高中数学题型解法归纳《三角函数值大小比较》
三角函数最值的求解策略(解析版)

三角函数最值的求解策略【高考地位】三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。
解这类问题时要注意思维的严密性,如三角函数值正负号的选取、角的范围的确定、各种情况的分类讨论、及各种隐含条件等等。
求三角函数的最值常用方法有:配方法、化一法、数形结合法、换元法、基本不等式法等等。
在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题. 【方法点评】方法一 化一法使用情景:函数表达式形如 f (x )a sin 2 xb cos 2 xc sin x cos xd 类型解题模板:第一步 运用倍角公式、三角恒等变换等将所给的函数式化为形如 ya sin xb cos xc 形式;第二步 利用辅助角公式a sin x b cos xa sin(x) 化为只含有一个函数名的形式;第三步 利用正弦函数或余弦函数的有界性来确定三角函数的最值.x4x cos4例1 已知函数 fx 在 x 0 ,2上的最x,则 f大值与最小值之差为 .【答案】3i n 2 2 s i n x2x66 , 76,即为换元思想,把2x6 看作一个整体,利用 ysin x 的单调性即可得出最值,这是解决 y a sin xb sin x 的常用做法.【变式演练1】设当x时,函数 f (x )2sin xcos x 取得最大值,则cos__________.【变式演练2】已知函数 f (x ) 4cos x sin(x )1(0) 的最小正周期是.6(1)求 f (x ) 的单调递增区间;3(2)求 f (x ) 在[ , ]上的最大值和最小值.【答案】58 8【答案】(1) 6 k , 3k k Z ; (2) 最大值2 、最小值 622所以 f x 在8 , 38上的最大值和最小值分别为2 、 6 2 2 .考点:1、三角函数的恒等变换;2、函数 yA sinx 的性质;【变式演练3】已知函数 f (x ) sin xa cos x 图象的一条对称轴是 x,且当 x(2) 当 3,88x时, 72,612 12x2sin 262fx x,4时,函数g(x) sin x f (x) 取得最大值,则cos.【答案】5【解析】考点:1、三角函数的图象与性质;2、三角恒等变换.2 x sin2 x) 2cos2(x ) 1的定义域为[0,]. 【变式演练4】已知 f (x) 3(cos4 2 (1)求 f (x) 的最小值.(2)ABC中, A 45 ,b 32 ,边a的长为函数3 3 f (x) 的最大值,求角 B 大小及ABC的面积.【答案】(1)函数 f (x) 的最小值 3 ;(2) ABC的面积S 9(3 1) .【解析】考点:1、三角恒等变形;2、解三角形.x x) 3cos 2 x 3 .【变式演练5】已知函数 f (x) cos(2(I)求 f (x) 的最小正周期和最大值;2(II)求 f (x) 在[ , ]上的单调递增区间.6 3【答案】(I) f (x) 的最小正周期为,最大值为1;(II)[, 5].6 12【解析】试题分析:(I )利用三角恒等变换的公式,化简 f x sin(2x ) ,即可求解 f (x )35的最小正周期和最大值;(II )由 f (x ) 递增时,求得kx k(kZ ),12125即可得到 f (x ) 在[ , ]上递增.6 12 试题解析: f (x ) (-cos x )()31cos2x 3221sin2x3 cos2x sin(2x)223(I ) f (x ) 的最小正周期为,最大值为1;(II ) 当 f (x ) 递增时,2k2x 2k (k Z ),2 325即kxk(kZ ),12125 所以, f(x ) 在[ ,]上递增 6 12 25即 f (x ) 在[ , ]上的单调递增区间是[ , ]6 3 6 12考点:三角函数的图象与性质.方法二 配方法使用情景:函数表达式可化为只含有一个三角函数的式子 解题模板:第一步先将所给的函数式化为只含有一个三角函数的式子,通常采取换元法将其变为多项式函数;第二步 利用函数单调性求解三角函数的最值. 第三步 得出结论.例2 函数 f (x ) cos 2x2sin x 的最小值为.函数 ycos 2 xa sin xa 22 a5有最大值2,【变式演练6】已知求实数a 的值.【答案】 a【解析】 试题分析: ysin 2 x a sin x a 2 2 a 6 ,令sin x t ,t 1,1,则 yt 2ata 22 a6 ,对称轴为ta ,【答案】考点:三角函数的最值.【点评】解本题的关键是利用换元法转化为关于sin x的二次函数,根据sin x 的取值范围[-1,1],利用对称轴进行分类讨论求出最大值,解出a的值.【变式演练7】函数 f x sin x cos x 2sin x cos x x4, 4 的最小值是__________.【答案】1【解析】f(x)=sinx+cosx+2sinxcosx,x∈ 4 , 4 ,化简f(x)=(sinx+cosx)2+sinx+cosx﹣1设sinx+cosx=t,则t=2sin(x)x+ ,那么函数化简为:g(t)=t2+t﹣1.