第六节不定方程精选.

第六节不定方程精选.
第六节不定方程精选.

第六节 不定方程

所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。在本节我们来看一看不定方程的基础性的题目。

基础知识

1.不定方程问题的常见类型:

(1)求不定方程的解;

(2)判定不定方程是否有解;

(3)判定不定方程的解的个数(有限个还是无限个)。

2.解不定方程问题常用的解法:

(1)代数恒等变形:如因式分解、配方、换元等;

(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;

(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;

(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;

(5)无穷递推法。

以下给出几个关于特殊方程的求解定理:

(一)二元一次不定方程(组)

定义1.形如c by ax =+(,,,,Z c b a ∈b a ,不同时为零)的方程称为二元一次不定方程。 定理1.方程c by ax =+有解的充要是c b a |),(;

定理2.若1),(=b a ,且00,y x 为c by ax =+的一个解,则方程的一切解都可以表示成

???

????-=+=t b a a y y t b a b x x ),(),(00t (为任意整数)。 定理3.n 元一次不定方程c x a x a x a n n =+++Λ2211,(N c a a a n ∈,,,,21Λ)有解的充要条件是c a a a n |),,,(21Λ.

方法与技巧:

1.解二元一次不定方程通常先判定方程有无解。若有解,可先求c by ax =+一个特解,从而写出通解。当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减

小系数,直到容易得其特解为止;

2.解n 元一次不定方程c x a x a x a n n =+++Λ2211时,可先顺次求出332221),(,),(d a d d a a ==, ……,n n n d a d =-),(1.若n d c ,则方程无解;若n d |c ,则方程有解,作方程组:

????

?????=+=+=+=+--------c x a t d t d x a t d t d x a t d t d x a x a n n n n n n n n n n 1111112

2333322222211ΛΛΛΛ求出最后一个方程的一切解,然后把1-n t 的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。

3.m 个n 元一次不定方程组成的方程组,其中n m <,可以消去1-m 个未知数,从而消去了1-m 个不定方程,将方程组转化为一个1+-m n 元的一次不定方程。

(二)高次不定方程(组)及其解法

1.因式分解法:对方程的一边进行因式分解,另一边作质因式分解,然后对比两边,转而求解若干个方程组;

2.同余法:如果不定方程0),,(1=n x x F Λ有整数解,则对于任意N m ∈,其整数解),,(1n x x Λ满足)(mod 0),,(1m x x F n ≡Λ,利用这一条件,同余可以作为探究不定方程整数解的一块试金石;

3.不等式估计法:利用不等式工具确定不定方程中某些字母的范围,再分别求解;

4.无限递降法:若关于正整数n 的命题)(n P 对某些正整数成立,设0n 是使)(n P 成立的最小正整数,可以推出:存在*

1N n ∈,使得01n n <成立,适合证明不定方程无正整数解。 方法与技巧:

1.因式分解法是不定方程中最基本的方法,其理论基础是整数的唯一分解定理,分解法作为解题的一种手段,没有因定的程序可循,应具体的例子中才能有深刻地体会;

2.同余法主要用于证明方程无解或导出有解的必要条件,为进一步求解或求证作准备。同余的关键是选择适当的模,它需要经过多次尝试;

3.不等式估计法主要针对方程有整数解,则必然有实数解,当方程的实数解为一个有界集,则着眼于一个有限范围内的整数解至多有有限个,逐一检验,求出全部解;若方程的实数解是无界的,则着眼于整数,利用整数的各种性质产生适用的不等式;

4.无限递降法论证的核心是设法构造出方程的新解,使得它比已选择的解“严格地小”,由此产生矛盾。

(三)特殊的不定方程

1.利用分解法求不定方程)0(≠=+abc cxy by ax 整数解的基本思路:

将)0(≠=+abc cxy by ax 转化为ab b cy a x =--))((后,若ab 可分解为Z b a b a ab i i ∈===Λ11,

则解的一般形式为??

???+=+=c b b y c a a x i

i ,再取舍得其整数解; 2.定义2:形如2

22z y x =+的方程叫做勾股数方程,这里z y x ,,为正整数。

对于方程222z y x =+,如果d y x =),(,则22|z d ,从而只需讨论1),(=y x 的情形,此时易知z y x ,,两两互素,这种两两互素的正整数组叫方程的本原解。

定理3.勾股数方程222z y x =+满足条件y |2的一切解可表示为: 2222,2,b a z ab y b a x +==-=,其中1),(,0=>>b a b a 且b a ,为一奇一偶。

推论:勾股数方程2

22z y x =+的全部正整数解(y x ,的顺序不加区别)可表示为: d b a z abd y d b a x )(,2,)(2222+==-=其中0>>b a 是互质的奇偶性不同的一对正整数,d 是一个整数。

勾股数不定方程222z y x =+的整数解的问题主要依据定理来解决。

3.定义3.方程*22,,(4,1N d Z y x dy x ∈∈±±=-且不是平方数)是c dy x =-22的一种特殊情况,称为沛尔(Pell)方程。

这种二元二次方程比较复杂,它们本质上归结为双曲线方程c dy x =-22的研究,其中d c ,都是整数,0>d 且非平方数,而0≠c 。它主要用于证明问题有无数多个整数解。对于具体的d 可用尝试法求出一组成正整数解。如果上述pell 方程有正整数解),(y x ,则称使y d x +的最小的正整数解),(11y x 为它的最小解。

定理4.Pell 方程*

22,,(1N d Z y x dy x ∈∈=-且不是平方数)必有正整数解),(y x ,且若设它的最小解为),(11y x ,则它的全部解可以表示成: [][]

)()()(21)()(21*11111111N n y d x y d x d y y d x y d x x n n n n n n ∈???????--+=-++=. 上面的公式也可以写成以下几种形式:

(1)n

n n d y x d y x )(11+=+;(2)???+=+=++n n n n n n x y y x y y dy x x x 111111;(3)???-=-=-+-+11111122n n n n n n y y x y y x x x . 定理5.Pell 方程*22,,(1N d Z y x dy x ∈∈-=-且不是平方数)要么无正整数解,要么有无

