基于Matlab的车牌识别系统设计论文 【完整】

合集下载

(完整版)基于matlab的车牌识别(含子程序)

(完整版)基于matlab的车牌识别(含子程序)

基于matlab的车牌识别系统一、对车辆图像进行预处理1.载入车牌图像:function [d]=main(jpg)[filename, pathname] = uigetfile({'*.jpg', 'JPEG 文件(*.jpg)'});if(filename == 0), return, endglobal FILENAME %定义全局变量FILENAME = [pathname filename];I=imread(FILENAME);figure(1),imshow(I);title('原图像');%将车牌的原图显示出来结果如下:2.将彩图转换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图转换为灰度图figure(2),subplot(1,2,1),imshow(I1);title('灰度图像');figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图的直方图结果如下所示:3. 用roberts算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');%选择阈值0.18,用roberts算子进行边缘检测figure(3),imshow(I2);title('roberts 算子边缘检测图像');结果如下:4.图像实施腐蚀操作:se=[1;1;1];I3=imerode(I2,se);%对图像实施腐蚀操作,即膨胀的反操作figure(4),imshow(I3);title('腐蚀后图像');5.平滑图像se=strel('rectangle',[25,25]);%构造结构元素以正方形构造一个seI4=imclose(I3,se);% 图像聚类、填充图像figure(5),imshow(I4);title('平滑图像');结果如下所示:6. 删除二值图像的小对象I5=bwareaopen(I4,2000);% 去除聚团灰度值小于2000的部分figure(6),imshow(I5);title('从对象中移除小的对象');结果如下所示:二、车牌定位[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic表示计时的开始,toc表示计时的结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色 %则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定%temp为向量white_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%x方向车牌区域确定%%%%%% X方向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x方向的车牌区域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1; endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌区域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向合理区域');%行方向车牌区域确定figure(7),subplot(1,2,2),imshow(dw),title('定位裁剪后的车牌彩色图像');的车牌区域如下所示:三、字符分割及处理1.车牌的进一步处理对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。

基于MATLAB的车牌识别系统设计

基于MATLAB的车牌识别系统设计

基于MATLAB的车牌识别系统设计
在1 汽车牌照识别系统总体设计与主要功能模块设计
基于MATLAB 汽车牌照识别系统,主要实现了数字
2 沥青混合料数字2.1 由于汽车长期置于户外环境中,使降低了车牌的
清洁度,另外还有自然光照的条件、照相机与汽车牌照之间的矩离以及角度等因素的影响,汽车牌照
2.2 车牌定位与分割模块
由于本系统采集到的汽车牌照数字同时可通过峰谷分析中车牌的水平、垂直投影确定车牌字符高度的范围,为之后的字符提取打好基础。


2.3 字符分割与识别模块
字符提取主要通过对旋转后的车牌进行水平投影和垂直投影分析,计算出汽车牌照字符的高度、宽度、字符顶行、字符尾行以及字符的中心位置来进行实现。

由于汽车车牌字符间的间隔较大,较少出现字符粘连现象,所以本文采用查找连续有文字区域的方法实现字符分割。

通过字符分割,得到单个字符,其中包三大类汉字、字母和数字。

由于分割得到的单个字符大小不一,所以需要对单个字符进行归一化处理,防止因为牌照倾斜导致的单个字符在位置和大小上的误差。

目前字符识别主要有两种识别方法:模板匹配法和神经网络法。

本文主要是运用模板匹配法对分割出来的字符进行识别。

字符提取、分割和识别的效果如
3 结语
本文主要以数字图像处理技术在汽车牌照识别中的应用为基础,基于MATLAB 平台开发了汽车牌照识别系统。

并给出了汽车牌照识别系统的总体。

基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计摘要:车牌智能识别技术是智能交通系统中的重要组成部分,能够提高交通管理效率和安全性。

本文基于MATLAB平台,设计了一种车牌智能识别系统,通过图像处理和模式识别技术实现车牌号码的准确识别。

该系统能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,具有较高的准确性和稳定性,可以有效应用于停车场管理、交通违法抓拍等领域。