∵x∈ 4 , 4t 1.∵函数g(t)=t2+t﹣1.∴x+ ∈[0,],所以:04 21开口向上,对称轴t=-,∴0 t 1是单调递增.2当t=0时,g(t)取得最小值为-1.求函数y 74sin x cos x4cos2 x4cos4 x的最大值与最小值.方法三直线斜率法使用情景:函数表达式可化为只含有一个三角函数的式子解题模板:第一步先将所给的函数式化为只含有一个三角函数的式子,通常采取换元法将其变为多项式函数;第二步利用函数单调性求解三角函数的最值.第三步得出结论.【点评】若函数表达式可化为形如 yat t 21(其中t 1,t 2 为含有三角函数的式子), b则通过构造直线的斜率,通过数与形的转化,利用器几何意义来确定三角函数的最值.【高考再现】) f (x )1.【2017全国III 文,6】函数的最大值为(例 3 求函数2 sin2 cosx yx的最值 .【答案】2 sin 2 cosx y x的最大值为4 3,最小值为 4 3.【变式演练 8 】求函数 21sin 1 sinx yx在区间 [0,) 2上的最小值 . 【答案】 1sin(x )cos(x )A. B.1C.D.【答案】A所以选A.【考点】三角函数性质【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y A sin(x )B的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征2.【2016高考新课标1卷】已知函数 f (x )sin(x+)(0,),x 为24418,536单调,则的最大 f (x ) 的零点, x为 y f (x ) 图像的对称轴,且 f (x ) 在值为( )(A )11 (B )9(C )7 (D )5【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖, 是一道考查能力的好题.注意本题解法中用到的两个结论:① fx A sin x A 0,0的单调区间长度是半个周期;②若 f xA sinx A0,0的图像关于直线 xx 0 对称,则 fx 0A 或fx 0A .3. 【2016年高考北京理数】将函数 ysin(2x ) 图象上的点P ( ,t ) 向左平移s3 4(s 0 ) 个单位长度得到点P ',若P '位于函数 ysin2x 的图象上,则()A.t1 ,s 的最小值为B.t 3,s 的最小值为2626C.t1,s 的最小值为D.t3,s 的最小值为2 323【答案】A 【解析】试题分析:由题意得,t sin(2) 1,故此时P '所对应的点为(,1) ,此4 3212 2时向左平移 - 个单位,故选A.4 126考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换4.【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数 y 3sin(x )k ,据此函数可知,这段时间水深(单位:m )的最大值6为( )A .5B .6C .8D .10【答案】C5.【2015高考安徽,理10】已知函数 f xsinx(,,均为正的常数)的最小正周期为,当 x2时,函数 fx取得最小值,则下列结论正3 确的是( )(A ) f2f2f(B ) f 0 f 2 f2(C ) f2ff2(D ) f 2 f 0 f2【答案】A【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出,通过最值判断出,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.6.【2015高考湖南,理9】将函数f (x) sin 2x的图像向右平移(0 )个单2位后得到函数g(x) 的图像,若对满足 f(x1) g(x2) 2 的x1,x2,有x1x2 min ,3 则()5 A. B. C. D.12 3 4 6【答案】D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以f (x) A sin(x ) 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.7.【2017全国II文,13】函数f (x) 2cos x sin x 的最大值为 .【答案】1 【解析】试题分析:化简三角函数的解析式:f x 1cosx 3cosxcos x 3cos x14 cos x2321,x 0,2可得:cos x0,1,当cos x3时,函数 f x 取得最大值1。
高中数学如何求解三角函数的极值和最值

高中数学如何求解三角函数的极值和最值一、引言三角函数是高中数学中的重要内容,求解三角函数的极值和最值是数学分析的基本技能之一。
本文将介绍如何通过分析和计算来求解三角函数的极值和最值,以及一些常见的解题技巧。
二、求解三角函数的极值1. 极值的定义在数学中,极值是指函数在某个区间内取得的最大值或最小值。
