,也可以以解答题的形式进行考查.解答题往往与数列的计算、证明、等比数列、数列求和、不等式等问题综合考查,难度中低档.核心素养数学抽象、逻辑推理1.等差数列与等差中项 (1)等差数列的定义:①文字语言:一个数列从第2项起,每一项与它的前一项的差都等于同一个常数;②符号语言:a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:若三个数a ,A ,b 组成等差数列,则A 叫做a ,b 的等差中项. 2.等差数列的通项公式与前n 项和公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 常用结论1.等差数列与函数的关系(1)通项公式:当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.(2)前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 是关于n 的二次函数且常数项为0.2.两个常用结论(1)关于等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1;②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.(2)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为S 2n -1T 2n -1=a nb n .常见误区1.当公差d ≠0时,等差数列的通项公式是n 的一次函数;当公差d =0时,a n 为常数.2.注意利用“a n -a n -1=d ”时加上条件“n ≥2”.1.判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.()(5)等差数列{a n }的单调性是由公差d 决定的.( )(6)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)×2.已知S n 为等差数列{a n }的前n 项和,a 2=2,S 4=14,则S 6等于( ) A .32 B .39 C .42D .45解析:选B.设公差为d ,由题意得⎩⎨⎧a 1+d =2,4a 1+4×32d =14,解得⎩⎨⎧a 1=-1,d =3,所以S 6=6a 1+5×62d =39.3.已知{a n }为等差数列,其前n 项和为S n ,若a 1=1,a 3=5,S n =64,则n =( )A .6B .7C .8D .9解析:选C.因为d =a 3-a 12=2,S n =na 1+n (n -1)2d =n +n (n -1)=64,解得n =8(负值舍去).故选C.4.(易错题)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的通项公式为__________.解析:当n ≥2时,a n =a n -1+12,所以{a n }是首项为1,公差为12的等差数列,则a n =1+(n -1)×12=12n +12.答案:a n =12n +125.(2020·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=____________.解析:通解:设等差数列{a n }的公差为d ,则由a 2+a 6=2,得a 1+d +a 1+5d =2,即-4+6d =2,解得d =1,所以S 10=10×(-2)+10×92×1=25.优解:设等差数列{a n }的公差为d ,因为a 2+a 6=2a 4=2,所以a 4=1,所以d =a 4-a 14-1=1-(-2)3=1,所以S 10=10×(-2)+10×92×1=25.答案:25等差数列的基本运算(1)(一题多解)(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n(2)(2020·河南部分重点高中联考)记等差数列{a n }的前n 项和为S n ,若3S 5-5S 3=135,则数列{a n }的公差d =________.【解析】 (1)方法一:设等差数列{a n }的公差为d ,因为⎩⎨⎧S 4=0,a 5=5,所以⎩⎨⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎨⎧a 1=-3,d =2,所以a n =a 1+(n -1)d=-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.方法二:设等差数列{a n }的公差为d ,因为⎩⎨⎧S 4=0,a 5=5,所以⎩⎨⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎨⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ; 选项C ,S 1=2-8=-6,排除C ; 选项D ,S 1=12-2=-32,排除D.故选A.(2)因为3S 5-5S 3=135,所以3⎝ ⎛⎭⎪⎫5a 1+5×42d - 5⎝⎛⎭⎪⎫3a 1+3×22d =135,所以15d =135,解得d =9. 【答案】 (1)A (2)9等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.1.(2020·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( )A .18B .16C .14D .12解析:选 C.设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 1+3d +5a 1+5×42d =2,7a 1+7×62d =14可得⎩⎨⎧6a 1+13d =2,a 1+3d =2,解得⎩⎨⎧a 1=-4,d =2,所以a 10=-4+9×2=14,选C. 2.(2020·合肥第一次教学检测)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 4=4S 2.(1)求数列{a n }的通项公式;(2)若a m +a m +1+a m +2+…+a m +9=180(m ∈N *),求m 的值. 