关键词:车牌智能识别;MATLAB;图像处理;模式识别一、引言随着汽车数量的快速增长,交通拥堵和交通管理成为社会发展中的一大难题。

为了提高交通管理效率和安全性,智能交通系统得到了广泛的关注和应用。

车牌智能识别技术作为智能交通系统中的重要组成部分,能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,为交通管理和监控提供了重要的支持。

二、相关技术及方法1. 图像处理技术图像处理技术是车牌智能识别系统中的核心技术之一,主要包括灰度化、二值化、边缘检测、形态学处理等操作。

灰度化是将彩色图像转换为灰度图像,简化了图像信息的处理;二值化将灰度图像转换为二值图像,方便进行特征提取和分割操作;边缘检测可以准确提取车牌的轮廓信息;形态学处理可以用于去除图像中的噪声点和填充孔洞,提高字符的连通性。

2. 字符分割与特征提取字符分割是指将车牌图像中的字符分离出来,是车牌识别的关键步骤之一。

在字符分割后,需要进行字符的特征提取,包括字符的大小、形状、像素点分布等特征。

这些特征可以用于字符的识别和分类,提高识别的准确性和鲁棒性。

3. 模式识别算法模式识别算法是车牌智能识别系统中的另一个核心技术,主要包括基于模板匹配的模式识别、基于统计学习的模式识别、基于深度学习的模式识别等方法。

这些算法能够对字符进行准确的识别和分类,为车牌智能识别系统提供了强大的分析和识别能力。

三、车牌智能识别系统设计基于MATLAB平台,设计的车牌智能识别系统主要包括图像预处理、字符分割与特征提取、模式识别和结果输出四个主要模块。

基于MATLAB的车牌识别毕业设计

基于MATLAB的车牌识别毕业设计

基于MATLAB的车牌识别毕业设计目录摘要................................................................................................................. 错误!未定义书签。

前言................................................................................................................. 错误!未定义书签。

第一章绪论. (2)1.1、课题研究背景和意义 (2)1.2、国内外研究概况及发展趋势 (3)1.3车牌定位的意义 (4)第二章MA TLAB简介 (5)2.1.MA TLAB发展历史 (5)2.2MA TLAB的语言特点 (6)第三章车牌定位 (8)3.1 车牌定位的主要方法 (8)3.1.1 基于直线检测的方法 (8)3.1.2 基于阈值化方法 (9)3.1.3 基于灰度边缘检测方法 (9)3.1.4 基于彩色图像的车牌定位方法 (10)3.2研究内容及实验方案 (11)3.2.1研究内容 (11)3.2.2 车牌识别系统研究的方案和方法 (11)3.3 图像的读取 (12)3.4 预处理及边缘提取 (14)3.4.1 图象的采集与转换 (14)3.4.2 图像预处理 (14)3.4.3 图像增强 (15)3.4.4灰度变换 (15)3.4.5 图象平滑的介绍 (17)3.4.6边缘检测 (18)3.4.7图像的腐蚀 (19)3.5 牌照的定位和分割 (20)3.5.1 牌照区域的定位和分割 (21)3.5.2 牌照区域的分割 (21)3.5.3车牌进一步处理 (21)3.6 图像边缘提取及二值化 (22)3.7 形态学滤波 (26)3.8 车牌提取 (28)第四章字符的分割与识别 (29)4.1 字符分割与归一化 (29)4.2 字符的识别 (30)总结和体会 (33)谢辞................................................................................................................. 错误!未定义书签。

基于MATLAB的图像处理的课程设计(车牌识别系统)(word文档良心出品)

基于MATLAB的图像处理的课程设计(车牌识别系统)(word文档良心出品)