对于三角函数而言,极值点就是函数图像上的顶点或谷底。
2. 求解极值的方法(1)利用导数法求解对于一元函数,可以通过求导数来确定其极值点。
对于三角函数而言,可以先求出函数的导数,然后令导数等于零,解方程得到极值点。
例如,考虑函数f(x) = sin(x),其导数f'(x) = cos(x)。
令f'(x) = 0,解得x = π/2 + kπ,其中k为整数。
因此,函数sin(x)在x = π/2 + kπ处取得极值。
(2)利用周期性求解由于三角函数具有周期性,可以利用周期性来求解极值。
例如,考虑函数f(x)= sin(2x),它的周期为π。
因此,只需求解f(x)在一个周期内的极值即可。
在区间[0, π]上,函数f(x)在x = π/4处取得最大值1,而在x = 3π/4处取得最小值-1。
三、求解三角函数的最值1. 最值的定义在数学中,最值是指函数在某个区间内取得的最大值或最小值。
对于三角函数而言,最值点就是函数图像上的最高点或最低点。
2. 求解最值的方法(1)利用周期性求解与求解极值类似,由于三角函数具有周期性,可以利用周期性来求解最值。
例如,考虑函数f(x) = sin(x),它的周期为2π。
因此,只需求解f(x)在一个周期内的最值即可。
在区间[0, 2π]上,函数f(x)在x = π/2处取得最大值1,而在x = 3π/2处取得最小值-1。
(2)利用函数图像求解通过观察函数的图像,可以直观地确定函数的最值点。
例如,考虑函数f(x) = cos(x),它的图像是一条波浪线。
从图像上可以看出,函数f(x)在x = 0处取得最大值1,而在x = π处取得最小值-1。
三角函数求最值五种题型

三角函数求最值五种题型一、最值问题的一般解法:求解三角函数的最值问题可以分为以下五种题型:基本最大、基本最小、最大最小(上下界)、最大、最小。
1.基本最大:即求函数的最大值,通常通过对函数进行求导并令导数为零来求得。
这种情况下,需求导数在给定区间内的零点,并进行极值判断来确定最值。
2.基本最小:与基本最大相反,求函数的最小值,同样需要对函数进行求导并求导数为零,进行极值判断来确定最值。
3.最大最小(上下界):在给定区间内求函数的最大最小值,需将区间的端点以及函数的驻点和不可导点的值进行比较,以确定最大最小值。
4.最大:在给定区间内寻找函数的最大值。
可以通过对函数进行求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最大值。
5.最小:在给定区间内寻找函数的最小值。
同样可以通过求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最小值。
二、详细解答五种题型:以下是对上述五种题型的详细解答:1.基本最大:Example 1: 求函数f(x) = sin(x)的最大值。
解:首先求得导数f'(x) = cos(x),令cos(x) = 0,解得x = π/2 + kπ,其中k为整数。
然后对于x = π/2 + kπ,求得对应的函数值f(x) = sin(π/2 +kπ) = (-1)^k,即奇数项取最大值为1,偶数项取最小值为-1所以函数f(x) = sin(x)的最大值为12.基本最小:Example 2: 求函数f(x) = cos(x)的最小值。
解:同样求导得到f'(x) = -sin(x),令-sin(x) = 0,解得x = kπ,其中k为整数。
然后对于x = kπ,求得对应的函数值f(x) = cos(kπ) = (-1)^k,即奇数项取最小值为-1,偶数项取最大值为1所以函数f(x) = cos(x)的最小值为-13.最大最小(上下界):Example 3: 在区间[0, 2π]内,求函数f(x) = 2sin(x) + cos(x)的最大最小值。
高中三角函数三角函数的不等式与最值问题

高中三角函数三角函数的不等式与最值问题在高中数学学习中,三角函数是一个重要的章节。
除了学习三角函数的定义、性质和图像等基本知识外,我们还需要掌握三角函数的不等式和最值问题的解决方法。
本文将为大家详细介绍高中三角函数的不等式与最值问题,并提供相应的解决思路和方法。
一、三角函数的不等式1. 正弦函数的不等式正弦函数的定义域为实数集,而正弦函数的值的范围在[-1, 1]之间。
因此,当我们解决正弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的正弦函数转化为关于θ的等价不等式;(3)根据正弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式sinθ > 0,我们可以按照上述步骤进行求解:(1)由于正弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式sinθ > 0转化为等价不等式:0 < sinθ < 1;(3)根据正弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (2kπ, 2kπ + π/2),其中k ∈ Z。