解:(1)设等差数列{a n }的公差为d ,由S 4=4S 2得,4a 1+6d =8a 1+4d ,整理得d =2a 1, 又a 1=1,所以d =2,所以a n =a 1+(n -1)d =2n -1(n ∈N *).(2)a m +a m +1+a m +2+…+a m +9=180可化为10a m +45d =20m +80=180.解得m =5.等差数列的判定与证明已知数列{a n }中,a 1=14,其前n 项和为S n ,且满足a n =2S 2n2S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.【解】 (1)证明:当n ≥2时,S n -S n -1=2S 2n2S n -1.整理,得S n -1-S n =2S n S n -1. 两边同时除以S n S n -1,得1S n -1S n -1=2.又1S 1=1a 1=4,所以⎩⎨⎧⎭⎬⎫1S n 是以4为首项,以2为公差的等差数列.(2)由(1)可得数列⎩⎨⎧⎭⎬⎫1S n 的通项公式为1S n=4+(n -1)×2=2n +2,所以S n =12(n +1).当n ≥2时,a n =S n -S n -1=12(n +1)-12n =-12n (n +1).当n =1时,a 1=14,不适合上式. 所以a n =⎩⎪⎨⎪⎧14,n =1,-12n (n +1),n ≥2.【引申探究】 (变条件)本例的条件变为:a 1=14,S n =S n -12S n -1+1(n ≥2),证明⎩⎨⎧⎭⎬⎫1S n 是等差数列. 证明:因为S n =S n -12S n -1+1,所以2S n -1S n +S n =S n -1,即S n -1-S n =2S n S n -1,故1S n -1S n -1=2(n ≥2),又1S 1=1a 1=4,因此数列⎩⎨⎧⎭⎬⎫1S n 是首项为4,公差为2的等差数列.等差数列的判定与证明方法[注意]在解答题中证明一个数列为等差数列时,只能用定义法.1.已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B.由S n =an 2+bn (a ,b ∈R )可知数列{a n }是等差数列,依题意得,d =a 6-a 26-2=11-34=2,则a n =a 2+(n -2)d =2n -1,即a 1=1,a 7=13,所以S 7=a 1+a 72×7=1+132×7=49.2.数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1解析:选B.数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列, 设等差数列{a n }的公差为d . 因为a 2=-6,a 6=6, 所以4d =a 6-a 2=12,即d =3.所以a n=-6+3(n-2)=3n-12,所以S1=a1=-9,S3=a1+a2+a3=-9-6-3=-18,S4=a1+a2+a3+a4=-9-6-3+0=-18,所以S4<S1,S3=S4.故选B.等差数列的性质及应用角度一等差数列项的性质(1)在等差数列{a n}中,a2,a14是方程x2+6x+2=0的两个实数根,则a8a2a14=()A.-32B.-3C.-6 D.2(2)(多选)设{a n}是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论正确的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值【解析】(1)因为a2,a14是方程x2+6x+2=0的两个实数根,所以a2+a14=-6,a2a14=2,由等差数列的性质可知,a2+a14=2a8=-6,所以a8=-3,则a8a2a14=-32,故选A.(2)S6=S5+a6>S5,则a6>0,S7=S6+a7=S6,则a7=0,则d=a7-a6<0,S8=S7+a8<S7,a8<0.则a7+a8<0,所以S9=S5+a6+a7+a8+a9=S5+2(a7+a8)<S5,由a7=0,a6>0知S6,S7是S n中的最大值.从而ABD均正确.【答案】(1)A(2)ABD如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n等项时,可以利用此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.角度二等差数列前n项和的性质(1)已知等差数列{a n}的前10项和为30,它的前30项和为210,则前20项和为()A.100 B.120C.390 D.540(2)(2020·山东菏泽一中月考)已知等差数列{a n}的公差为4,其项数为偶数,所有奇数项的和为15,所有偶数项的和为55,则这个数列的项数为() A.10 B.20C.30 D.40【解析】(1)设S n为等差数列{a n}的前n项和,则S10,S20-S10,S30-S20成等差数列,所以2(S20-S10)=S10+(S30-S20),又等差数列{a n}的前10项和为30,前30项和为210,所以2(S20-30)=30+(210-S20),解得S20=100.(2)设等差数列{a n}的公差为d,项数为n,前n项和为S n,因为d=4,S奇=15,S偶=55,所以S偶-S奇=n2d=2n=40,所以n=20,即这个数列的项数为20.故选B.【答案】(1)A(2)B等差数列前n项和的性质在等差数列{a n}中,S n为其前n项和,则(1)S2n=n(a1+a2n)=…=n(a n+a n+1);(2)S2n-1=(2n-1)a n;(3)当项数为偶数2n时,S偶-S奇=nd;项数为奇数2n-1时,S奇-S偶=a中,S奇∶S偶=n∶(n-1).角度三等差数列的前n项和的最值(一题多解)(2020·广东省七校联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8【解析】 方法一:设数列{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2.所以a n =-2n +17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D.方法二:设数列{a n }的公差为d ,则由题意得,⎩⎨⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎨⎧a 1=15,d =-2,则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D.