穷多组正整数解),(y x ,且在后一种情况下,设它的最小解为),(11y x ,则它的全部解可以表示为[][]

)()()(21)()(21*1211121112111211N n y d x y d x d y y d x y d x x n n n n n n ∈???????--+=-++=---- 定理6. (费尔马(Fermat )大定理)方程3(≥=+n z y x n

n n 为整数)无正整数解。

费尔马(Fermat )大定理的证明一直以来是数学界的难题,但是在1994年6月,美国普林斯顿大学的数学教授A.Wiles 完全解决了这一难题。至此,这一困扰了人们四百多年的数学难题终于露出了庐山真面目,脱去了其神秘面纱。 典例分析

例1.求不定方程2510737=+y x 的整数解。

解:先求110737=+y x 的一组特解,为此对37,107运用辗转相除法:

33372107+?=,433137+?=, 18433+?=

将上述过程回填,得:

378)372107(9378339)3337(93749374843748331?-?-?=?-?=-?-=?-=?--=?-=9107)26(3737261079?+-?=?-?=

由此可知,9,2611=-=y x 是方程110737=+y x 的一组特解,于是650)26(250-=-?=x ,2259250=?=y 是方程2510737=+y x 的一组特解,因此原方程的一切整数解为:???-=+-=t

y t x 37225107650。 例2.求不定方程213197=+y x 的所有正整数解。

解:用原方程中的最小系数7去除方程的各项,并移项得:753230719213y y y x -+-=-=

因为y x ,是整数,故u y =-7

53也一定是整数,于是有375=+u y ,再用5去除比式的两边,得523573u u u y -+-=-=,令5

23u v -=为整数,由此得352=+v u 。 经观察得1,1=-=v u 是最后一个方程的一组解,依次回代,可求得原方程的一组特解:

2,2500==y x ,所以原方程的一切整数解为:???+=-=t

y t x 721925。

例3.求不定方程40823=++z y x 的正整数解。

解:显然此方程有整数解。先确定系数最大的未知数z 的取值范围,因为z y x ,,的最小值为1,所以4823401=??

????--≤≤z 。

当1=z 时,原方程变形为3223=+y x ,即2

332x y -=,由上式知x 是偶数且102≤≤x 故方程组有5组正整数解,分别为???==132y x ,???==104y x ,???==76y x ,???==48y x ,???==1

10y x ;

当2=z 时,原方程变形为2423=+y x ,即2324x y -=

,故方程有3组正整数解,分别为:???==92y x ,???==64y x ,???==3

6y x ;

当3=z 时,原方程变形为1623=+y x ,即2316x y -=

,故方程有2组正整数解,分别为:???==52y x ,?

??==24y x ; 当4=z 时,原方程变形为823=+y x ,即238x y -=,故方程只有一组正整数解,为???==12y x 。 故原方程有11组正整数解(如下表):

例4.求出方程172

2=-y x 的所有正整数解。

解:先求最小解),(11y x 。令Λ,3,2,1=y

当1=y 时,8712=+y ;当2=y 时,29712=+y ;当3=y 时,2286471==+y 。所以1722=-y x 的最小解为)3,8(,于是: [][]

)(])738()738[(721)()(21])738()738[(21)()(21*11111111N n y d x y d x d y y d x y d x x n n n n n n n n n n ∈???

????--+=--+=-++=-++= 例5.在直角坐标平面上,以(199,0)为圆心,以199为半径的圆周上的整点的个数为多少个?

解:设),(y x A 为圆O 上任一整点,则其方程为:222199)199(=-+x y ;

显然)0,389(),199,199(),199,199(),0,0(-为方程的4组解。

但当199,0±≠y 时,1)199,(=y (因为199是质数),此时,|199|,,199x y -是一组勾股数,故199可表示为两个正整数的平方和,即22199n m +=。

因为3494199+?=,可设12,2+==l n k m ,则1)(414441992222+++=+++=l l k l l k 这与199为34+d 型的质数矛盾!因而圆O 上只有四个整点)0,389(),199,199(),199,199(),0,0(-。 例6.求所有满足z y x 17158=+的正整数三元组),,(z y x 。

解:两边取8mod ,得)8(mod 1)1(≡-y ,所以y 是偶数,再7mod 得)7(m od 32z ≡,所以z 也是偶数。此时令),(2,2N t m t z m y ∈==

于是,由z y x 17158=+可知:)1517(2

3m t x -=)1517(m t +; 由唯一分解定理:s m t 2)1517(=-,s x m t -=+32

)1517(,从而131322)22(2117----+=+=s x s s x s t 注意到17是奇数,所以要使131322)22(2

117----+=+=

s x s s x s t 成立,一定有1=s 。 于是21517=-m t 。 当2≥m 时,在21517=-m t 的两边取9mod ,得)9(mod 2)1(≡-t

,这显然是不成立的,所以1=m ,从而2,1==x t 。

故方程z y x 17158=+只有唯一的一组解(2,2,2)。

例7.a 是一个给定的整数,当a 为何值时,y x ,的方程)1(13-=+xy a y 有正整数解?在有正整数解时,求解该不定方程。

解;若有质数3|x p ,1|-xy p ,则x p |,从而1|p ,矛盾!所以1)1,(3=-xy x 。 因此1|13+-y xy 当且仅当)1(|133+-y x xy 。因为)1()1()1(33333++-=+x y x y x ,显然)1(|133+-y x xy ,所以1|13+-y xy 当且仅当1|13+-x xy 。(*)

(1)若1=y 时,Z x a ∈-=1

2,所以2=x 或3=x ,2=a 或1=a ; (2)类似地,若1=x ,则

Z y ∈-12,所以2=y 或3=y ,9=a 或14=a ; (3)由于条件(*),不妨设1>≥y x ;