2. 余弦函数的不等式余弦函数的定义域为实数集,而余弦函数的值的范围在[-1, 1]之间。
因此,当我们解决余弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的余弦函数转化为关于θ的等价不等式;(3)根据余弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式cosθ ≥ 0,我们可以按照上述步骤进行求解:(1)由于余弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式cosθ ≥ 0转化为等价不等式:cosθ > -1 或cosθ < 1;(3)根据余弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (-2kπ, -2kπ + π/2) U (2kπ, 2kπ + π),其中k ∈ Z。
三角函数题型及解法

高中数学常见三角函数题型及解法近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来.在考查三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,降低了对三角函数恒等变形的要求,加强了对三角函数性质和图象的考查力度. 三角函数的命题趋于稳定,会保持原有的考试风格,尽管命题的背景上有所变化,但仍属基础题、中档题、常规题.实施新课标后,新一轮基础教育的改革增添了与现代生活和科学技术发展相适应的许多全新的内容,它们会吸引命题者关注的目光.三角函数试题可以归纳为以下几种典型题型。
1、三角函数的概念及同角关系式此类题主要考查三角函数诱导公式及三角函数的符号规律.解此类题注意必要的分类讨论以及三角函数值符号的正确选取.例1(10全I 卷理2)记cos(80)k -︒=,那么tan100︒= A.21k k - B.-21k k - C.21k - D.-21k- 解: 222sin801cos 801cos (80)1k =-=--=-,∴tan100tan80︒=-2sin 801.cos80k k-=-=-。
故选B 评注:本小题主要考查诱导公式、同角三角函数关系式,并突出了弦切互化这一转化思想的应用. 同时熟练掌握三角函数在各象限的符号. 例2(10全1卷文1)cos300︒=(A)32- (B)-12(C)12(D) 32 解:()1cos300cos 36060cos602︒=︒-︒=︒= 评注:本小题主要考查诱导公式、特殊三角函数值等三角函数知识2、三角函数的化简求值这类题主要考查三角函数的变换.解此类题应根据考题的特点灵活地正用、逆用,变形运用和、差、倍角公式和诱导公式,进行化简、求值.例3(10重文数15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311cos cos sin sin 3333αααααα++-=____________解:232312311cos cos sin sin cos 33333ααααααααα++++-=又 1232αααπ++=,∴1231cos 32ααα++=- 评注:本题以过同一点的三段圆弧为背景,考查了三角恒等变形中公式逆用的基本技巧,将已知与求解合理转化,从而达到有效地求解目的.例4(10全1理数14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 解: α为第三象限的角∴ππ+k 2<α<ππ232+k∴ππ24+k <2α<ππ34+k (Z K ∈)又 3cos 25α=-<0,∴4sin 25α=,∴sin 24tan 2cos 23ααα==- ∴tan(2)4πα+=41tan tan 2134471tan tan 2143παπα-+==--+. 评注:本题主要考查了同角三角函数的关系和二倍角公式的灵活运用。
三角函数与解三角形中的最值(范围)问题

sin
2
2
(sin+cos)
sin
=
π
4
)
sin
2
1
(1+
),
2
tan
π
π
因为 B ∈[ , ),所以tan
6
4
因为函数 y =
sin(+
B ∈[
3
,1),
3
2
1
3
(1+ )在[ ,1)上单调递减,
2
3
所以 的取值范围为(
2,
6+ 2
].
2
=
高中总复习·数学
2. (2024·湖北三校联考)记△ ABC 的内角 A , B , C 的对边分别为
π
≤ )的图象离原点最近的对称轴为 x = x 0,若满足| x 0|≤
2
π
,则称 f ( x )为“近轴函数”.若函数 y =2
6
“近轴函数”,则φ的取值范围是(
)
sin (2 x -φ)是
高中总复习·数学
解析: y =2 sin
π
(2 x -φ),令2 x -φ= + k π, k ∈Z,∴图象
6
6
π
[0, ]上的值域为[-1,2].故选D.
2
高中总复习·数学
2.
4
3
sin+5
函数 y =
的最大值是
2−sin
6 ,最小值是
解析:法一
2−5
sin x =
,而-1≤
+1
原函数可化为
.
