极差分析

极差分析
极差分析

单因素方差分析

(一)单因素方差分析概念理解步骤

是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。

例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。这些问题都可以通过单因素方差分析得到答案。

单因素方差分析的第一步是明确观测变量和控制变量。例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。

单因素方差分析的第二步是剖析观测变量的方差。方差分析认为:观测变量值得变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。

单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。

(二)单因素方差分析原理总结

容易理解:在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。

(三)单因素方差分析基本步骤

1、提出原假设:H0——无差异;H1——有显著差异

2、选择检验统计量:方差分析采用的检验统计量是F统计量,即F值检验。

3、计算检验统计量的观测值和概率P值:该步骤的目的就是计算检验统计量的观测值和相应的概率P值。

4、给定显著性水平,并作出决策

(四)单因素方差分析的进一步分析

在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。

1、方差齐性检验

是对控制变量不同水平下各观测变量总体方差是否相等进行检验。

前面提到,控制变量不同各水平下观测变量总体方差无显著差异是方差分析的前提要求。如果没有满足这个前提要求,就不能认为各总体分布相同。因此,有必要对方差是否齐性进行检验。

SPSS单因素方差分析中,方差齐性检验采用了方差同质性(homogeneity of variance)检验方法,其原假设是:各水平下观测变量总体的方差无显著差异。

2、多重比较检验

单因素方差分析的基本分析只能判断控制变量是否对观测变量产生了显著影响。如果控制变量确实对观测变量产生了显著影响,进一步还应确定控制变量的不同水平对观测变量的

影响程度如何,其中哪个水平的作用明显区别于其他水平,哪个水平的作用是不显著的,等等。

例如,如果确定了不同施肥量对农作物的产量有显著影响,那么还需要了解10公斤、20公斤、30公斤肥料对农作物产量的影响幅度是否有差异,其中哪种施肥量水平对提高农作物产量的作用不明显,哪种施肥量水平最有利于提高产量等。掌握了这些重要的信息就能够帮助人们制定合理的施肥方案,实现低投入高产出。

多重比较检验利用了全部观测变量值,实现对各个水平下观测变量总体均值的逐对比较。由于多重比较检验问题也是假设检验问题,因此也遵循假设检验的基本步骤。

检验统计量的构造方法

(1)LSD方法

LSD方法称为最小显著性差异(Least Significant Difference)法。最小显著性差异法的字画就体现了其检验敏感性高的特点,即水平间的均值只要存在一定程度的微小差异就可能被检验出来。

正是如此,它利用全部观测变量值,而非仅使用某两组的数据。LSD方法适用于各总体方差相等的情况,但它并没有对犯一类错误的概率问题加以有效控制。

(2)S-N-K方法

S-N-K方法是一种有效划分相似性子集的方法。该方法适合于各水平观测值个数相等的情况,

3、其他检验

(1)先验对比检验

在多重比较检验中,如果发现某些水平与另外一些水平的均值差距显著,如有五个水平,其中x1、x2、x3与x4、x5的均值有显著差异,就可以进一步分析比较这两组总的均值是否存在显著差异,即1/3(x1+x2+x3)与1/2(x4+x5)是否有显著差异。这种事先指定各均值的系数,再对其线性组合进行检验的分析方法称为先验对比检验。通过先验对比检验能够更精确地掌握各水平间或各相似性子集间均值的差异程度。

(2)趋势检验

当控制变量为定序变量时,趋势检验能够分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,是呈现线性变化趋势,还是呈二次、三次等多项式变化。通过趋势检验,能够帮助人们从另一个角度把握控制变量不同水平对观测变量总体作用的程度。

多因素方差分析

(一)多因素方差分析基本思想

多因素方差分析用来研究两个及两个以上控制变量是否对观测变量产生显著影响。这里,由于研究多个因素对观测变量的影响,因此称为多因素方差分析。多因素方差分析不仅能够分析多个因素对观测变量的独立影响,更能够分析多个控制因素的交互作用能否对观测变量的分布产生显著影响,进而最终找到利于观测变量的最优组合。

例如:

分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。利用多因素方差分析方法,研究不同品种、不同施肥量是如何影响农作物产量的,并进一步研究哪种品种与哪种水平的施肥量是提高农作物产量的最优组合。

(二)多因素方差分析的其他功能

1、均值检验

在SPSS中,利用多因素方差分析功能还能够对各控制变量不同水平下观测变量的均值是否存在显著差异进行比较,实现方式有两种,即多重比较检验和对比检验。多重比较检验的方法与单因素方差分析类似。对比检验采用的是单样本t检验的方法,它将控制变量不同水平下的观测变量值看做来自不同总体的样本,并依次检验这些总体的均值是否与某个指定的检验值存在显著差异。其中,检验值可以指定为以下几种:

观测变量的均值(Deviation);

第一水平或最后一个水平上观测变量的均值(Simple);