【答案】 D求等差数列{a n }的前n 项和S n 的最值的方法1.等差数列{a n }的前n 项和为S n ,若a 1+a 3+a 5+a 7+a 9=20,则S 9=( ) A .27 B .36 C .45D .54解析:选B.依题意a 1+a 3+a 5+a 7+a 9=5a 5=20,a 5=4,所以S 9=a 1+a 92×9=9a 5=36.2.(2020·成都市诊断性检测)设公差不为0的等差数列{a n }的前n 项和为S n ,若a 5=3a 3,则S 9S 5=( )A.95B.59C.53D.275解析:选D.S 9S 5=9(a 1+a 9)25(a 1+a 5)2=9(a 1+a 9)5(a 1+a 5)=9a 55a 3=95×3=275.3.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C.因为在等差数列{a n }中a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.[A 级 基础练]1.若等差数列{a n }的公差为d ,则数列{a 2n -1}是( ) A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为nd 的等差数列 D .非等差数列解析:选B.数列{a 2n -1}其实就是a 1,a 3,a 5,a 7,…,奇数项组成的数列,它们之间相差2d .2.已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7=( ) A .2 B .7 C .14D .28解析:选C.因为2+a 5=a 6+a 3,所以2+a 4+d =a 4+2d +a 4-d .解得a 4=2,所以S 7=7(a 1+a 7)2=7a 4=14.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2,若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C.3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .因为a k ·a k +1<0,所以⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,所以452<k <472,所以k =23.4.(多选)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( )A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0解析:选AC.根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8,即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d ,又由a n =a 1+(n -1)d =(n -10)d ,则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确;又由S n =na 1+n (n -1)d 2=-9nd +n (n -1)d 2=d 2×(n 2-19n ),则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d ,因为d ≠0,所以S 20≠0,则D 不正确.5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=18C .S 9=81D .S 10=90解析:选B.因为对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), 所以S n +1-S n =S n -S n -1+2,所以a n +1-a n =2.所以数列{a n }在n ≥2时是等差数列,公差为2.又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选B.6.已知数列{a n }(n ∈N +)是等差数列,S n 是其前n 项和,若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )·(a 1+4d )+a 1+7d=a 21+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.答案:167.(应用型)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则剧场总共的座位数为________.解析:设第n 排的座位数为a n (n ∈N *),数列{a n }为等差数列,其公差d =2,则a n =a 1+(n -1)d =a 1+2(n -1).由已知a 20=60,得60=a 1+2×(20-1),解得a 1=22,则剧场总共的座位数为20(a 1+a 20)2=20×(22+60)2=820.答案:8208.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2nn 均为等差数列(n ∈N +),且a 1=2,则a 20=________.解析:设a n =2+(n -1)d ,所以a 2nn =[2+(n -1)d ]2n=d 2n 2+(4d -2d 2)n +(d -2)2n ,由于⎩⎨⎧⎭⎬⎫a 2n n 为等差数列,所以其通项是一个关于n 的一次函数,所以(d -2)2=0,所以d =2.所以a 20=2+(20-1)×2=40.答案:409.在①数列{S n -n 2}是公差为-3的等差数列,②S n =n 2+a n -5n +4,③数列{a n }是公差不为0的等差数列,且a 3a 6=a 24这三个条件中任意选择一个,添加到下面的题目中,然后解答补充完整的题目.已知数列{a n }中,a 1=-2,{a n }的前n 项和为S n ,且________. 求a n .解:若选择①,因为a 1=-2,所以S 1-12=a 1-1=-3.因为{S n-n2}是公差为-3的等差数列,所以S n-n2=-3-3(n-1)=-3n.