sin x ≤1,所以
2−5
4
-1≤
≤1,所以 ≤ y ≤6,因此原函数的最大值是6,最小值
高中常考的三角函数值
高中常考的三角函数值在高中数学课程中,三角函数是一个非常重要的内容,而三角函数值更是常常被考查的知识点。
在学习三角函数值的过程中,学生们需要熟练掌握正弦、余弦和正切函数的值,以便解决各种三角函数相关的问题。
下面将介绍一些高中常考的三角函数值及其相关概念。
正弦函数值正弦函数在数学中是一个非常基础且常见的函数,它表示一个角的对边与斜边之比。
在单位圆上,不同角度对应的正弦函数值如下:•当角度为0度时,正弦函数的值为0;•当角度为30度时,正弦函数的值为1/2;•当角度为45度时,正弦函数的值为√2/2;•当角度为60度时,正弦函数的值为√3/2;•当角度为90度时,正弦函数的值为1。
通过记忆以上数值,学生可以在计算时更加便利,提高解题效率。
余弦函数值余弦函数是正弦函数的互余函数,表示一个角的邻边与斜边之比。
在单位圆上,不同角度对应的余弦函数值如下:•当角度为0度时,余弦函数的值为1;•当角度为30度时,余弦函数的值为√3/2;•当角度为45度时,余弦函数的值为√2/2;•当角度为60度时,余弦函数的值为1/2;•当角度为90度时,余弦函数的值为0。
学生在计算余弦函数时,也可以通过上述数值来简化问题,减少计算难度。
正切函数值正切函数表示一个角的对边与邻边之比,在数学中也具有很大的应用。
在单位圆上,不同角度对应的正切函数值如下:•当角度为0度时,正切函数的值为0;•当角度为30度时,正切函数的值为√3/3;•当角度为45度时,正切函数的值为1;•当角度为60度时,正切函数的值为√3;•当角度为90度时,正切函数的值为无穷大。
通过记忆正切函数的数值,学生可以更快地解决与正切函数相关的数学问题。
总结三角函数值是高中数学中常考的知识点,掌握这些数值对于解决各种三角函数问题是至关重要的。
通过熟练记忆正弦、余弦和正切函数在不同角度下的数值,可以帮助学生更加便捷地进行计算和解题,提高数学学习效率。
希望学生们在学习三角函数值的过程中能够加深理解,掌握这一重要知识点。
三角函数专题:三角函数最值(值域)的5种常见考法(解析版)
三角函数专题:三角函数最值(值域)的5种常见考法1、形如sin y a x = (或cos y a x =)型可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论 2、形如sin()y a x b ωϕ=++ (或cos()y a x b ωϕ=++型 (1)先由定义域求得x ωϕ+的范围(2)求得sin()x ωϕ+ (或cos()x ωϕ+)的范围,最后求得最值 3、形如sin cos y a x b x =+型引入辅助角转化为22)y a b x ϕ=++,其中tan baϕ=,再利用三角函数的单调性求最值。
4、形如2sin sin (0)y a x b x c a =++≠或2cos cos (0)y a x b x c a =++≠型, 可利用换元思想,设sin y x =或cos y x =,转化为二次函数2y at bt c =++求最值,t 的范围需要根据定义域来确定. 5、形如sin cos (sin cos )y x x x x =⋅±±型利用sin cos x x ±和sin cos x x ⋅的关系,通过换元法转换成二次函数求值域 6、分式型三角函数值域(1)分离常数法:通过分离常数法进行变形,再结合三角函数有界性求值域; (2)判别式法题型一 借助辅助角公式求值域【例1】该函数sin 3y x x =的最大值是( ) A .1 B 6 C .2 D .2- 【答案】C【解析】因为πsin 32sin 3y x x x ⎛⎫==+ ⎪⎝⎭,又[]πsin 1,13x ⎛⎫+∈- ⎪⎝⎭,所以函数sin 3y x x =的最大值是2.故选:C.【变式1-1】已知()()sin 3cos 0f x A x x A =->的最大值是2,则()3sin 3cos g x x A x +在π3π,44⎡⎤⎢⎥⎣⎦中的最大值是( )A .32B .3C 326+ D .23【答案】C【解析】根据辅助角公式可得:()2223sin 3=333f x A x x A x x A A ⎫=+⎪⎪++⎭()2=3A x ϕ+-,其中3tan ϕ=. 由()f x 的最大值为2()2320A A +>,解得1A =.∴()1333cos 23sin 2g x x x x x ⎫=+=⎪⎪⎭π233x ⎛⎫=+ ⎪⎝⎭.∵π3π,44x ⎡⎤∈⎢⎥⎣⎦,∴π7π13π,31212x ⎡⎤+∈⎢⎥⎣⎦. ∴当π7π312x +=,即π4x =时,()g x 取得最大值. 故()max ππ343g x ⎛⎫=+ ⎪⎝⎭231326232⎫+==⎪⎪⎝⎭故选:C.【变式1-2】已知函数()()3cos sin 3cos 0,2f x x x x x π⎫⎡⎤=∈⎪⎢⎥⎣⎦⎝⎭,则函数()f x 的值域为( ) A .33⎡⎢⎣⎦ B .3⎡⎤⎢⎥⎣⎦C .11,22⎡⎤-⎢⎥⎣⎦D .1,12⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】()23sin cos 3x x f x x =+)133sin 21cos 22x x =+sin 23x π⎛⎫=+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 42,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以3sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 所以函数()f x 的值域为3⎡⎤⎢⎥⎣⎦.