目录一、课程设计目的 (3)二、课程设计要求 (3)三、课程设计的内容 (3)四、题目分析 (3)五、总体设计 (4)六、具体设计 (5)1、文件 (5)1.1、打开 (5)1.2、保存 (5)1.3、退出 (5)2、编辑 (5)6.2.1、灰度 (5)6.2.2、亮度 (6)6.2.3、截图 (7)6.2.4、缩放 (7)3、旋转 (9)6.3.1、上下翻转 (9)6.3.2、左右翻转 (9)6.3.3任意角度翻转 (9)6.4、噪声 (10)6.5、滤波 (10)6.6、直方图统计 (11)6.7、频谱分析 (12)6.7.1、频谱图 (12)6.7.2、通过高通滤波器........................... .. (12)6.7.3、通过低通滤波器...................................... . (13)6.8、灰度图像处理................................................ . . (14)6.8.1、二值图像……………………………………………….. .146.8.2、创建索引图像............................................. (14)6.9、颜色模型转换...................................... .. (14)6.10、操作界面设计 (15)七、程序调试及结果分析 (15)八、心得体会 (16)九、参考文献 (17)十、附录 (18)基于MATLAB的图像处理的课程设计摘要:数字图像处理技术是20世纪60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。

MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。

它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。

基于MATLAB车牌识别系统的设计与应用

基于MATLAB车牌识别系统的设计与应用
五、 字 符 识 别 对 于 汽 车 牌 照 的字 符 识 别 是 汽 车 牌 照 识 别 系 统 中 的 最 后 一 步, 当然 也 是 最 为 关 键 的 一 步 , 对 于 字 符 的 识 别 精 度 将 会 直 接 影 响 到 车 牌 识 别 系 统 的精 度 。 对 于汽 车牌 照 的识 别 通 常 由三 种 方法 , 即 人 工 神 经 网 络算 法 , 末 班 匹 配 法 以及 B P神 经 网 络 。而 人 工 神 经 网 络 算 法 的 建 立模 式是 仿 效 人 脑 环 境 和 自然 神 经 系 统 的 ,这 也 是 近 年来新提 出的一种技术 , 该技术具有 以下几种优点 : 第一 , 具 有 较 强 的 逼 近 功 能 , 即对 于 复 杂 的气 象 环 境 能够 采 用 逼 近 的 方 法 实 现 图像 的清 晰采 集; 第 二, 具有较 强的适应能力 , 对于复杂 的外 界环 境 该 体 系 能够 迅 速 适 应 ; 第三, 具 有 较 强 的容 错 性 ; 第 四, 具 有 一 定
基于 M A T L A B车牌识别 系统 的设计与应用
◆贺 黎 恒
( 西北 民族大学 电气工程学 院
甘肃
兰州
7 3 0 0 3 0 )
【 摘要 】 当前的汽 车牌 照识 别较为 困难 , 对于汽车牌 照的识 别将 会 C a n n y算子边缘检 测的主要参数如下 :
是 图像 识 别 领 域 重要 的研 究课 题 , 而对 于 MA T L A B 方 法 的使 用 能 I 2 = e d g e( I l , ’ C a n n y ’ , [ 0 . 2 5 , 0 . 6 5 ] ) :
够有效地识 别汽 车牌 照区域 , 提取有用的数字符号 , 对于清楚的识 f i g u r e( 3 ) , i m s h o w( I 2 ) :t i t l e( ’C a n n y算子边缘检测 ’ ) 。 别 汽车牌 照有极 大的帮助作用 。基 于此 , 本文主要基 于 MA T L AB 四、 字 符 分 割 车牌识别 系统的设计 与应 用进行 了探讨。 【 关键 词 】 车牌识别 系统 MA T L A B 设计 应 用 将汽车牌照的字符进行定位之后,然后再使用垂直投影法对 区域 内 的字 符 进 行 分 割 。这 是 由于 垂 直 投 影 法 即 便 是 在 复 杂 的 环 境 之 下 也 能 够 取 得较 为 良好 的字 符 分 割 效 果 ,对 水 平 投 影 和 垂 直 投 影 进 行 分 析 和 计算 , 从 而 得 到 汽 车牌 照 的字 符 高度 , 以及 字 符 的 中心 位 置 , 方 便 于 后 期 的 字 符 分 割 和提 取 。 最 后 再针 对 每 个 字 符 的 中心 位 置 和 大 嘴 的字 符 宽度 来 提 取 所 分 割 的 字 符 。对 于 所 分 隔 的 字 符 在 计 算 机 中提 取 和 分 析 ,最 后 使 用 成 像 技 术 显 现 出所 拍 摄 的 汽车牌照图像, 为 汽 车 牌 照 的 识 别提 供 最 大 的帮 助 作 用 。