所以S n=n2-3n.当n≥2时,a n=S n-S n-1=(n2-3n)-[(n-1)2-3(n-1)]=2n-4.当n=1时,a1=-2,符合上式.所以a n=2n-4.若选择②.因为S n=n2+a n-5n+4,所以当n≥2时,S n-1=(n-1)2+a n-1-5(n-1)+4,两式相减,得a n=n2-(n-1)2+a n-a n-1-5n+5(n-1),即a n-1=2n-6.所以a n=2n-4(n∈N*).若选择③,设等差数列{a n}的公差为d,由a3a6=a24可得(a1+2d)·(a1+5d)=(a1+3d)2.又a1=-2,d≠0,所以d=2,所以数列{a n}的通项公式为a n=2n-4.10.若数列{a n}的各项均为正数,对任意n∈N*,a2n+1=a n a n+2+t,t为常数,且2a3=a2+a4.(1)求a1+a3a2的值;(2)求证:数列{a n}为等差数列.解:(1)因为对任意n∈N*,a2n+1=a n a n+2+t,令n=2,得a23=a2a4+t.①令n=1,得a22=a1a3+t.②①-②得a23-a22=a2a4-a1a3,即a3(a3+a1)=a2(a2+a4),所以a1+a3a2=a2+a4a3=2.(2)证明:a2n+1=a n a n+2+t,a2n+2=a n+1a n+3+t,两式相减得a n+1+a n+3a n+2=a n+a n+2a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +a n +2a n +1为常数列,所以a n +a n +2a n +1=a 1+a 3a 2=2,所以a n +a n +2=2a n +1, 所以数列{a n }为等差数列.[B 级 综合练]11.(多选)设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .-247<d <-3C .当S n <0时,n 的最小值为13D .数列⎩⎨⎧⎭⎬⎫S n a n 中的最小项为第7项解析:选ABCD.由题意,得S 12=(a 1+a 12)2×12=6(a 6+a 7)>0.又a 7<0,所以a 6>0,所以A 正确.根据题意得⎩⎨⎧a 7=a 3+4d =12+4d <0,a 6=a 3+3d =12+3d >0,a 6+a 7=2a 3+7d =24+7d >0,解得-247<d <-3,所以B 正确.因为S 13=a 1+a 132×13=13a 7<0,又S 12>0,所以当S n <0时,n 的最小值为13,所以C 正确.由上述分析可知,当n ∈[1,6]时,a n >0,当n ∈[7,+∞)时,a n <0,当n ∈[1,12]时,S n >0,当n ∈[13,+∞)时,S n <0,所以当n ∈[1,6]时,S n a n >0,当n ∈[13,+∞)时,S na n >0,当n ∈[7,12]时,S na n<0,且当n ∈[7,12]时,{a n }为单调递减数列(a n <0),S n 为单调递减数列(S n >0),所以⎩⎨⎧⎭⎬⎫S n a n 中的最小项为第7项,所以D 正确.故选ABCD.12.若数列{a n }为等差数列,a n >0,前n 项和为S n ,且S 2n -1=2n -12n +1a 2n ,则a 9的值是________.解析:因为S 2n -1=2n -12n +1a 2n ,所以(a 1+a 2n -1)×(2n -1)2=2n -12n +1a 2n,即2a n ×(2n -1)2=2n -12n +1a 2n ,所以a n=12n +1a 2n ,又a n >0,所以a n =2n +1,所以a 9=19.答案:1913.(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{a n }的公差为d , 由S 9=-a 5得a 1+4d =0, 由a 3=4得a 1+2d =4, 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10. 所以n 的取值范围是{n |1≤n ≤10,n ∈N }.14.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解:(1)设公差为d ,因为{a n }为等差数列,所以a 1+a 5=a 2+a 4=18,又a 2a 4=65,所以a 2,a 4是方程x 2-18x +65=0的两个实数根,又公差d >0,所以a 2<a 4,所以a 2=5,a 4=13.所以⎩⎨⎧a 1+d =5,a 1+3d =13,所以⎩⎨⎧a 1=1,d =4,所以a n =4n -3.(2)存在.由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k ,。
等差数列前n项和的公式说课稿

等差数列前n项和的公式说课稿等差数列前n项和的公式说课稿1以下是高中数学《等差数列前n项和的公式》说课稿,仅供参考。
教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。
B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生"大众教学"的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
教学重点:等差数列前n项和的公式。
教学难点:等差数列前n项和的公式的灵活运用。
教学方法:启发、讨论、引导式。
教具:现代教育多媒体技术。
教学过程一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。
提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。
(教师观察学生的表情反映,然后将此问题缩小十倍)。
我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10.这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
高考数学一轮复习第6章数列第2讲等差数列及其前n项和课件文
n≤10 , 即 共 有
10
个数.所以
S10
=
10(1+19) 2
=
100或S10=10×1+1பைடு நூலகம்× 2 9×2=100,故选 C.