若y x =,则Z y y y y a ∈-+=-+=111

123,所以3,2===a y x ; 若y x >,则因为)(m od 11),(m od 113

y xy y y -≡-≡+,所以存在N b ∈,使得:

)1)(1(13

--=+by xy y ,所以1111111233-+=-+<-+=-y y y y xy y by ,1111+-<-y by 。 因为N b y ∈≥,2,所以必有1=b 。所以)1)(1(13

--=+y xy y ,故1,223--=--=y xy y y xy xy y 所以N y y y y x ∈-++=-+=1

21112,所以2=y 或3=y 当2=y 时,5=x ;

当3=y 时,5=x ,对应的a 为1或2。

由条件(*)知5,2==y x 以及5,3==y x 也是原方程的解,对应的整数a 为14或9。 综上,当14,9,3,2,1=a 时原方程有整数解,它们分别是:(3,1),(5,2);(2,1),(5,3),(2,2);(1,2),(3,5);(1,3),(2,5)。

例8.求证:边长为整数的直角三角形的面积不可能是完全平方数。

证明:假设结论不成立,在所有的面积为平方数勾股三角形中选取一个面积最小的,设其边长为z y x <<,则

xy 21是平方数,则必有1),(=y x 。 因为222z y x =+,故存在整数b a b a ,,0>>中一奇一偶,1),(=b a ,使得(不妨设y 是偶数)2222,2,b a z ab y b a x +==-=。 由于ab b a b a xy ))((2

1+-=是完全平方数,而知ab b a b a ,,+-两两互素,故它们是平方数,即2222,,,v b a u b a q b p a =-=+==,所以2222q v u =-即22))((q v u v u =-+

因为v u ,是奇数,易知2),(=-+v u v u ,于是v u -与v u +中有一个是2

2r ,另一个是2)2(s ,而2224s r q =;

另一方面,2222,,,v b a u b a q b p a =-=+==得])()[(4

1)(2122222v u v u v u a p -++=+== 444224])2()2[(4

1s r s r +=+= 所以,以p s r ,2,22为边的三角形都是直角三角形,其面积等于222)(22

1rs s r =?是平方数, 但是xy ab b a b q rs 21)(44)(2222

=-<==,于是构造出了一个面积更小的勾股三角形,矛

盾!

参考文献

1.奥林匹克数学中的代数问题冷岗松沈文选唐立华等著湖南师范大学出版社2.数学奥林匹克教程张军著湖南师范大学出版社3.高中数学竞赛2000题虞金龙著浙江大学出版社4.中国华罗庚学校数学课本周敏泽著吉林教育出版社5.奥林匹克小从书数学竞赛中的数论问题熊斌余红兵著

编后语

本书是作者在辅导山东省济宁一中奥林匹克竞赛班时所编写的教材,由于时间较为仓促,作者水平有限,许多地方编写地不尽如人意,未尽事项请大家谅解!另外,本书参考了大量的方献资料,在此向文献的作者表示感谢!再者,本来本书应配有习题,可是由于作者的计算机水平有限,再加之时间紧迫,所以所有的习题,都是我用手写完成的,未能向大家列出,向大家致歉!

贾广素

于山东济宁

2006年9月6日星期三最新文件仅供参考已改成word文本。方便更改

(完整版)常微分方程发展简史——解析理论与定性理论阶段3常微分

第三讲 常微分方程发展简史——解析理论 与定性理论阶段 3、常微分方程解析理论阶段:19世纪 19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。 级数解和特殊函数 这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数. 常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程. 222 ()0x y xy x n y '''++-= 其中参数n 和x 都可以是复的. 对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个n , 此方程存在两个独立的基本解, 记作()n J x 和()n Y x , 分别称为第一类Bessel 函数和第二类Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式 20 ()cos(sin ).2n q J x nu x u du ππ=-? 1818年Bessel 证明了()n J x 有无穷多个零点. 1824年, Bessel 对整数n 给出了递推关系式 11()2()()0n n n xJ x nJ x xJ x +--+= 和其他的关于第一类Bessel 函数的关系式. 后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。 解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程2 (1)20x y xy y λ'''-++=, 给出了幂级数形式的解, 得到

不定方程及方程组

不定方程(组)及应用 【知识点拨】 不定方程式数论中的一个古老的分支,我国对不定方程的研究已有数千年的历史,“百鸡问题”、“中国剩余定理”等一直流传至今。 当方程的个数比方程中未知数的个数少的时候,我们就称这样的方程(或方程组)为不定方程(或不定方程组)。 为纪念古希腊数学家丢番图,不定方程也成为丢番图方程,之所以把它们叫不定方程,是因为他们的解不确定(不唯一)。一般情况下,如果不加以限制,不定方程的解有无限个,如果考虑到题中的一些条件所限制的范围后,它只能有几个解,甚至无解,解答这类方程,必须对题中明显或者隐蔽的条件加以推理,才能正确求解。 【典型例题】 例 1、 求不定方程5x +9y=104的整数解 【巩固训练】 1、在不定方程89-7a=4b 中,a 、b 均为自然数,求此不定方程的解。 例 2、求三元一次不定方程组 {56203412x y z x y z +-=-+=的正整数解。

【巩固训练】 1、求不定方程组{791168 210 x y z x y ++= +=的正整数解。 例3、甲级铅笔7分钱一支,乙级铅笔3分钱一支,问张明用6角钱恰好买两种铅笔共多少支? 【巩固训练】 装水瓶的盒子有大小两种,大的能装7个,小的能装4个,要把41个水瓶装入盒内。问需要大小盒子各多少个?

例4、某地按下列规定收取电费:每月用电不超过50度,每度收4角5分,如果超过50度,超过部分每度收8角,今年七月,甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?(电的度数按整数算) 【巩固训练】 1、某乡水电站发电了,电费规定是:如果每月用电不超过24度,就按每度电9角收费;如果超过24度,超过部分按每度电2元收费,已知在某月中,甲家比乙家多交了电费9元6角钱,甲乙两家各交多少电费?(电的度数按整数算) 例5、把1000拆成两个自然数的和,一个是7的倍数并且要使这个数尽可能大,一个是11的倍数,并且使这个数尽可能的小,这两个数分别是多少?