基于matlab车牌识别毕业论文

基于matlab车牌识别毕业论文

摘要伴随着时代的发展,车辆的逐渐走进千家万户,车辆的管理日益困难,于是车牌识别系统的应用得到了广泛发展。

车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别五个核心部分。

本文侧重于介绍图像预处理、车牌定位、字符分割三个模块的实现。

车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。

本文的图像预处理环节则采用图像灰度化和用Roberts算子对车牌进行边缘检测。

车牌定位和分割采用的是利用数学形态法来确定车牌位置,然后利用车牌彩色信息的彩色分割法来完成车牌部位分割。

分割后的字符先进行二值化处理,再对垂直投影进行扫描后完成对字符的分割。

本课题是基于Matlab下的环境下对其进行仿真。

关键词:图像预处理图像定位图像分割ABSTRACTWith the development of era, the car gradually into the homes, vehicles management is becoming more and more difficult, so the application of license plate recognition system has been widely developed. License plate recognition system mainly includes image acquisition, image preprocessing, license plate location, character segmentation, character recognition five core part. This paper focuses on the image preprocessing, license plate location, character segmentation, the realization of the three modules. The vehicle license plate recognition system management more intelligent, digital, can effectively enhance the convenience and effectiveness of traffic management. The image grayscale image preprocessing step, the use and license plate with Roberts operator edge detection. License plate location and segmentation is using mathematical morphology method is used to determine the license plate location, license plate color information of color segmentation method is then used to complete the license plate segmentation. After the character segmentation binarization processing first, and then to complete vertical projection after scanning to the segmentation of the characters. This topic is based on carry on the simulation under Matlab environment.Key Words:image preprocessing, license plate localization, character segmentation .目录第1章绪论 (1)1.1本课题的研究背景 (2)1.2本课题研究的意义和目 (2)1.3本课题研究的内容 (2)第2章本课题程序设计 (3)2.1 开发环境............................................................................ . (3)2.1.1设计方案 (3)2.2 图像预处理 (3)2.2.1 图像灰度化 (3)2.2.2 图像边缘检测 (5)2.3 图像的定位和分割 (6)2.3.1车牌定位 (6)2.3.2车牌分割 (9)2.4 对定位后的车牌再处理 (10)2.5 字符的分割与归一化 (11)2.5.1 字符的分割 (12)2.5.2 字符的归一化 (13)3 实验结果与分析 (14)总结 (15)致谢 (16)参考文献 (17)附录................................................................................ .. (18)绪论1.1本课题的研究背景伴随着我国现代化事业的高速发展,人民的生活水平也正逐步提高,车辆的数量也日益增加,给人们的出行带来了便捷的同时,也对公路车辆的管理带来了巨大的压力,人工管理的方式也不能满足实际的需要。

基于某MATLAB地车牌识别系统设计

基于某MATLAB地车牌识别系统设计

基于MATLAB的车牌识别系统设计学院测控与通信工程学院专业信号与信息处理学生姓名二妮子学号 1101101101指导教师么么哒基于MATLAB的车牌识别系统设计摘要:本文主要介绍了基于MATLAB的有关数字图像处理的车牌数字识别系统。

系统是利用单张包含车牌的静态图片进行识别的,整个识别过程主要分为车牌定位和字符分割和字符识别三个大的模块。

而其中的字符识别是系统的核心部分。

字符识别目前运用的最多的就是神经网络和模板匹配的方法,本文所介绍的就是基于神经网络的方法来实现车牌数字的识别。

过程中也相应结合了特征提取、直方图统计等一系列方法。

从实验得知,这种神经网络的方法实现简单,且容易理解,在确保识别准确率的前提下,可以提高识别的效率,使得系统在比较准确地定位了车牌及分割出字符后,能更准确地实现字符的识别。

关键词:车牌识别;matlab;神经网络1 引言随着我国交通运输的不断发展,智能交通系统(Intelligent Traffic System,简称ITS)的推广变的越来越重要,而作为ITS的一个重要组成部分,车牌识别系统(LPRS)是智能交通系统的重要组成部分。