故选:B【变式1-3】函数2()sin 3cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A .1B .2C .32D .3 【答案】C【解析】因为2()sin 3cos f x x x x =,所以1cos 231()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .【变式1-4】己知函数()3sin 4cos ,R f x x x x =+∈,则()()12f x f x -的最小值是_________. 【答案】10-【解析】由题意可得()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+ ⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭.因为12,R x x ∈,所以min max ()5,()5f x f x =-=.所以()()12f x f x -的最小值是min max ()()10f x f x -=-.题型二 借助二次函数求值域【例2】求函数22sin 2sin 1y x x =-++的值域.【答案】3[3,]2-【解析】y =−2sin 2x +2sinx +1=−2(sinx −12)2+32,−1≤sinx ≤1,根据二次函数性质知,当1sin 2x =时,max 32y =;当sin 1x =-时,min 3y =-, 故值域为3[3,]2-.【变式2-1】函数2cos sin 1y x x =+-的值域为( )A .11[,]44-B .1[0,]4C .1[2,]4-D .1[1,]4- 【答案】C【解析】函数222cos sin 11sin sin 1sin sin y x x x x x x =+-=-+-=-+,设sin t x =,11t -≤≤,则()2f t t t =-+, 由二次函数的图像及性质可知2124t t -≤-+≤,所以cos 2sin 1y x x =+-的值域为1[2,]4-,故选:C.【变式2-2】函数2tan 4tan 1y x x =+-的值域为____________【答案】[)5,-+∞【解析】因为2tan 4tan 1y x x =+-令tan t x =,则t R ∈所以()()224125f t t t t =+-=+-,所以()[)5,f t ∈-+∞,故函数的值域为[)5,-+∞【变式2-3】函数()193sin cos 2R 24y x x x =+-∈的最小值是( ) A .14B .12 C .234- D .414-【答案】C【解析】22197313sin cos 2sin 3sin sin 24422y x x x x x ⎛⎫=+-=-+-=--+ ⎪⎝⎭,令sin x t =,则11t -≤≤.因为23122t ⎛⎫--+ ⎪⎝⎭在[]1,1-上单增,所以当1t =-时,2min31231224y ⎛⎫=---+=- ⎪⎝⎭.故选:C .题型三 借助换元法求值域【例】已知函数(),则()A .()f x 的最大值为3,最小值为1 B .()f x 的最大值为3,最小值为-1 C .()f x 的最大值为32,最小值为34D .()f x 的最大值为32,最小值为32 【答案】C【解析】因为函数()sin cos 2sin cos 2f x x x x x =+++,设sin cos 24x x x t π⎛⎫+=+= ⎪⎝⎭,2,2t ⎡∈-⎣, 则22sin cos 1x x t =-,所以2213124y t t t ⎛⎫=++=++ ⎪⎝⎭,2,2t ⎡∈-⎣,当12t =-时,()min 34f t =;当2t =时,()max 32f t =故选:C【变式3-1】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. 【答案】[-1,1]【解析】设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1. 当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1].【变式3-2】函数()sin cos sin 2f x x x x =++的最大值为( ) A .1 B .12 C .12 D .3 【答案】C【解析】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[2,2]t ∈-,则22(sin cos )12sin cos t x x x x =+=+, 所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[2,2]t ∈,对称轴为12t =-,所以当2t 时,21y t t =+-取得最大值,所以函数的最大值为222121=,即()sin cos sin 2f x x x x =++的最大值为12C【变式3-3】函数f (x )=sinxcosx +√2sin (x −π4)的值域为________. 【答案】[−12−√2,1]【解析】由于f (x )=sinxcosx +√2sin (x −π4)=sinxcosx +sinx −cosx ,令sinx −cosx =t ,则sinxcosx =1−t 22,于是函数化为y =1−t 22+t =−12(t −1)2+1,而t =sinx −cosx =√2sin (x −π4)∈[−√2,√2] , 所以当1t =时,函数取最大值1,当t =−√2时,函数取最小值−12−√2,故值域为[−12−√2,1].题型四 分式型三角函数的值域【例4】函数cos 12cos 1x y x +=-的值域是( )A .][(),04,∞∞-⋃+B .][(),02,∞∞-⋃+ C .[]0,4 D .