不定方程

第六节 不定方程 所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理 数、整数或正整数等等)的方程或方程组。不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。在本节我们来看一看不定方程的基础性的题目。 基础知识 1.不定方程问题的常见类型: (1)求不定方程的解; (2)判定不定方程是否有解; (3)判定不定方程的解的个数(有限个还是无限个)。 2.解不定方程问题常用的解法: (1)代数恒等变形:如因式分解、配方、换元等; (2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解; (3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解; (4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解; (5)无穷递推法。 以下给出几个关于特殊方程的求解定理: (一)二元一次不定方程(组) 定义1.形如c by ax =+(,,,,Z c b a ∈b a ,不同时为零)的方程称为二元一次不定方程。 定理1.方程c by ax =+有解的充要是c b a |),(; 定理2.若1),(=b a ,且00,y x 为c by ax =+的一个解,则方程的一切解都可以表示成 ??? ????-=+=t b a a y y t b a b x x ),(),(00t (为任意整数)。 定理3.n 元一次不定方程c x a x a x a n n =+++ 2211,(N c a a a n ∈,,,,21 )有解的充要条件是c a a a n |),,,(21 . 方法与技巧: 1.解二元一次不定方程通常先判定方程有无解。若有解,可先求c by ax =+一个特解,从而写出通解。当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减

(完整word版)初中数学几种不定方程和方程组的解题技巧和方法

初中数学几种不定方程和方程组的解题技巧和方法 凯里市大风洞正钰中学曾祥文 摘要:教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。在初中数学教学中不定方程与方程(组)占很大的比例,是中学生经常出错和不懂的部分。本文主要探讨几种不定方程和方程组的解题技巧和方法。 关键词:初中数学不定方程方程 教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。有效教学是教师在达成教学目标和满足学生发展需要方面都很成功的教学行为,它是教学的社会价值和个体价值的双重体现。数学是人们对客观世界定性把握和定量刻画、逐渐抽象、形成方法和理论,并进行广泛应用的过程。数学教学是教师对学生进行数学思维培养的一种认知过程。 方程(组)中,未知数的个数多于方程的个数时,它的解往往有无数多个,不能唯一确定,因此这类方程常称为不定方程(组),解不定方程没有固定的方法,需具体问题具体分析,经常用到整数的整除、奇数偶数的特性、因数分解、不等式估值、穷举、分离整数、配方等知识与方法,解不定方程的技巧是对方程适当变形,灵活运用相关知识。本文就几类常见的不定方程与方程做如下浅析。 1 非负数的巧用 在初中数学中,经常用的非负数有:①a2 ≥0 ;②|a|≥0;③a≥0若干个非负数的和为0,那么每个非负数均为0, 例1:已经x2 + y2-x+2y+5/4= 0 ,求x 、y的值。 评析:方程左边配方可变为非负数之和 解:由x2 + y2-x+ 2y+5/4= 0 得( x—1/2 ) 2+ ( y +1 ) 2= 0 所以( x—1/2 ) 2≥0,( y + 1 )2≥≥0 一般地,几个非负数之和为0,则每个非负数均为0。所以x=1/2, y=1 2 二元一次方程的整数解

(整理)常微分方程发展简史经典阶段

第一讲 常微分方程发展简史——经典阶段 一、引 言 Newton 和Lebinitz 创立的微积分是不严格的, 18世纪的数学家们一方面努力探索微积分严格化的途径, 一方面往往又不顾基础问题的困难而大胆前进, 大大地扩展了微积分的应用范围, 尤其是与力学的有机结合, 当时几乎所有的数学家也是力学家. Newton 和Lebinitz 都处理过与常微分方程有关的问题. 微积分的产生的一个重要的动因来自于人们探求物质世界运动规律的需求. 一般地, 认识规律 很难完全靠实验观测认识清楚,因为人们不太可能观测到运动的全过程. 运动是服从一定的客观规律的, 物质运动与瞬时变化率之间有着紧密的联系, 而这种联系, 用数学语言表述出来, 即抽象为某种数学结构, 其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为, 运动规律就一目了然了. 在微分方程模型建立过程中, 平衡原理扮演着重要的角色. 微分方程模型通常均是建立在平衡原理基础之上的.``平衡"是我们在现实生活中随处可见的现象. 如:物理学中的能量守恒和动量守恒等定律以及力的平衡等都是在描述物理中的一些平衡现象. 再如考虑一段时间内(或一定范围内)物质的变化,容易发现这段时间内物质的改变量与它的增加量和减少量之差也处于平衡的状态, 这种平衡规律称为物质平衡.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理无疑应该是从物质运动机理的角度组建数学模型的一个关键问题. 作为例子, 我们介绍著名的Malthus 模型, 它是最简单的生态学模型, 也是本书中唯一的线性模型. 给定一个种群, 我们的目的是确定种群的数量是如何随着时间而发展变化的. 为此,我们作出如下假设: 模型假设: 121()H 初始种群规模已知00()x t x =,种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的; 221()H 种群在空间分布均匀,没有迁入和迁出 (或迁入和迁出平衡); 321()H 种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等. 421()H 环境资源是无限的. 确定变量和参数: 为了把问题转化为数学问题, 我们首先确定建模中需要考虑的变量和参数: t: 自变量, x(t): t 时刻的种群密度, b: 瞬时出生率, d: 瞬时死亡率. 模型的建立与求解: 考查时间段[,]t t t +? (不失一般性, 设0t ?>), 由物质平衡原理,在此时间段内种群的数量满足: t t ?+时刻种群数量 – t 时刻种群数量 = t ?内新出生个体数 – t ?内死亡个体数,