前一水平上观测变量的均值(Difference);

后一水平上观测变量的均值(Helmert)。

2、控制变量交互作用的图形分析

控制变量的交互作用可以通过图形直观分析。

(三)多因素方差分析的进一步分析

在上述案例中,已经对广告形式、地区对销售额的影响进行了多因素方差分析,建立了饱和模型。由分析可知:广告形式与地区的交互作用不显著,先进一步尝试非饱和模型,并进行均值比较分析、交互作用图形分析。

1、建立非饱和模型

2、均值比较分析

3、控制变量交互作用的图形分析

协方差分析

(一)协方差分析基本思想

通过上述的分析可以看到,不论是单因素方差分析还是多因素方差分析,控制因素都是可控的,其各个水平可以通过人为的努力得到控制和确定。但在许多实际问题中,有些控制因素很难人为控制,但它们的不同水平确实对观测变量产生了较为显著的影响。

例如,在研究农作物产量问题时,如果仅考察不同施肥量、品种对农作物产量的影响,不考虑不同地块等因素而进行方差分析,显然是不全面的。因为事实上有些地块可能有利于农作物的生长,而另一些却不利于农作物的生长。不考虑这些因素进行分析可能会导致:即使不同的施肥量、不同品种农作物产量没有产生显著影响,但分析的结论却可能相反。

再例如,分析不同的饲料对生猪增重是否产生显著差异。如果单纯分析饲料的作用,而不考虑生猪各自不同的身体条件(如初始体重不同),那么得出的结论很可能是不准确的。因为体重增重的幅度在一定程度上是包含诸如初始体重等其他因素的影响的。

(二)协方差分析的原理

协方差分析将那些人为很难控制的控制因素作为协变量,并在排除协变量对观测变量影响的条件下,分析控制变量(可控)对观测变量的作用,从而更加准确地对控制因素进行评价。

协方差分析仍然沿承方差分析的基本思想,并在分析观测变量变差时,考虑了协变量的影响,人为观测变量的变动受四个方面的影响:即控制变量的独立作用、控制变量的交互作用、协变量的作用和随机因素的作用,并在扣除协变量的影响后,再分析控制变量的影响。

方差分析中的原假设是:协变量对观测变量的线性影响是不显著的;在协变量影响扣除的条件下,控制变量各水平下观测变量的总体均值无显著差异,控制变量各水平对观测变量的效应同时为零。检验统计量仍采用F统计量,它们是各均方与随机因素引起的均方比。

(三)协方差分析的应用举例

为研究三种不同饲料对生猪体重增加的影响,将生猪随机分成三组各喂养不同的饲料,得到体重增加的数据。由于生猪体重的增加理论上会受到猪自身身体条件的影响,于是收集生猪喂养前体重的数据,作为自身身体条件的测量指标。

方差分析的应用条件为①各样本须是相互独立的随机样本;②各样本来自正态分布总体;③各总体方差相等,即方差齐性。

[1]

编辑本段主要内容

分析方法

根据资料设计类型的不同,有以下两种方差分析的方法:

1、对成组设计的多个样本均数比较,应采用完全随机设计的方差分析,即单因素方差分析。

2、对随机区组设计的多个样本均数比较,应采用配伍组设计的方差分析,即两因素方差分析。

两类方差分析的异同

两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。

基本步骤

整个方差分析的基本步骤如下:

1、建立检验假设;

H0:多个样本总体均数相等;

H1:多个样本总体均数不相等或不全等。

检验水准为0.05。

2、计算检验统计量F值;

3、确定P值并作出推断结果。

检验和方差分析的原理和基本方法

《管理统计学》导学资料六——2χ检验和方差分析这一讲的内容包括两个部分开平方检验和方差分析,重点是方差分析,在本章的学习 χ检验的作用和用途。学会和掌握方差分析表的使用,中,同学们要了解方差分析的用途,2 了解自由度的计算和F检验的作用,记住方差分析表中的五个等式和含义。 本章的关键术语: 方差分析(Analysis of Variance, 常简称为ANOV A)是用来检验两个以上样本的均值差异的显著程度,由此判断样本究竟是否抽自具有同一均值总体的方法。 SST-总离差方和(Sum of Square in Total )为各样本观察值与总均值的离差平方和。 SSTR-组间离差方和(Sum of Square Treatment)表示不同的样本组之间,由于因素取不同的水平所产生的离差平方和。 SSE-组内离差方和(Sum of Square Error)表示同一样本组内,由于随机因素影响所产生的离差平方和,简称为组内离差平方和。 本章学完后,你应当能够: 1、掌握用2χ检验来解决独立性检验和拟合性检验的原理和基本方法,能解决最常见的这类检验问题。 2、了解和懂得单因素方差分析的原理和基本方法,能应用计算机解决最常见的方差分析问题。 一、2χ检验 2 χ检验的用途是检验两个变量之间的独立性和检验数据是否服从某个概率分布得拟合检验。 我们经常会遇到受两个或两个以上因素(变量)影响的实验或观察数据,并要求判断两个变量之间是否存在相互联系的问题。如果两个变量之间没有联系则称作是独立的,否则就是不独立的。 χ分布可以检验两个变量之间的独立性问题。此时我们首先将研究对象的观察用2 数据按两个变量分别进行分类。。例如,按行对第一个变量进行分类,按列对第二个变量进行分类。按这种方法把所有的试验观察数据排列成的表称为列联表。 2 χ独立性检验的程序和前面介绍的参数假设检验一样,首先也要建立假设,然后 χ,再根据问计算检验统计量的值。这次采用的检验统计这次采用的检验统计量就是2 χ分布表,得到当原假设成立时检验统计量允许的最大临界题规定的显著性水平查2 χ值作比较,得出接受或拒绝原假设的结论。具体步骤如下: 值,与计算所得的2 1.提出假设 H:两个变量是独立的,即相互之间没有影响,