[]0,2 【答案】B【解析】令11cos ,1,,122x t t ⎡⎫⎛⎤=∈-⋃⎪ ⎢⎥⎣⎭⎝⎦,13(21)11322212122211t t y t t t -++===+⋅---,可得[)(]213,00,1t -∈-⋃,[)11,1,213t ⎛⎤∈-∞-⋃+∞ ⎥-⎝⎦,3113,,22122t ⎛⎤⎡⎫⋅∈-∞-⋃+∞ ⎪⎥⎢-⎝⎦⎣⎭,故(][),02,y ∈-∞⋃+∞.故选:B.【变式4-1】函数sin 3sin 2x y x +=+的值域为___________. 【答案】4,23⎡⎤⎢⎥⎣⎦【解析】解:sin 31sin 2sin 21x y x x +==+++, 因为1sin 1x -≤≤,所以1sin 23x ≤+≤,所以1113sin 2x ≤≤+,所以411+23sin 2x ≤≤+, 所以sin 3sin 2x y x +=+的值域是4,23⎡⎤⎢⎥⎣⎦.【变式4-2】函数sin cos ()1sin cos =++x xf x x x的值域为_____________.【答案】212111,2⎡⎫⎛-----⎪ ⎢⎪⎣⎭⎝⎦【解析】令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,[2,1)(1,2]t ∈---,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[2,1)(1,2]t ∈---,所以()212111,2f t ⎫⎛---∈--⎪ ⎪ ⎣⎭⎝⎦, 即函数sin cos ()1sin cos =++x xf x x x 的值域为212111,2⎡⎫⎛-----⎪ ⎢⎪ ⎣⎭⎝⎦.【变式4-3】当04x π<<时,函数221sin ()cos sin sin xf x x x x-=⋅-的最小值是________.【答案】4【解析】22cos ()sin cos sin xf x x x x=-21tan tan x x =-, 当04x π<<时,tan (0,1)x ∈,所以21110tan tan 244<-≤-=x x ,()4f x ∴≥,即221sin ()cos sin sin xf x x x x-=⋅-的最小值为4.含绝对值的三角函数值域A .[-1,0] B .[0,1] C .[-1,1] D .[-2,0] 【答案】D【解析】当0sin 1x ≤≤ 时,sin sin 0y x x =-= ,所以,当1sin 0x -≤<,2sin y x =,又22sin 0x -≤< ,所以函数的值域为[]2,0-,故选:D.【变式5-1】函数()2sin 3cos f x x x =+的值域是( )A .[]2,5B .[]3,5C .13⎡⎤⎣⎦D .13⎡⎣【答案】C【解析】()sin()2cos()2sin 3cos 2sin 3cos f x x x x x x x +=+++=-+-=+πππ,∴()f x 为周期函数,其中一个周期为T π=,故只需考虑()f x 在[0,]π上的值域即可,当[0,]2x π∈时,()2sin 3cos 13)f x x x x =+=+α,其中cos 13α,sin 13α=, ∴max ()()132f x f =-παmin ()()22f x f ==π,当[,]2x ππ∈时,()2sin 3cos 13)f x x x x =-=+β,其中,cos 13β=sin 13=β, ∴max ()()132f x f =-πβmin ()()22f x f ==π,∴()f x 的值域为13].故选:C【变式5-2】设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是______. 【答案】0【解析】∵2()|sin |2cos 1f x x x =+-|sin |cos 2x x =+为偶函数,∴只需求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值,此时2()sin cos22sin sin 1f x x x x x =+=-++,令[]sin 0,1t x =∈,则221y t t =-++,函数的对称轴为[]10,14t =∈,∴当1t =时,min 2110y =-++=.【变式5-3】若不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则k 的取值范围是______. 【答案】[)2,∞+ 【解析】∵ ()sin 1cos sin tan sin sin cos cos x x xx x x x x++=+=,3,4x ππ⎡⎤∈⎢⎥⎣⎦∴ sin 0,1cos 0,cos 0x x x >+><,∴ tan sin 0x x +<,∴sin tan tan sin sin tan tan sin 2tan x x x x x x x x x -++=---=-, ∵ 不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立 ∴ 2tan k x ≥-,3,4x ππ⎡⎤∈⎢⎥⎣⎦,∴()max 2tan 2k x ≥-=. 故k 的取值范围是[)2,∞+.。
三角函数在各个象限的大小关系
三角函数在各个象限的大小关系
三角函数(正弦、余弦和正切)在不同象限中的大小关系是根
据单位圆上的坐标值来确定的。
下面我将从四个象限的角度来详细
解释这些关系。
第一象限,在第一象限中,所有的三角函数值都是正数。
正弦
函数的值在0到90度之间逐渐增大,余弦函数的值在90度到0度
之间逐渐减小,而正切函数的值在0度到90度之间逐渐增大。
第二象限,在第二象限中,正弦函数的值仍然是正数,余弦函
数的值变成了负数,而正切函数的值在90度到180度之间逐渐减小。
第三象限,在第三象限中,正弦函数和余弦函数的值都变成了
负数,而正切函数的值在180度到270度之间逐渐增大。