不定方程及不定方程组

不定方程及不定方程组集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第二十七讲 不定方程、方程组 不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是解往往有无穷多个,不能惟一确定. 对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,加上条件限制后,解就可确定. 二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常转化为二元一次不定方程问题加以解决,与之相关的性质有: 设d c b a 、、、为整数,则不定方程c by ax =+有如下两个重要命题: (1)若(a ,b)=d ,且d 卜c ,则不定方程c by ax =+没有整数解; (2)若00y x ,是方程c by ax =+且(a ,b)=1的一组整数解(称特解),则为整数) t at y y bt x x (00???-=+=是方程的全部整数解(称通解). 解不定方程(组),没有现成的模式、固定的方法可循,需要依据方程(组)的特点进行恰当的变形,并灵活运用以下知识与方法;奇数偶数,整数的整除性、分离整系数、因数分解。配方利用非负数性质、穷举,乘法公式,不等式分析等. 举例 【例1】 正整数m 、n 满足8m+9n=mn+6,则m 的最大值为 . (新加坡数学竞赛题) 思路点拔 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m 的最大值. 注:求整系数不定方程c by ax =+的整数解。通常有以下几个步骤: (1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t 同时要满足的条件(不等式组),代入(2)中的表达式,写出不定方程的正整数解. 分离整系数法解题的关键是把其中一个未知数用另一个未知数的代数敷式表示,结合整除的知识讨论. 【例2】 如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是( ). A .32千米 B .37千米 C .55千米 D .90千米 (河南省竞赛题) 思路点拨 设置限速标志、照相标志千米数分别表示为3+4x 、10十9y(x ,y 为自然数),问题转化为求不定方程3+4x=0+9y 的正整数解. 【例3】 (1)求方程15x+52y=6的所有整数解. (2)求方程x+y =x 2一xy+y 2的整数解. (莫斯科数学奥林匹克试题) (3)求方程 6 5 111=++z y x 的正整数解. (“希望杯”邀请赛试题)

常见的空间曲面与方程

常见的空间曲面与方程 常见的空间曲面有平面、柱面、锥面、旋转曲面和二次曲面。 1. 平面 空间中平面的一般方程为 0a x b y c z d +++= 其中,,a b c 均为常数,且,,a b c 不全为零。 例如,1x y z ++=(图8-6(a )),0x =(图8-6(b ))均表示空间中的平面, z yoz 平面(x =0) y y x 图8-6(a ) 图8-6 (b) 图8-6 2. 柱面 与给定直线L 平行的动直线l 沿着某给定的曲线C 移动所得到空间曲面,称为柱面, l 为母线,C 为准线。 如图8-7所示 图8-7 图8-8

例如,222x y R +=表示空间中母线平行于z 轴,准线是xoy 平面上的圆222x y R +=的 圆柱面的方程,简称圆柱面图(8-8)。 3. 二次曲面 三元二次方程 222 1231 2 31230a x a y a z b x y b y z b z x c x c y c z d +++ ++++++= 所表示的曲面称为二次曲面,其中,,(1,2,3),i i i a b c i d =均为常数,且,,i i i a b c 不全为0. 二次曲面有以下几种标准形式,它们分别为: 球面: 图8-9 椭球面:222 2221(,,0)x y z a b c a b c ++=>图8-10 图8-9 图8-10 单叶双曲面:222 2221(,,0)x y z a b c a b c -+=>图8-11 双叶双曲面:222 2221(,,0)x y z a b c a b c +-=->图8-12 2222(0)x y z R R + += >x z

小学奥数 不定方程与不定方程组.教师版

不定方程与不定方程组 教学目标 1.利用整除及奇偶性解不定方程 2.不定方程的试值技巧 3.学会解不定方程的经典例题 知识精讲 一、知识点说明 历史概述 不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来. 考点说明 在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。 二、不定方程基本定义 1、定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。 2、不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。

3、研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数; ③求出所有的解 三、不定方程的试值技巧 1、奇偶性 2、整除的特点(能被2、 3、5等数字整除的特性) 3、余数性质的应用(和、差、积的性质及同余的性质) 模块一、利用整除性质解不定方程 【例 1】求方程 2x-3y=8的整数解 【考点】不定方程【难度】2星【题型】解答 【解析】方法一:由原方程,易得 2x=8+3y,x=4+3 2 y,因此,对y的任意一个值,都有一个x与之对应,并且,此时x与y的值必定满足原方 程,故这样的x与y是原方程的一组解,即原方程的解可表为: 3 4 2 x k y k ? =+ ? ? ?= ? ,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无 穷多组解. 方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8 成立,y必为偶数, 当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。 【答案】无穷多个解 【巩固】求方程2x+6y=9的整数解 【考点】不定方程【难度】2星【题型】解答 【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但29,因此,不论x和y取什么整数,2x+6y都不可能等于9,即 原方程无整数解. 说明:此题告诉我们并非所有的二元一次方程都有整数解。 【答案】无整数解 【例 2】求方程4x+10y=34的正整数解 【考点】不定方程【难度】2星【题型】解答 例题精讲