层次分析法步骤介绍

层次分析法整个计算过程包括以下五个部分。 (1)建立递阶层次结构 应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。[25] 通常,递阶层次结构包括以下三个基本层次: 1.目标层:通过分析,明确目标就是什么,将其作为最高层的元素,必须就是唯一的, 如:选择最合适的供应商 2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂 程度增多。这时,需要详细分析各准则元素间的相互关系(就是同级关系还就是隶属关系)。如果就是隶属关系,则需要构建子准则层甚至更下一层准则。 3.措施层:即方案层。分析解决问题的方案有哪些,并将其作为最底层因素。 (2)构造判断矩阵并赋值 1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位 于左上角),隶属于它的各个元素依次排列在其后的第一行与第一列。 2.填写判断矩阵:最常用的方法就是咨询专家,将两个元素两两比较,按照重要性程 度表赋值(见下表)。 表3 重要性标度含义表 设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下三个性质: 1.a ii=1 2.a ji=1/a ij 3.a ij>0 (3)层次单排序与检验 1.层次单排序 利用数学方法将专家填写后的判断矩阵进行层次排序。层次单排序就是将每一个因素对于其准则的重要性进行排序,实际就就是计算权向量。计算权向量有特征根法、与法等,以下详细介绍特征根法的计算方法。 A.计算判断矩阵每一行元素的乘积

∏==n j ij i a M 1 (3、2) 式中: M i 第i 行各元素的乘积 a ij 第i 个元素与第j 个元素的关系比值

单因素方差分析和多因素方差分析简单实例 (1)

百度文库- 让每个人平等地提升自我 单因素方差分析实例 [例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。 问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体 在SPSS 中进行方差分析的步骤如下: (1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数 值型),G=1、2、3 表示第一组、第二组、第三组。然后录入相应数据,如图6-66所示 图6-66 方差分析数据格式 (2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对 话框(如图6-67所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。单击[OK]按钮完成。 图6-67 方差分析对话框 (3)分析结果如下: 因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。 多因素方差分析 [例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产 量,观测到的产量如表6-31所示。试进行产量是否依赖于机器类型和操作者的方差分析。SPSS 的操作步骤为: (1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作 者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。录入相应数据,如图6-68所示。 图6-68 双因素方差分析数据格式 (2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G1 和G2,单击按钮使之进入[Fixed Factor(s)]框。单击[OK]按钮 图6-69 单变量多因素方差分析主对话框 (3)分析结果如下: 因此,可以认为机器类型和操作者的影响均是显著的。 1

第7章 正交试验设计的极差分析

第7章 正交试验设计的极差分析 正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。 7.1 单指标正交试验设计及其极差分析 极差分析法简称R 法。它包括计算和判断两个步骤,其内容如图7-1所示。 图7-1 R 法示意图 图中,K jm 为第j 列因素m 水平所对应的试验指标和,K jm 为K jm 的平均值。由K jm 的大小可以判断j 因素的优水平和各因素的水平组合,即最优组合。R j 为第j 列因素的极差,即第j 列因素各水平下平均指标值的最大值与最小值之差: R j =max(jm j j K K K ,,,21 )-min(jm j j K K K ,,,21 ) R j 反映了第j 列因素的水平变动时,试验指标的变动幅度。R j 越大,说明该因素对试验指标的影响越大,因此也就越重要。于是依据

R j的大小,就可以判断因素的主次。 极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6-2来说明单指标正交试验结果的极差分析方法。 一、确定因素的优水平和最优水平组合 例6-2 为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。拟通过正交试验寻找酶法液化工艺的最佳工艺条件。 在例6-2中,不考虑因素间的交互作用(因例6-2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6-5所示,试验方案则示于表6-6中。试验结果的极差分析过程,如表7-1所示. 表6-4 因素水平表 表6-6 试验方案及结果