随着机动车辆数量的大幅度增加以及计算机技术的发展,人们对交通控制系统的要求显著提高。

因而智能交通系统被广泛地应用于交通控制系统当中,比如高速公路收费、停车场车辆管理、违章车辆监控、交通诱导控制等场合。

这使得车牌识别系统也得到了更广泛的关注。

与传统的车辆管理方法比较,车牌识别系统可以大大提高交通管理的效率和水平,帮助实现车辆管理的规范化。

由于牌照是机动车辆管理的唯一标识符号,因此,车辆牌照识别系统的研究在机动车管理方面具有十分重要的实际意义。

2 车辆牌照识别系统工作原理车辆牌照识别系统的基本工作原理为:将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后输入JPEG 或BMP格式的数字,输出则为车牌号码的数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国矿业大学 模式识别-------------------------------------------------------------------------------------------------------------------------------------------------------------------- ——基于matlab的车牌识别系统设计

指导教师: 梁志贞 周世斌 姓 名: 田凯 班 级: 信科10-1班 学 号: 08103476 时 间:二〇一三年六月 1

目录 1 绪论 ................................................. 2 1.1 车牌号识别研究背景 .............................................. 2 1.2 车牌号识别技术研究现状和趋势 .................................... 3 1.3 车牌识别研究内容 ................................................ 4

2 车牌识别系统设计原理概述 ............................. 5

3 车牌识别系统程序设计 ................................. 7 3.1 图像读取及车牌区域提取 .......................................... 7 3.2 字符切割 ....................................................... 14 3.3字符识别 ....................................................... 17

4 仿真结果及分析 ...................................... 19 4.1 车牌定位及图像读取及其图像处理 ................................. 19 4.2 车牌字符分割及其图像处理 ....................................... 20 4.3 车牌字符识别及其图像处理 ....................................... 21

5 结论 ................................................ 21

附录:程序清单 ......................................... 22 2

1 绪论 1.1 车牌号识别研究背景 随着我国公路交通事业的发展,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。作为信息来源的自动检测、图像识别技术越来越受到人们的重视。近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。 车牌识别的难点: 1)由于车牌图像多在室外采集,会受到光照条件、天气条件的影响,会出现图像模糊,对比度低,目标区域过小,色彩失真等影响,并且会伴随复杂的背景图像,这些都会影响车牌定位及识别。 2)每次采集时目标所处位置不会一样,采集视角会有很大变化,并且由于车牌挂的不正,都将导致车牌出现扭曲。 3)牌照多样性。其他国家的汽车牌照格式,如尺寸大小,牌照上字符的排列等,通常只有一种。而我国则根据不同车型、用途,规定了多种牌照格式,例如分为军车、警车、普通车等。我国标准车牌照是由汉字、英文字母和阿拉伯数字组成的,汉字的识别与字母和数字的识别有很大的不同,增加了识别的难度。 4)我国汽车牌照的底色和字符颜色多样,蓝底白字、黄底黑字、黑底白字、红底黑字、绿底白字等多种。 5)由于环境、道路或人为因素造成汽车牌照污染严重,这种情况下国外发达国家不允许上路,而在我国仍可上路行驶。使得车牌的对比度降低,特征不是很明显,即使在定位准确的情况下,字符的识别也会受到很大影响。 目前在国内存在多种牌照格式,且存在以上种种困难和特殊性,加大了我国车牌自动识别的难度,使得中国车辆牌照识别远远难于国外的车辆牌照识别。因而如何提高识别率和识别处理的实时性及实用性成了一个紧要的任务。 3

1.2 车牌号识别技术研究现状和趋势 1.2.1国内外车牌识别技术情况及我国车牌特点 目前我国有普通地方车牌号、武警车牌号、军队车牌号三种类型,普通地方车牌号又叫自选号牌车牌(如图1所示),自选号牌车牌尺寸是520122.5MM,即车牌长宽比为4.5:1,一共7个字符,每个字符的高宽比为2:1。首个字符为中文字符,为各个省或直辖市的简称,第二个字符为英文大写字符,前两个字符确定该车牌所在地,后五个字符由阿拉伯数字及英文大写字符组合而成,并且后五个字符间距相同,七个字符大小也相同。