12/13/2021
第七页,共四十二页。
(必修 5 P46B 组 T2 改编)等差数列{an}的前 n 项和为 Sn,若 S10=20,S20=50,则 S30=________. 解析:根据等差数列性质 S10,S20-S10,S30-S20 成等差数列, 所以 2(S20-S10)=S10+S30-S20,所以 S30=3(S20-S10)=3(50 -20)=90. 答案:90
12/13/2021
第二十七页,共四十二页。
考点四 等差数列的单调性与最值
(1)下面是关于公差 d>0 的等差数列{an}的四个命题:p1: 数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列ann 是递增数列;p4:数列{an+3nd}是递增数列.其中真命题为
12/13/2021
第十六页,共四十二页。
当 n≥2 时,由22SSnn=-1=a2na+n2-a1n+,an-1, 得 2an=a2n+an-a2n-1-an-1. 即(an+an-1)(an-an-1-1)=0, 因为 an+an-1>0, 所以 an-an-1=1(n≥2), 所以数列{an}是等差数列.
ak+al=am+an.
(3)若{an}是等差数列,公差为 d,则{a2n}也是等差数列,公差 为__2_d_.
(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.
12/13/2021
第三页,共四十二页。
5.等差数列的前 n 项和公式 设等差数列{an}的公差为 d,其前 n 项和 Sn=n(a12+an)或 Sn=____n_a_1+ __n__(__n_2-__1_)__d________.
2020届浙江高考数学总复习讲义: 等差数列及其前n项和
第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(2018·温州模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=5,a 5=3,则a n =________;S 7=________.答案:-n +8 283.(2018·温州十校联考)在等差数列{a n }中,若a 3+a 4+a 5=12,则S 7=______. 答案:281.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.[小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B.⎝⎛⎭⎫-∞,-83 C.⎝⎛⎭⎫-3,-83 D.⎣⎡⎭⎫-3,-83 答案:D2.(2018·湖州模拟)设等差数列{a n }的前n 项和为S n ,已知a 3=16,a 6=10,则公差d =________;S n 取到最大时的n 的值为________.解析:因为数列{a n }是等差数列,且a 3=16,a 6=10,所以公差d =a 6-a 36-3=-2,所以a n =-2n +22,要使S n 能够取到最大值,则需a n =-2n +22≥0,所以解得n ≤11.所以可知使得S n 取到最大时的n 的值为10或11.答案:-2 10或11考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2017·嘉兴二模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47解析:选A 设数列{a n }的公差为d ,因为S n 为等差数列{a n }的前n 项和,且S 1S 4=110,所以10a 1=4a 1+6d ,所以a 1=d .所以S 3S 5=3a 1+3d 5a 1+10d =6d 15d =25.2.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5 B .6 C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.3.公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:114.(2019·绍兴模拟)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=______,公差d =________.解析:由S 2=S 6,得S 6-S 2=a 3+a 4+a 5+a 6=4a 1+14d =0,即2a 1+7d =0.由S 55-S 44=2,得52(a 1+a 5)5-42(a 1+a 4)4=12(a 5-a 4)=12d =2,解得d =4,所以a 1=-14.答案:-14 4[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想. 考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领](2019·温州模拟)已知数列{a n }中,a 1=12,a n +1=1+a n a n +12(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n -1是等差数列;(2)求数列{a n }的通项公式.解:(1)证明:因为对于n ∈N *,a n +1=1+a n a n +12, 所以a n +1=12-a n, 所以1a n +1-1-1a n -1=112-a n-1-1a n -1=2-a n -1a n -1=-1.所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=-2,公差为-1的等差数列.(2)由(1)知1a n -1=-2+(n -1)(-1)=-(n +1), 所以a n -1=-1n +1, 即a n =n n +1. [由题悟法]等差数列的判定与证明方法已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式. 解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n , ∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n,∴a n =1b n=12n -1.∴数列{a n }的通项公式为a n =12n -1. 考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.