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑 社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: 目标层(最高层):指问题的预定目标;准则层(中间层):指影响目标实现的准则;措施层(最低 层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素, 这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标 实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配)不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措 施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合 效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要_______________________________________________________________ 但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、 方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有 哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。

方差分析和回归分析的区别与联系

一、方差分析和回归分析的区别与联系?(以双变量为例) 联系: 1、概念上的相似性 回归分析是为了分析变量间的因果关系,研究自变量X取不同值时,因变量平均值Y的变化。运用回归分析方法,可以从变量的总偏差平方和中分解出已被自变量解释掉的误差(解释掉误差)和未被解释掉的误差(剩余误差); 方差分析是为了分析或检验总体间的均值是否有所不同。通过对样本中自变量X取不同值时所对应的因变量Y均值的比较,推论到总体变量间是否存在关系。运用方差分析,也可以从变量的总离差平方和中分解出已被自变量解释掉的误差和未被自变量解释掉的误差。因此两种分析在概念上所具有的相似性是显而易见的。 2、统计分析步骤的相似性 回归分析在确定自变量X是否为因变量Y的影响因素时,从分析步骤上先对X和Y进行相关分析,然后建立变量间的回归模型。最后再进行参数的统计显着性检验或对回归模型的统计显着性进行检验。 方差分析在确定X是否是Y的影响因素时,是先从样本所的数据的分析入手,然后考察数据模型,最后对样本均值是否相等进行显着性检验。二者在分析步骤上也具有相似性。 3、假设条件具有一定的相似性 回归分析有五个基本假定,分别是:自变量可以是随机变量也可以是非随机变量;X与Y之间存在的非确定性的相关关系,要求Y的所有子总体,其方差都相等;子总体均值在一条直线上;随机变量Y i是统计独立的,即Y1的数值不影响Y2的数值,各Y值之间都没有关系;Y 值的每一个子总体都满足正态分布。 方差分析的基本假定有:等方差性(总体中自变量的每一取值所对应因变量Y i的分布都具有相同方差);Y i的分布为正态分布。 二者在假设条件上存在着相同。 4、在总离差平方和中的分解形式和逻辑上的相似性 回归分析中,TSS=RSS+RSSR,而在方差分析中,TSS=RSS+BSS。二者均是以已解释掉的误差与未被解释掉的误差之和为总离差平方和。 5、确定影响因素上的相似性 为简化分析起见,我们假设只有一个自变量X影响因变量Y。在回归分析中,要确定X是否是Y 的影响因素,就要看当X已知时,对Y的总偏差有无影响。如果X不是影响Y的因素,等同于只知变数Y的数据列一样,此时用Y去估计每个丫的值,所犯的错误(即偏差)为最小。如果因素X 是影响Y的因素,那么当已知X值后 6、在统计显着性检验上具有相似性 回归分析的总显着性检验,是一种用R2测量回归的全部解释功效的检验。检验RSSR*(N-2)/RSS,方差分析的显着性检验是一种根据样本数据提取信息所进行的显着性检验。它也是通过F检验进行的。 区别: 1、研究变量的分析点不同 回归分析法既研究变量Y又研究变量X并在此基础上集中研究变量Y与X的函数关系,得到的是在不独立的情况下自变量与因变量之间的更加精确的回归函数式,也即判断相关关系的类型,因此需建立模型并估计参数。方差分析法集中研究变量Y的值及其变差而变量X值仅用来把Y值划分为子群或组,得到的是自变量(因素)对总量Y是否具有显着影响的整体判断,因此不需要建立模型和估计参数。

方差分析与回归分析

第八章方差分析与回归分析 §1单因素试验的方差分析 试验指标:研究对象的某种特征。 例各人的收入。 因素:与试验指标相关的条件。 例各人的学历,专业,工作经历等与工资有关的特征。 因素水平:因素所在的状态 例学历是因素,而高中,大学,研究生等,就是学历因素水平;数学,物理等就是专业的水平。 问题:各因素水平对试验指标有无显着的差异? 单因素试验方差分析模型 假设 1)影响试验指标的因素只有一个,为A ,其水平有r 个:1,,r A A ; 2)每个水平i A 下,试验指标是一个总体i X 。各个总体的抽样过程是独立的。 3)2~(,)i i i X N μσ,且22i j σσ=。 问题:分析水平对指标的影响是否相同 1)对每个总体抽样得到样本{,1}ij i X j n ≤≤,由其检验假设: 原假设0:i j H μμ=,,i j ?;备选假设:1:i j H μμ≠,,i j ?; 2)如果拒绝原假设,则对未知参数21,,,r μμσ进行参数估计。 注 1)接受假设即认为:各个水平之间没有显着差异,反之则有显着差异。 2)在水平只有两个时,问题就是双正态总体的均值假设检验问题和参数估计问题。 检验方法 数据结构式:ij i ij i ij X μεμδε=+=++,偏差2 ~(0,)ij N εσ是相互独立的,1 1r i i i n n μμ==∑。不难验证, 1 0r i k δ ==∑。 各类样本均值 水平i A 的样本均值:1 1 i n i ij j i X X n == ∑; 水平总样本均值:11111i n r r ij i i i j i X X n X n n =====∑∑∑,1 r i i n n ==∑; 偏差平方和与效应 组间偏差平方和: 2 221 1 ()r r A i i i i i i S n X X n X nX ===-=-∑∑;(衡量由不同水平产生的差异) 组内偏差平方和:

第7章-正交试验设计的极差分析汇总

\ 第7章 正交试验设计的极差分析 正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。 单指标正交试验设计及其极差分析 极差分析法简称R 法。它包括计算和判断两个步骤,其内容如图7-1所示。 & 图7-1 R 法示意图 — 图中,K jm 为第j 列因素m 水平所对应的试验指标和,K jm 为K jm 的平均值。由K jm 的大小可以判断j 因素的优水平和各因素的水平组合,即最优组合。R j 为第j 列因素的极差,即第j 列因素各水平下平均指标值的最大值与最小值之差: R j =max(jm j j K K K ,,,21 )-min(jm j j K K K ,,,21 )

R j反映了第j列因素的水平变动时,试验指标的变动幅度。R j越大,说明该因素对试验指标的影响越大,因此也就越重要。于是依据R j的大小,就可以判断因素的主次。 极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6-2来说明单指标正交试验结果的极差分析方法。 一、确定因素的优水平和最优水平组合 例6-2 为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。拟通过正交试验寻找酶法液化工艺的最佳工艺条件。 在例6-2中,不考虑因素间的交互作用(因例6-2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6-5所示,试验方案则示于表6-6中。试验结果的极差分析过程,如表7-1所示. ( 表6-4 因素水平表 酶解温度 (C) ( C 表6-6 试验方案及结果

第8讲单因素方差分析与多重比较

方差分析 方差分析(analysis of variance ), 简称ANOV A,由英国统计学家R.A.Fisher首先提出,后人为纪念Fisher ,以F命名方差分析的统计量,故方差分析又称F检验。 样本均数的差异,可能有两种原因所致。首先可能由随机误差所致随机误差包括两种成分:个体间的变异和测量误差两部分;其次可能是由于各组所接受的处理不同,不同的处理引起不同的作用和效果,导致各处理组之间均数不同。一般来说,个体之间各不相同,是繁杂的生物界的特点;测量误差也是不可避免的,因此第一种原因肯定存在。而第二种原因是否存在,这正是假设检验要回答的问题。 方差分析的基本思想是将所有观察值之间的变异(称总变异)按设计和需要分解成几部分。如完全随机设计资料的方差分析,将总变异分解为处理间变异和组内变异两部分,后者常称为误差。将各部分变异除以误差部分,得到统计量F值,并根据F值确定P值作推断。 由于方差分析是根据实验设计将总变异分成若干部分,因此设计时考虑的因素越多,变异划分的越精细,各部分变异的涵义越清晰明确,结论的解释也越容易,同时由于变异划分的精细,误差部分减小,提高了检验的灵敏度和结论的准确性。 方差分析可用于: (1)两个或多个样本均数间的比较 (2)分析两个或多个因素的交互作用

(3)回归方程的假设检验 (4)方差齐性检验 多个样本均数间比较的方差分析应用条件为: (1)各样本必须是相互独立的随机样本(独立性) (2)各样本均来自正态总体(正态性) (3)相互比较的各样本的总体方差相等(方差齐性) 一、完全随机设计的方差分析 医学实验中,根据某一实验因素,用随机的方法,将受试对象分配到各组,各组分别接受不同的处理后,观察各种处理的效果,比较各组均数之间有无差别。临床研究中,还可能遇到:比较几种不同疗法治疗某种疾病后某指标的变化,以评价它们的疗效;或比较某种疾病不同类型之间某一指标有无差别等。这些都是一个因素不同水平(或状态)间几个样本均数的比较,可用单因素的方差分析(one-way ANOV A)来处理此类资料。

层次分析法步骤解析—根法、和法、幂法

层次分析法(AHP) AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。 AHP十分适用于具有定性的,或定性定量兼有的决策分析。这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。 一、递阶层次结构的建立 一般来说,可以将层次分为三种类型: (1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。 (2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。 (3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。 典型的递阶层次结构如下: 一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到: (1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。 (2)整个结构不受层次限制。 (3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。 (4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。 二、构造比较判断矩阵 设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a ij,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,