不定方程及不定方程组

第二十七讲 不定方程、方程组 不定方程(组)就是指未知数的个数多于方程的个数的方程 (组),其特点就是解往往有无穷多个,不能惟 一确定. 对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,加上条件限制后,解就可确定? 二元一次不定方程就是最简单的不定方程 ,一些复杂的不定方程(组)常常转化为二元一次不定方程问题 加以解决,与之相关的性质有: 设a 、b 、c 、d 为整数,则不定方程ax by c 有如下两个重要命题: (1)若(a ,b )=d ,且d 卜c ,则不定方程ax by c 没有整数解; x x 0 bt , ⑵若X 。,y o 就是方程ax by c 且(a ,b )=1的一组整数解(称特解),则 (t 为整数)就是方程 的 y y o at 全部整数解(称通解). 解不定方程(组),没有现成的模式、固定的方法可循 ,需要依据方程(组)的特点进行恰当的变形,并灵活运 用以下知识与方法;奇数偶数,整数的整除性、分离整系数、因数分解。配方利用非负数性质、 穷举,乘法公式, 不等式分析等. 举例 【例1】 正整数m 、n 满足8m+9n=mn+6,则m 的最大值为 _______________ . (新加坡数学竞赛题) 思路点拔 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m 的最大值. 注:求整系数不定方程 ax by c 的整数解。通常有以下几个步骤 : (1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t 同时要满足的条件(不等式组),代入⑵中的表 达式,写出不定方程的正整数解. 分离整系数法解题的关键就是把其中一个未知数用另一个未知数的代数敷式表示 ,结合整除的知识讨 论. 【例2】 如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔 9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志 .问下一个同时设置这两种标志的地点 的千米数就是( ). 1115 (3)求方程 的正整数解. x y z 6 (“希望杯”邀请赛试题) p 1 思路点拨 设置限速标志、照相标志千米数分别表示为 定方程3+4x=0+9y 的正整数解. 【例3】(1)求方程15x+52y=6的所有整数解. (2)求方程x+y = x 2 一 xy+y 2 的整数 (河南省竞赛题) 3+4x 、10十9y (x,y 为自然数),问题转化为求不 A.32千米 B.37千米 C.55千米 D.90千米

第六节空间直线及其方程教案(最新整理)

重庆科创职业学院授课教案 课名:高等数学(上)教研窒:高等数学教研室 班级:编写时间: 课题: 第六节空间直线及其方程 教学目的及要求: 介绍空间曲线中最常用的直线,与平面同为本章的重点 教学重点: 1.直线方程 2.直线与平面的综合题 教学难点:1.直线的几种表达式 2.直线与平面的综合题 教学步骤及内容: 一、空间直线的一般方程 空间直线可以看成是两个平面的交线。故其一般方程为: ?A1x +B1y +C1z +D1= 0 ? A x + B y + C z + D = 0 ? 2 2 2 2 二、空间直线的对称式方程与参数方程 平行于一条已知直线的非零向量叫做这条直线的方向向量。 已知直线上的一点M 0 (x0 , y0 , z0 ) 和它的一方向向量s = {m, n, p}, 设直线上任一点为M (x, y, z) ,那么M 0M 与s 平行,由平行的坐标表示 式有: x -x 0 =y -y 0 = z -z m n p 此即空间直线的对称式方程(或称为点向式方程)。(写时参照书上注释)如设 x -x 0 =y -y 0 = z -z 0 =t m n p 就可将对称式方程变成参数方程(t 为参数) 旁批栏:

m 1m 2 + n 1n 2 + p 1 p 2 m 2 + n 2 + p 2 ? m 2 + n 2 + p 2 1 1 1 2 2 2 ? ? 2x - y + 3z + 4 = 0 = 1 ? ? 0 0 0 ?x = x 0 + mt ? y = y + nt ? z = z + pt ? 0 三种形式可以互换,按具体要求写相应的方程。 例 1:用对称式方程及参数方程表示直线?? x + y + z +1 = 0 . 旁批栏: 解:在直线上任取一点(x 0 , y 0 , z 0 ) ,取 x 0 ? y + z + 2 = 0 ? y 0 - 3z 0 - 6 = 0 ,解得 y 0 = 0, z 0 = -2 ,即直线上点坐标(1,0,-2) . 因所求直线与两平面的法向量都垂直,取 s = n 1 ? n 2 = {4,-1,-3} ,对 称式方程为: x -1 = 4 y - 0 = -1 z + 2 - 3 参数方程: ??x = 1+ 4t ? y = -t . ??z = -2 - 3t 例 2: 一直线过点 A (2,-3,4) ,且和 y 轴垂直相交,求其方程. 解:因为直线和 y 轴垂直相交,所以交点为 B (0,-3, 0) ,于是 → s = BA = {2,0,4}, 所求直线方程: x - 2 = 2 y + 3 = 0 z - 4 4 三、两直线的夹角: 两直线的方向向量的夹角(通常指锐角)叫做两直线的夹角。 设 两 直 线 L 1 和 L 2 的 方 向 向 量 依 次 为 s 1 = {m 1 , n 1 , p 1} 和 s 2 = {m 2 , n 2 , p 2 },两直线的夹角可以按两向量夹角公式来计算 cos = 两直线 L 1 和 L 2 垂直: m 1m 2 + n 1n 2 + p 1 p 2 = 0 (充分必要条件) 两直线 L 1 和 L 2 平行: m 1 m 2 = n 1 n 2 = p 1 p 2 (充分必要条件) 例 3:求过点(-3, 2, 5) 且与两平面 x - 4z = 3 和 2x - y - 5z = 1的交线平行 的直线方程. 解:设所求直线的方向向量为 s = {m , n , p },根据题意知,直线的方向向量 与两个平面的法向量都垂直,所以可以取 s = n 1 ? n 2 = {-4,-3,-1},所求直 x + 3 y - 2 z - 5

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

小学数学不定方程与不定方程组的解法

不定方程与不定方程组 知识框架 一、知识点说明 历史概述 不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来. 考点说明 在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。 二、不定方程基本定义 (1)定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。 (2)不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。(3)研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解 三、不定方程的试值技巧 (1)奇偶性 (2)整除的特点(能被2、3、5等数字整除的特性) (3)余数性质的应用(和、差、积的性质及同余的性质) 重难点 (1)b利用整除及奇偶性解不定方程 (2)不定方程的试值技巧 (3)学会解不定方程的经典例题