(2019·宁波模拟)在等差数列{a n }中,若a 9a 8<-1,且其前n 项和S n 有最小值,则当S n >0时,n 的最小值为( )A .14B .15C .16D .17解析:选C ∵数列{a n }是等差数列,它的前n 项和S n 有最小值,∴公差d >0,首项a 1<0,{a n } 为递增数列,∵a 9a 8<-1,∴a 8·a 9<0,a 8+a 9>0,由等差数列的性质知2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0.∵S n =(a 1+a n )n2,∴当S n >0时,n 的最小值为16. 2.(2018·嘉兴一中模拟)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足a n >0的最大n 的值为______,满足S k S k +1<0的正整数k =______.解析:由题可得a 6=S 6-S 5>0,a 7=S 7-S 6<0,所以使得a n >0的最大n 的值为6.又a 6+a 7=S 7-S 5>0,则S 11=11(a 1+a 11)2=11a 6>0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,S 13=13(a 1+a 13)2=13a 7<0,因为{a n }是递减的等差数列,所以满足S k S k +1<0的正整数k =12. 答案:6 12[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.(2018·浙江新高考联盟)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310 B.37 C.13D.12解析:选A 因为数列{a n }是等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,因为S 4S 8=13,所以不妨设S 4=1,则S 8=3,所以S 8-S 4=2,所以S 16=1+2+3+4=10,所以S 8S 16=310.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18一抓基础,多练小题做到眼疾手快1.(2018·杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n }的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(2018·舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15.3.(2019·缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(2019·腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2018·金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,a n =a 2n +1+a 2n -12,则a 6=( ) A .2 2 B .4 C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(2018·浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( )A .22B .23C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7,即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(2018·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114B.32C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2018·东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A nB n=7n +45n +3,则使得a nb n 为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n 为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个. 5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(2019·台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n .答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.(2018·金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n =|a n |,则使T n =S n 成立的最大正整数n 为________,T 2 018+S 2 018=________.解析:根据题意,数列{a n }中,a n =-3n +20,则数列{a n }是首项为17,公差为-3的等差数列,且当n ≤6时,a n >0,当n ≥7时,a n <0,又由b n =|a n |,当n ≤6时,b n =a n ,当n ≥7时,b n =-a n ,则使T n =S n 成立的最大正整数为6,T 2 018+S 2 018=(a 1+a 2+…+a 6+a 7+a 8+…+a 2 018)+(b 1+b 2+…+b 6+b 7+b 8+…+b 2 018)=2(a 1+a 2+…+a 6)=(17+2)×6=114.答案:6 1149.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n .解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2. 10.(2018·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0.当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2018·浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________.解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min =4. 答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n .解:(1)法一:∵数列{a n }是等差数列,∴a n =a 1+(n -1)d ,a n +1=a 1+nd .由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3,∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3,得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n )=4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1,∴a 1=-12. (2)由题意,①当n 为奇数时,S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12 =2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7)=2n 2-3n 2.。