方差分析与非参数检验

北京建筑大学 理学院信息与计算科学专业实验报告 课程名称《数据分析》实验名称方差分析与非参数检验实验地点基C-423 日期2017.3.30 (1)熟悉数据的基本统计与非参数检验分析方法; (2)熟悉撰写数据分析报告的方法; (3)熟悉常用的数据分析软件SPSS。 【实验要求】 根据各个题目的具体要求,完成实验报告。 【实验内容】 1、附件给出某年房屋价格的相关数据,请选用恰当的分析方法,对影响房屋价格的因素进行分析。(注意数据要调整成标准的格式,变量值、组别(字符变量转换成数值变量))(单因素方差分析选择其中两个因素、双因素方差分析选择其中任一对因素即可) 2、附件给出管理才能评分的相关数据,请选用恰当的分析方法,分析该评分数据是否服从正态分布。 3、附件给出了某体育比赛的两位裁判打分数据,请选用恰当的分析方法,检验该两组评分分布是否有显著差异。(注意数据要调整成标准的格式,变量值、组别) 4、附件给出了减肥茶数据,请选用恰当方法分析,检验该减肥茶是否对减肥有显著效果。(注意数据要调整成标准的格式,变量值、组别) 【分析报告】 1、对影响房屋价格的因素进行分析。(单因素方差分析选择其中两个因素、双因素方差分析选择其中任一对因素即可)。 表1-1(a) 装修状况对均价影响的单因素方差分析结果 均价 平方和df 均方 F 显著性 组间79.180 1 79.180 62.408 .000 组内230.914 182 1.269 总数310.094 183 表1-1(b) 所在区县对均价影响单因素方差分析结果 均价 平方和df 均方 F 显著性 组间91.919 3 30.640 25.279 .000 组内218.174 180 1.212 总数310.094 183 表1-1(a)是装修状况对均价影响的单因素方差分析结果。可以看到:观测变量均价的离差平方总和为310.094;如果仅考虑装修状况单个因素的影响,则均价总变差中,不同装修状况可解释的变差为79.180,抽样误差引起的变差为230.914,它们的方差分别为79.180和1.269,相除所得的F统计量的观测值为62.408,对应的概率P-值近似为0.如果显著性水平α为0.05,由于概率P-值小于显著性水平α,应拒绝原假设,认为不同装修状况对均价的平均值产生了显著影响,不同装修状况对均价的影响效应不全为0。 表1-1(b)是所在区县对均价影响单因素方差分析结果。可以看到:如果仅考虑所在区县单个因素的影响,则均价总变差310.094中不同所在区县可解释的变差为91.919,抽样误差引起的变差为218.174,

第7章-正交试验设计的极差分析

第7章 正交试验设计的极差分析 正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。 7.1 单指标正交试验设计及其极差分析 极差分析法简称R 法。它包括计算和判断两个步骤,其内容如图7-1所示。 图7-1 R 法示意图 图中,K jm 为第j 列因素m 水平所对应的试验指标和, jm 为K jm 的平均 值。由K jm 的大小可以判断j 因素的优水平和各因素的水平组合,即最优组合。R j 为第j 列因素的极差,即第j 列因素各水平下平均指标值的最大值与最小值之差: R j =max( )-min( ) R j 反映了第j 列因素的水平变动时,试验指标的变动幅度。R j 越大,说明该因素对试验指标的影响越大,因此也就越重要。于是依据 R 法 1.计算 2.判断 ○1K jm , ○2R j ○1因素主次 ○2优水平 ○3最优组合

R j的大小,就可以判断因素的主次。 极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6-2来说明单指标正交试验结果的极差分析方法。 一、确定因素的优水平和最优水平组合 例6-2 为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。拟通过正交试验寻找酶法液化工艺的最佳工艺条件。 在例6-2中,不考虑因素间的交互作用(因例6-2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6-5所示,试验方案则示于表6-6中。试验结果的极差分析过程,如表7-1所示. 表6-4 因素水平表 表6-6 试验方案及结果

层次分析法的基本步骤和要点

层次分析法的基本步骤与要点 结合一个具体例子,说明层次分析法的基本步骤与要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案就是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即就是多准则决策问题,考虑运用层次分析法解决。 1、建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求就是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些就是主要的准则,有些就是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次与组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该就是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标就是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益与环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

案例库 项目八假设检验 回归分析与方差分析

项目八假设检验、回归分析与方差分析 实验3 方差分析 实验目的学习利用Mathematica求单因素方差分析的方法. 基本命令 1.调用线性回归软件包的命令<

中,向量Y是因变量,也称作响应变量.矩阵X称作设计矩阵, ?是参数向量??是误差向量? ????????DesignedRegress也是作一元和多元线性回归的命令, 它的应用范围更广些. 其格式与命令Regress的格式略有不同: DesignedRegress[设计矩阵X,因变量Y的值集合, RegressionReport ->{选项1, 选项2, 选项3,…}] RegressionReport(回归报告)可以包含:ParameterCITable(参数?的置信区间表???? ?PredictedResponse (因变量的预测值), MeanPredictionCITable(均值的预测区间), FitResiduals(拟合的残差), SummaryReport(总结性报告)等, 但不含BestFit. 实验准备—将方差分析问题纳入线性回归问题 在线性回归中, 把总的平方和分解为回归平方和与误差平方和之和, 并在输出中给出了方差分析表. 而在方差分析问题