图 1.1 我国车牌号示例 1.2.2车牌识别技术的应用前景 车辆牌照自动识别技术是智能交通系统的一个重要组成部分,广泛应用于交通的监控及管理。车辆牌照识别系统技术能够从一幅车辆图像中准确定位出车牌区域,然后经过字符切割和识别实现车辆牌照的自动识别。目前车牌识别系统主要应用于以下领域: 1)停车场管理系统。利用车牌识别技术对出入车辆的号牌进行识别和匹配,与停车卡结合实现自动计时、计费的车辆收费管理系统。 4

2)公路自动管理系统。以车牌自动识别技术为基础,与通信等其他高科技结合,对高速公路交通流状况进行自动监测、自动布控,从而降低交通事故的发生率,确保交通顺畅。 3)安防布控。采用车牌识别技术实现对车辆的自动识别,快速报警,既可以有效查找被盗车辆,同时又为公安机关提供了对犯罪嫌疑人的交通工具进行远程跟踪与监查的技术手段。 4)城市十字交通路口的“电子警察”。可以对违章车辆进行责任追究,也可以辅助进行交通流量统计,交通监测和疏导。 5)小区、校园车辆管理系统。社区保安系统将出入的车辆通过车牌识别技术进行记录,将结果与内部车辆列表对比可以实现防盗监管。

1.3 车牌识别研究内容 车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。车牌识别系统是一特定目标位对象的专用计算机系统,该系统能从一幅图像中自动提取车牌图像、自动分割自符,进而对分割自符的图像进行图像识别。系统一般由硬件和软件构成。硬件设备一般由车体感应设备、辅助光源、摄像机、图像采集卡和计算机。软件部分是系统的核心,主要实现车牌自符的识别功能。 车牌识别学科主要有模式识别、人工智能、图像处理、计算机视觉和信号处理等。这些领域的许多技术都可以应用到车牌识别系统中,车牌识别技术的研究也必然推动这些相关学科的发展。车牌识别的关键技术有:车牌定位、字符切割和字符识别等。 车牌定位是要完成从图像中确定车牌位置并提取车牌区域图像,目前常用的方法有:基于直线检测的方法、机遇与域值化的方法、基于灰度边缘检测方法、基于彩色图像的车牌分割方法、神经网络法和基于矢量量化的牌照的定位的方法等。 字符切割时完成车牌区域图像的切分处理从而得到所需要的单个字符图象。目前常用的方法有:基于投影的方法和基于连通字符的提取等方法。 字符识别是利用字符识别的原理识别提取出的字符图像,目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。 5

2 车牌识别系统设计原理概述 一个完整的车牌号识别系统要完成从图像采集到字符识别输出,过程相当复杂,基本可以分成硬件部分跟软件部分,硬件部分包括系统触发、图像采集,软件部分包括图像预处理、车牌位置提取、字符分割、字符识别四大部分,一个车牌识别系统的基本结构如图2.1所示:

图 2.1 车牌识别系统基本结构框图 一:原始图像:由停车场固定彩色摄像机、数码相机或其他扫描装置拍摄到的图像。 二:图像预处理:对动态采集到的图像进行滤波,边界增强等处理以克服图像处理。 三:车牌位置提取:通过运算得到图像的边缘,再计算边缘图像的投影面积,寻找谷峰点以大概确定车牌的位置,再计算连通域的宽高比,剔除不在阈值范围内的连通域,最后便得到了车牌区域。 四:字符分割:利用投影检测的字符定位分割方法得到单个的字符。 五:字符识别:利用模板匹配的方法与数据库中的字符进行匹配从而确认出字符。 六:输出结果:得到最后的汽车牌照,包括汉字、字母和数字。

车牌号图像识别要进行牌照号码、颜色识别 。为了进行牌照识别,需要以下几个基本的步骤: a.牌照定位,定位图片中的牌照位置; b.牌照字符分割,把牌照中的字符分割出来; c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。 牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与牌照识别互相配合、互相验证。

原始 图像 图像预处 理 车牌 位置 提取 字符 分割 字符 识别 输出 结果

相关文档
最新文档