例题精讲 一、利用整除性质解不定方程【例 1】求方程2x-3y=8的整数解 【考点】不定方程 【解析】方法一:由原方程,易得2x=8+3y,x=4+3 2 y,因此,对y的任意一个值,都有一个x与之对 应,并且,此时x与y的值必定满足原方程,故这样的x与y是原方程的一组解,即原方程的解 可表为: 3 4 2 x k y k ? =+ ? ? ?= ? ,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无穷多 组解. 方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8成立,y必为偶数,当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。 【答案】无穷多个解 【巩固】求方程2x+6y=9的整数解 【考点】不定方程 【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但29,因此,不论x和y取什么整数,2x+6y都不可能等于9,即原方程无整数解. 说明:此题告诉我们并非所有的二元一次方程都有整数解。 【答案】无整数解 【例 2】求方程4x+10y=34的正整数解 【考点】不定方程 【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x+5y=17,5y的个位是0或5两种情况,2x是偶数,要想和为17,5y的个位只能是5,y为奇数即可;2x的个位为2,所以x的取值为1、6、11、16…… x=1时,17-2x=15,y=3, x=6时,17-2x=5,y=1, x=11时,17-2x=17 -22,无解

常微分方程的发展史

常微分方程的发展史 摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定.命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”.在很长一段时间里,人们致力于“求通解”. 关键词:常微分方程,发展,起源 正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。17 世纪,牛顿(I.Newton ,英国,1642-1727)和莱布尼兹(G.W.Leibniz ,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)

提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。雅可比·伯努利自己解决了前者。翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(C.Huygens ,荷兰,1629-1695)独立地解决了后者。 有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。因此,最初人们的注意力放在某些类型的微分方程的一般解法上。 1691 年,莱布尼兹给出了变量分离法。他还把一阶齐次方程使其变量分离。1694 年,他使用了常数变易法把一阶常微分方程化成积分。 1695 年,雅可比·伯努利给出著名的伯努利方程。莱布尼兹用变换,将其化为线性方程。约翰和雅可比给出了各自的解法,其本质上都是变量分离法。 1734 年,欧拉(L.Euler,瑞士,1707-1783)给出了恰当方程的定义。他与克莱罗(A.C. Clairaut,法国,1713-1765)各自找到了方程是恰当方程的条件,并发现:若方程是恰当的,则它是可积的。那么对非恰当方程如何求解呢?1739 年克莱罗提出了积分因子的概念,欧拉确定了可采用积分因子的方程类属。这样,到 18 世纪 40 年

解三元一次不定方程组

题目:小明的妈妈去超市购物,已知买13个鸡蛋,5个鸭蛋,9个鹌鹑蛋需付9.25元,买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋需付3.20元,小明妈妈想买一个鸡蛋一个鸭蛋一个鹌鹑蛋需付多少钱? 分析:此方程组是三元一次不定方程组,由于只有两个三元一次方程,因而要分别求出x、y、z的值是不可能的,但注意到所求的是x+y+z的代数和,因此,可通过变形变换得到多种解法. 解:设鸡、鸭、鹌鹑三种蛋的单价分别为x、y、z元,则根据题意,得13x+5y+9z=9.25 ① 2x+4y+3z=3.20 ② (1)凑整法 解法1: (①+②)/3: 5x+3y+4z=4.15 ③ ∴②+③,得 7(x+y+z)=7.35 ∴ x+y+z=1.05 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元。 解法2: 原方程组可变形为 13(x++y+z)-4(2y+z)=9.25 ① 2(x++y+z)+4(2y+z)=3.20 ② 解之得x+y+z=1.05 (2)主元法 解法3: 视x、y为主元,视z为常数,解①、②得x=0.5-0.5z,y=0.55-0.5z.∴x+y+z=0.55+0.5-z+z=1.05. 解法4: 视y、z为主元,视x为常数,解①、②得y=0.05+x,z=1-2x. ∴x+y+z=1.05+x-2x+x=1.05. 解法5: 视z、x为主元,视y为常数,解①、②得x=y-0.05,z=1.1-2y ∴x+y+z=y-0.05+y+1.1-2y=1.05. (3)参数法 解法6: 设x+y+z=k,则 13x+5y+9z=9.25 ① 2x+4y+3z=3.20 ② x+y+z=k ③ ∴①-②×3,得x-y=-0.05 ④ ③×3-②,得x-y=3k-3.2 ⑤

最新常微分方程发展简史经典阶段

常微分方程发展简史 经典阶段

第一讲常微分方程发展简史——经典阶段一、引言 Newton 和Lebinitz创立的微积分是不严格的, 18世纪的数学家们一方面努力探索微积分严格化的途径, 一方面往往又不顾基础问题的困难而大胆前进, 大大地扩展了微积分的应用范围, 尤其是与力学的有机结合, 当时几乎所有的数学家也是力学家. Newton和Lebinitz都处理过与常微分方程有关的问题. 微积分的产生的一 个重要的动因来自于人们探求物质世界运动规律的需求. 一般地, 认识规律很难完全靠实验观测认识清楚,因为人们不太可能观测到运动的全过程. 运动是服从一定的客观规律的, 物质运动与瞬时变化率之间有着紧密的联系, 而这种联系, 用数学语言表述出来, 即抽象为某种数学结构, 其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为, 运动规律就一目了然了. 在微分方程模型建立过程中, 平衡原理扮演着重要的角色. 微分方程模型通常均是建立在平衡原理基础之上的.``平衡"是我们在现实生活中随处可见的现象. 如:物理学中的能量守恒和动量守恒等定律以及力的平衡等都是在描述物理中的一些平衡现象. 再如考虑一段时间内(或一定范围内)物质的变化,容易发现这段时间内物质的改变量与它的增加量和减少量之差也处于平衡的状态, 这种平衡规律称为物质平衡.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理无疑应该是从物质运动机理的角度组建数学模型的一个关键问题. 作为例子, 我们介绍著名的Malthus模型, 它是最简单的生态学模型, 也是本书中唯一的线性模型.