中, 也把总的平方和分解为模型平方和与误差平方和之和, 其方法与线性回归中的方法相同. 因此只要把方差分析问题转化为线性模型的问题, 就可以利用线性回归中的设计回归命令DesignedRegress 做方差分析. 单因素试验方差分析的模型是 ?? ? ??==+=. ,,2,1;,,2,1,),,0(~,2s j n i N Y j ij ij ij j ij ΛΛ独立各εσεεμ (3.1) 上式也可改写成 ?? ? ??===+-+==+=.,,2,1;,,2,1,),,0(~; ,,3,2,)(, ,,2,1,2111111s j n i N s j Y n i Y j ij ij ij j ij i i ΛΛΛΛ独立各εσεεμμμεμ (3.2) 给定具体数据后, 还可(2.2)式写成线性模型的形式:

层次分析法的计算步骤

8.3.2 层次分析法的计算步骤 一、建立层次结构模型 运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。这些层次大体上可分为3类 1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层; 2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层; 3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。 层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。 递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,若多于9个时,可将该层次再划分为若干子层。 例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次结构模型。 图8.1 再如,国家综合实力比较的层次结构模型如图6 .2: 图6 .2 图中,最高层表示解决问题的目的,即应用AHP所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。 然后,用连线表明上一层因素与下一层的联系。如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。层次之间可以建立子层次。子层次从属于主层次的某个因素。它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。 二、构造判断矩阵 任何系统分析都以一定的信息为基础。AHP的信息基础主要是人们对每一层次各因素的相对重要性给出的判断,这些判断用数值表示出来,写成矩阵形式就是判断矩阵。判断矩阵是AHP工作的出发点,构造判断矩阵是AHP的关键一步。 当上、下层之间关系被确定之后,需确定与上层某元素(目标A或某个准则Z)相联系的下层各元素在上层元素Z之中所占的比重。 假定A层中因素Ak与下一层次中因素B1,B2,…,Bn有联系,则我们构造的判断矩阵如表8.16所示。 Ak B1 B2 …Bn

第七章 方差分析

第七章方差分析 方差分析的主要目的是(B )。 A.分解平方和 B.进行多个平均数的假设测验 C.分解自由度 D.进行F测验 进行方差分析,第一步需要进行(C )。 A.平方和分解 B.自由度分解 C.A+B D.方差分解 设有k组数据,每组皆有n个观察值,该资料共有nk个观察值,其总平方和可分解为(B )。A.组内平方和与误差平方和 B.组间平方和与误差平方和 C.组间平方和与处理平方和 D.误差平方和 F测验显著,说明处理间(C )。 A.均显著 B.方差同质 C.存在显著差异 D.不显著 在分解平方和的过程中,误差平方和一般(D )。 A.通过合并组内平方和得到 B.通过合并组间平方和得到 C.通过合并处理平方和得到 D.通过减法得到 F测验的先决条件是( D)。 A.变数y服从正态分布 B.样本方差来自不同总体 C.两个样本方差彼此独立 D.A+C 多重比较是指( B)。 A.多个方差之间互相比较 B.多个平均数之间互相比较 C.多个处理之间互相比较 D.多个F值之间互相比较 LSD实质上是(),用它进行多重比较,通常会增大犯(D)的概率。 A.t测验,II类错误 B.F测验,I类错误 C.u测验,I类错误D.t测验,I类错误自由度等于(A )。 A.观察值个数减约束条件个数 B. n-1 C. n-2 D. n-k 系统分组资料的方差分析可分解出(B )。 A.系统误差 B.两个误差项 C.两个处理效应 D.互作项

方差分析是一种 (C ) 的方法。 A.分解平方和 B. F 测验 C.多样本平均数测验 D.假设测验 平方和与自由度的分解基于样本观察值的(A )。 A.线性模型 B.大小 C.变异情况 D.数量 在 A 、 B 两因素方差分析中如果处理的 F 测验不显著,有无必要筛选最佳组合( A)。A.无必要 B.有必要 C.视情况而定 D.不好确定 如果样本平均数与其方差有比例关系,这种资料宜用(B )。 A.对数转换 B.平方根转换 C.反正弦转换 D.用平均数代替观察值 下表是 6 种溶液及对照的雌激素活度鉴定,指标是小鼠子宫重量。 溶液鼠号 不同条件下小鼠子宫重量 /g 对照ⅠⅡⅢⅣⅤⅥ 1 2 3 4 89.9 93.8 88.4 112.6 84.4 116.0 84.0 68.6 64.4 79.8 88.0 69.4 75.2 62.4 62.4 73.8 88.4 90.2 73.2 87.8 56.4 83.2 90.4 85.6 65.6 79.4 65.6 70.2 问处理间有无差异()。 A.差异显著 B.无差异 C.有点差异 D.无法下结论答案是: 无差异 解:假设 ( i=1,2…7 ) ( 至少对一个 ) 这里 n =4 a=7 溶液对照ⅠⅡⅢⅣⅤⅥ 96.175 88.25 75.4 68.45 84.9 78.9 70.2 100.77 125.08 396.36 111.71 49.13 61.88 233.96 42.32 1020.71