等差数列求和公式证明推导
等差数列求和公式证明推导1.等差数列算术序列是一种常见的序列。
如果每个项目与其前一个项目之间的差值等于第二个项目的相同常数,则该序列称为算术序列,该常数称为算术序列的公差,该公差通常用字母D表示。
通项公式为:an=a1+(n-1)*d。
首项a1=1,公差d=2。
前n项和公式为:SN=A1*n+[n*(n-1)*D]/2或SN=[n*(A1+an)]/2。
注意:以上n均属于正整数。
2.求和公式若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:s=(a1+an)n÷2即(首项+末项)×项数÷2前n项和公式注意:n是正整数(相当于n个等差中项之和)算术序列的前n项之和实际上是梯形公式的奇妙用法:上底为:a1首项,下底为a1+(n-1)d,高为n。
也就是[A1+A1+(n-1)D]*n/2={A1N+n(n-1)D}/2。
sn=n*a1+{n*(n-1)}/2*d点击查看:高中数学知识点摘要3.等差数列求和公式证明推导一从通式中可以看出,a(n)是主函数(D)≠ 0)或N的常数函数(d=0),且(N,an)排列在一条直线上。
根据前n项和公式,s(n)是二次函数(D≠ 0)或主要功能(d=0,A1≠ N的0),常数项为0。
二。
从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=A(k)+A(n-k+1),(类似:P(1)+P(n)=P(2)+P(n-1)=P(3)+P(n-2)==P(k)+P(n-k+1)),k∈{1,2,…,n}三。
若m,n,p,q∈n*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),s(2n-1)=(2n-1)*a(n),s(2n+1)=(2n+1)*a(n+1),s(k),s(2k)-s(k),s(3K)-s(2k),。
,s(n)*K-s(n-1)*K。
高考研究一等差数列的考点求项求和及判定课件(1)
列,Sn 为数列{an}的前 n 项和,则SS45- -SS23的值为 (
)
A.-2
B.-3
C.2
D.3
解析:设{an}的公差为 d,因为 a1,a3,a4 成等比数列, 所以(a1+2d)2=a1(a1+3d),可得 a1=-4d,
所以SS45- -SS23=aa34+ +aa45=--3dd=3. 答案:D
返回 [解析] (1)由 a3+a6+a10+a13=32,得(a3+a13)+(a6+a10) =32,得 4a8=32,即 a8=8,m=8. (2)因为{an},{bn}为等差数列,且TSnn=3n2+n 2,
13a1+a13 所以ab77=22ba77=ab11++ab1133=13b12+b13=TS1133=3×2×131+3 2=4216.
+a4=60,那么 a7+a8=
()
A.95
B.100
C.135
D.80
解析:由等差数列的性质可知,a1+a2,a3+a4,a5+a6,a7
+a8 构成新的等差数列,于是 a7+a8=(a1+a2)+(4-1)[(a3+
a4)-(a1+a2)]=40+3×20=100.
答案:B
返回 2.(2018·广州模拟)已知等比数列{an}的各项都为正数,且 a3,
[解析] 法一:用“函数法”解题 由 S3=S11,可得 3a1+3×2 2d=11a1+11×2 10d,即 d= -123a1.从而 Sn=d2n2+a1-d2n=-1a31(n-7)2+4193a1, 因为 a1>0,所以-1a31<0. 故当 n=7 时,Sn 最大.
法二:用“通项变号法”解题 由法一可知,d=-123a1. 要使 Sn 最大,则有aann≥ +1≤0,0, 即a1+n-1-123a1≥0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然数平方与立方数列前n项和公式证明
huangjianwxyx
以下公式,尤其是二、三公式的推导体现了递推消项数学思想。
一、证明:Sn=
nkk1
=1+2+3+…+n=(1+n)n/2 证:(略)
二、证明:Sn=nkk12=1²+2²+3²+…+n²= [n(n+1)(2n+1)]/6
证:(n+1)³-n³=(n³+3n²+3n+1)-n³=3n²+3n+1,则:
2³-1³=3×1²+3×1+1(n从1开始)
3³-2³=3×2²+3×2+1
4³-3³=3×3²+3×3+1
5³-4³=3×4²+3×4+1
6³-5³=3×5²+3×5+1
…
(n+1)³-n³=3×n²+3×n+1(至n结束)
上面左右所有的式子分别相加,得:
(n+1)³-1³=3×[1²+2²+3²+…+n²]+3×[1+2+3+…+n]+n
(n+1)³-1=3Sn+3×[n(n+1)/2]+n
Sn=1²+2²+3²+…+n²= [n(n+1)(2n+1)]/6
三、证明:Sn=nkk13=1
3+23+.....+n3=n2(n+1)2/4=[n(n+1)/2] 2
证: (n+1)
4-n4=[(n+1)2+n2][(n+1)2-n2]=(2n2+2n+1)(2n+1)=4n3+6n2
+4n+1则:
24-14=4*13+6*12+4*1+1 (n从1开始)
34-24=4*23+6*22+4*2+1
44-34=4*33+6*32+4*3+1
...
(n+1) 4-n4=4*n3+6*n2+4*n+1(至n结束)
上面左右所有的式子分别相加,得:
(n+1) 4-1=4*(13+23+.....+n3)+6*(1²+2²+3²+…+n²)+4*(1+2+3+...+n)+n
4*(1
3+23+.....+n3)= (n+1) 4
-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]2
Sn=1
3+23+.....+n3=[n(n+1)/2] 2