人教版七年级下册数学期末专项复习题:简单的不定方程、方程组【含答案】

人教版七年级下册数学期末专项复习题:简单的不定方程、方程组【含答 案】 阅读与思考 如果方程(组)中,未知数的个数多于方程的个数,那么解往往有无穷多个,不能唯一确定,这样的方程(组)称为不定方程(组). 对于不定方程(组),我们常常限定只求整数解,甚至只求正整数解.加上这类限制后,解可能唯一确定,或只有有限个,或无解.这类问题有以下两种基本类型: 1.判定不定方程(组)有无整数解或解的个数; 2.如果不定方程(组)有整数解,求出其全部整数解. 二元一次不定方程是最简单的不定方程,一些不定方程(组)常常转化为二元一次不定方程求其整数解. 解不定方程(组),没有固定的方法可循,需具体问题具体分析,经常用到整数的整除、奇数偶数、因数分解、不等式分析、穷举、分离整数、配方等知识与方法.根据方程(组)的特点进行适当变形,并灵活运用相关知识与方法是解不定方程(组)的基本思路. 例题与求解 【例1】满足222219981997m n +=+ (0<m <n <1 998)的整数对(m ,n )共有_______对. (全国初中数学联赛试题) 解题思路:由方程特点,联想到平方差公式,利用因数分解来解答. 【例2】电影票有10元,15元,20元三种票价,班长用500元买了30张电影票,其中票价为20元的比票价为10元的多( ). A .20张 B .15张 C .10张 D .5张 (“希望杯”邀请赛试题) 解题思路:设购买10元,15元,20元的电影票分别为x ,y ,z 张.根据题意列方程组,整体求出的z -x 值. 【例3】某人家中的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14 405,将前三位数组成的数与后五位数组成的数相加得16 970,求此人家中的电话号码.

不定方程(初二)及答案

2010年2月希望杯数学冬令营上课材料初二 不定方程 一、赛点分析 1、两个变量的不定方程 ax by c ,其中a,b,c 为整数,且a, b 都不为0,则有以下性质: (1)不定方程有整数解的充要条件是 (a,b )|c ; 2、解不定方程(组)需要依据方程(组)的特点进行恰当的变形,并灵活运用一下知识与 方法:奇 数偶数、整数的整除性、整系数分离法、因式分解、配方利用非负数性质、乘 法公式、不等分析等。 二、例题精讲 例1、求方程4x 5y 21的整数解。 4k 代入已知方程得x 5 (1 4k ) k 4 5k 。 x 4 5k 所以 (k 为整数)是方程的整数解, y 1 4k 并且当k 取遍所有整数时,就得到方程的所有整数解。 变式1、求方程7x 4y 100的正整数解。 x 4 x 4 4t 士 解:通过观察得方程的一个特解: ?万程的通解是 (t 为整数), y 18 y 18 7t 4 4t 1 3 17 ?/ x 、y 为正整数,? -t 18 7t 1 4 7 ?/ t 为整数,??? t 0, 1或2,将它们分别代入通解, (2)设不定方程有整数解(x 0, y 0),则所有整数解有: X o y o (t 为整数)。 解:设x 、y 是已知方程的整数解,由 x,y 21 之中较小的系数4去除各项得x 21 4 21 54 把 21 和54 中的整数分离出来,得 4 4 1 y 5 y 4 因为5 y 和x 都是整数,则 J 也是整数,设? J k , 4 4 k 为整数,则y 1 4k ,

解:设鸡翁、鸡母、鸡雏的只数分别为 x 、y 、z ,则有: 共花了 142元,问两种纪念册最少共买了多少本? 解:设小明买了 x 本小纪念册,y 本大纪念册,则有 5x 142 2v 再设 x y a ,? 5a 2y 142 , a 十 ??? a 是正整数,y 的值越大,a 的值越小,0 y 20 , ?依次取y =20, 19, 18, 17代入a 142 2y 试算,a 都不是正整数。 5 变式1:小燕付出了 14.85元买了 A 、B 两种卡片,A 卡片的单价是2.16元,B 卡片的单价 是4.23元。问小燕共买了多少张卡片? 解:设小燕买了 A 、B 两种卡片的张数分别为 x 、y ,则2.16x 4.23y 14.85 , ? 24x 47y 165,可知:y 是奇数,y 是3的倍数; ???当y 3时,x 1 ;当y 9时,显然不合题意; ?小燕共买了 4张卡片. 例3、(中国百鸡问题)鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。百钱买百鸡, 问鸡翁、鸡母、鸡雏各几何? 得原方程的正整数解为: x 4 x 8 y 18 y 11 12 。 4 变式2:求方程7x 19y 213的所有正整数解。 解:方程的一个特解: y 25 ,方程的特解是 2 25 19t (t 为整数), 7t ?/ x 、y 为正整数,??? 25 19t 0 2 7t 0 25 19 ??? t 1或0,二原方程的正整数解为 25 例2、( 2005年希望杯)小纪念册每本 5元, 大纪念册每本 7元。小明买这两种纪念册 7y 142, 当y 16时,a 22,所以两种纪念册最少共买了 22本。

常微分方程的发展史

摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微 分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定. 命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元 素的解称为“通解”.在很长一段时间里,人们致力于“求通解”. 关键词:常微分方程,发展,起源 正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。17 世纪,牛顿,英国,1642-1727)和莱布尼兹,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。雅可比·伯努利自己解决了

前者。翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(,荷兰,1629-1695)独立地解决了后者。 有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。因此,最初人们的注意力放在某些类型的微分方程的一般解法上。 1691 年,莱布尼兹给出了变量分离法。他还把一阶齐次方程使其变量分离。1694 年,他使用了常数变易法把一阶常微分方程化成积分。 1695 年,雅可比·伯努利给出著名的伯努利方程。莱布尼兹用变换,将其化为线性方程。约翰和雅可比给出了各自的解法,其本质上都是变量分离法。 1734 年,欧拉,瑞士,1707-1783)给出了恰当方程的定义。他与克莱罗. Clairaut,法国,1713-1765)各自找到了方程是恰当方程的条件,并发现:若方程是恰当的,则它是可积的。那么对非恰当方程如何求解呢1739 年克莱罗提出了积分因子的概念,欧拉确定了可采用积分因子的方程类属。这样,到 18 世纪 40 年代,一阶常微分方程的初等方法都已清楚了,与此相联系,通解与特解的问题也弄清楚了。

相关文档
最新文档