假设检验与方差分析

实验四 假设检验 实验目的:通过此实验熟练掌握如何利用假设检验工具根据不同条件 选择相应检验工具进行检验,有助于学习者理解假设检验的过程及结果 实验要求:能够运用Excel 对总体均值进行假设检验,学会针对实际 背景提出原假设和备择假设来检验实际问题,并根据检验结果作出符合统计学原理和实际情况的判断和结论,加深对统计学方法的广泛应用背景的理解 假设检验与区间估计两者之间存在密切的关系,二者用的是同一个样本、同一个统计量、同一种分布,所以也可以用区间估计进行假设检验,两者结论是一致的。在Excel 中进行假设检验,除可按区间估计过程用公式和逆函数计算外,还备有专用的假设检验工具,包括Z —检验工具、T —检验工具和F —检验工具。使用这些工具,可以直接根据样本数据进行计算,一次给出检验统计量、单尾和双尾临界值以及小于或等于临界值的概率等所需要的数值。实验四主要介绍假设检验工具的使用。 一、假设检验的一般过程 假设检验主要是根据计算出的检验统计量与相应临界值比较,作出拒绝或接受原假设的决定。 根据全国汽车经销商协会报道,旧车的平均销售价格是10192美元。堪萨斯城某旧车经销处的一名经理检查了近期在该经销处销售的100辆旧车。结果样本平均价格是9300美元,样本标准差是4500美元。在0.05的显著性水平下,检验H 0:10192≥μ H 1:10192<μ。问:假设检验的结论是什么?这名经理接下来可能会采取什么行动? 本例由于样本容量比较大,其均值近似服从正态分布,总体方差未知,需要用样本标准差来代替,选择T 统计量进行检验。T 统计量的计算公式如下:

)1(~1 0--= -n t n s x t n μ 单击任一空单元格,输入“=(9300-10192)/(4500/SQRT(100))”,回车确认,得出t 统计量为-1.982。单击另一空单元格,输入“=TINV(0.025,99)”,回车确认,得出t 分布的右临界值为2.276。因为276.2982.1<-,所以不拒绝原假设,认为此旧车经销处旧汽车平均销售价格不小于10192美元。那么接下来这名经理会采取什么相应行动?(请读者思考)。 本例主要介绍了假设检验的一般过程,利用Excel 的公式和函数求出相应的统计量值和临界值,最后作出结论。 二、假设检验工具的使用 接下来介绍如何使用Excel 的假设检验工具。使用这一工具应该注意二点:第一,由于现实世界和生活中大量的数据服从正态分布,Excel 的假设检验工具是按正态总体设计的(以下各例未特殊说明,认为其服从或近似服从正态分布);第二,Excel 的假设检验工具主要用于检验两总体之间有无显著差异。具体来讲,Z —检验工具是对方差或标准差已知的两总体均值进行差异性检验;T —检验工具是对方差和标准差未知的两总体均值进行差异性检验,其中包括等方差假设检验、异方差假设检验和成对双样本检验;F —检验工具是对总体的标准差进行检验。 (一)Z —检验工具的使用 国际航空运输协会对商务旅行者进行调查以确定大西洋两岸过关机场的等级分数。假定:要求50名商务旅行者组成的随机样本给迈阿密机场打分,另50名商务旅行者组成的随机样本给洛杉机机场打分,最高等级为10分。两个样本数据如下: 迈阿密机场得分数据: 6 4 6 8 7 7 6 3 3 8 10 4 8 7 8 7 5 9 5 8 4 3 8 5 5 4 4 4 8 4 5 6 2 5 9 9 8 4 8 9 9 5 9 7 8 3 10 8 9 6 洛杉机机场得分数据: 10 9 6 7 8 7 9 8 10 7 6 5 7 3 5 6 8 7 10 8 4 7 8 6 9 9 5 3 1 8 9 6 8 5 4 6 10 9 8 3 2 7 9 5 3 10 3 5 10 8 假定两总体的等级标准差已知(这里用样本标准差代替总体标准差),

层次分析法案例与步骤

层次分析法实例与步骤 下面结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例】 市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

相关文档
最新文档