第四象限,在第四象限中,正弦函数的值变成了负数,余弦函
数的值仍然是正数,而正切函数的值在270度到360度之间逐渐减小。
总结起来,正弦函数在第一和第二象限中是正数,在第三和第
四象限中是负数。
余弦函数在第一和第四象限中是正数,在第二和第三象限中是负数。
正切函数在第一和第三象限中是正数,在第二和第四象限中是负数。
需要注意的是,这些大小关系是基于角度的,而不是弧度。
在使用三角函数时,通常使用弧度作为单位。
因此,在计算过程中需要将角度转换为弧度。
希望以上解释能够满足你的需求。
如果还有其他问题,请随时提出。
三角函数最值问题常见解法
三角函数最值问题的几种常见解法一 、配方法若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理。
例1 函数3cos 3sin 2+--=x x y 的最小值为( ).A . 2B . 0C . 41- D . 6 [分析]本题可通过公式x x 22cos 1sin -=将函数表达式化为2cos 3cos 2+-=x x y ,因含有cosx 的二次式,可换元,令cosx=t ,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0min =y ,选B.例2 求函数y=5sinx+cos2x 的最值[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。
()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ 二 、引入辅助角法例3已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。
[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。
解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ三 、利用三角函数的有界性在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识要点】
1、sin,cos,tanyxyxyx正弦函数余弦函数正切函数的图象与性质
性质
sinyx
cosyx
tanyx
图象
定义域
R
R
,2xxkk
值域
1,1
1,1
R
最值 当22xkk时,max1y;当22xk k时,min1y. 当2xkk时, max1y;当2xk k时,min1y. 既无最大值,也无最小值
周期性
2 2
奇偶性
sin()sin,xx奇函数 cos()cos,xx偶函数 tan()tan,xx
奇函数
单调性
在2,222kk
k
上是增函数;在 32,222kk k上是减函数. 在2,2kkk上是增函数;在2,2kk k上是减函数. 在,22kk
k
上是增函数.
对称性
对称中心,0kk
对称轴2xkk,
对称中心,02kk 对称中心,02kk
既是中心对称又是轴对称图形。 对称轴xkk,既是中心对称又是轴对称图形。 无对称轴,是中心对称但不
是轴对称图形。
2、三角函数线
(1)由于sinMP,所以MP就叫角的正弦线.正弦线的起点在垂足,终点在角的终边与单位圆的
交点.
(2)由于cosOM,所以OM就叫角的余弦线.余弦线的起点在原点,终点在垂足.
(3)由于tanAT,所以AT就叫角的正切线.正切线的起点在单位圆与x轴正半轴的交点A,
终点在过点A的切线与角的终边或反向延长线的交点.
3、三角函数值大小的比较常用的方法是三角函数线和单调性两种方法.
【方法讲评】
方法一 三角函数线比较法
使用情景 一般直接比较困难或者三角函数里面有正切.
解题步骤 一般通过画三角函数线比较大小.
【例1】设,53sina,52cosb,52tanc则( )
A.cab B.acb C.cba D.bca
【解析】32sinsin55a,则25是第一象限的锐角,根据三角函数线,所以cab,故选A.
【点评】(1)本题中由于有正弦、余弦和正切,且角(0,),所以选择三角函数线比较大小比较方便.
(2)本题中,53sina化简成32sinsin55a,这样三个角相同利用三角函数线比较更简洁.
【反馈检测1】设a=24sin5,b=39cos()10,c=43tan()12,则( )
A.a>b>c B.b>c>a C.c>b>a D.c>a>b
方法二 函数的单调性比较法
使用情景 一般三角函数可以化成同名三角函数.
解题步骤 先利用三角函数诱导公式把它们化成同名三角函数,再利用三角函数的单调性解答.
【例2】 下列关系式中正确的是( )
A.000sin11sin168cos10 B.000sin168sin11cos10
C.000sin11cos10sin168 D.000sin168cos10sin11
【点评】由于要比较的对象只有正弦和余弦,所以可以通过诱导公式把它们统一化成正弦,再利用正
弦函数的单调性解答. 学.科.网
【反馈检测2】下列不等式中,正确的是( )
A. 74sin75sin B.)7tan(815tan C.)6sin()5sin( D. )49cos()53cos(
高中数学常见题型解法归纳及反馈检测第28讲:
三角函数值大小比较参考答案
【反馈检测1答案】C
【反馈检测2答案】B
【反馈检测2详细解析】函数xysin在区间]2,2[为单调递增函数,在区间]23,2[为单调递增函数,
由74sin75sin27475,由)6sin()5sin(65,故A,C错误;xytan在
区间]2,2[为单调递增函数,)8tan()82tan(815tan,
由)7tan()8tan(78,即)7tan()815tan(,故B 正确;
,052cos)53cos(53cos)53cos(
04cos)49cos(,所以有)49cos()53cos(
,故D错误,综上所述,选B.