锻造工艺方式方法

合集下载

锻造成型工艺介绍

锻造成型工艺介绍
T回=(0.25—0.3)T熔 使原子回复到正常排列,消除了晶格扭曲,使加工硬 化得到部分消除。
* 再结晶:
当加热温度T再: T再=0.4T熔 原子获得更多热能,开始的某些碎晶或杂质为核心 构成新晶粒,因为是通过形核和晶核长大方式进行 的,故称再结晶。
再结晶后清除了全部加工硬化。
再结晶后晶格类型不变,只改变晶粒外形。
上升, 而塑性、韧 性下降。 * 原因:滑移面附近的 晶粒碎晶块, 晶格扭曲畸变, 增大滑移阻力, 使滑移难以 进行。
● 3、金属的回复与再结晶 * 回复:
冷作硬化是一种不稳定的现象,具有自发恢复到稳定 状态的倾向。室温下不易实现。当提高温度时,原子 获得热能,热运动加剧,当加热温度T回(用K氏温标)
●加工硬化的利用、消除
*利用:冷加工后使材料强度↑硬度↑。如冷拉
钢,不能热处理强化的金属材料。
*消除:再结晶退火(P29)650—750℃
● 热变形对金属组织和性能的影响 冷变形和热变形 * 冷变形
在再结晶温度以下的变形; 冷变形后金属强度、硬度较高,低粗糙度值。但 变形程度不宜过大,否则易裂。 * 热变形 再结晶温度以上变形。 变形具有强化作用,再结晶具有强化消除作用。在热变 形时无加工硬化痕迹。 金属压力加工大多属热变形,具有再结晶组织。
模膛 飞边槽
锤头
上模
分模面,parting plane 下模
模垫
⑵ 制坯模膛 * i) 拔长模膛 增加某一部分长度。 ii)滚压模膛 减小某部分横截面积,以增大另一部分横截面积,坯料长度基本
不变。 切断金属。
此外还有成型模镗,镦粗台, 击扁面等制坯模镗。
在设计和制造零件时,应使最大正应力的方向于纤维 方向重合,最大切应力的方向于纤维方向垂直。尽量 使纤维组织不被切断。

中国传统锻造工艺

中国传统锻造工艺

中国传统锻造工艺中国传统锻造工艺,是一门古老而独特的技艺,它源远流长,历经千年,至今仍然被广泛应用于各行各业,其中最具代表性的当属黄铜锻造、铁器锻造和铜器锻造三大类。

第一步,制作模具。

在锻造之前,需要先进行模具制作。

模具是锻造的重要工具,锻造产品的质量和形状都直接取决于模具的质量。

古代锻造匠人用精湛的技艺和匠心独具的灵感制作出美丽的模具,用这些模具锻造出的器具不仅美观实用,还富有文化内涵。

第二步,熔炼金属。

在进行铸造和锻造时,需要用到金属材料。

古代锻造匠人使用木炭火加热金属,使金属熔化,然后倒入模具中铸造或锻造成所需形状。

这种方法虽然比较原始,但在一定程度上保证了金属的质量和纯度。

第三步,锻造加工。

当金属熔炼后,锻造匠人将其倒入锻造工具中,用锤子、铁锤等工具,将金属不断敲打、伸展,将其成形,制作出各种器具。

这一环节是锻造的核心,古代锻造匠人在这一过程中需要经过数年的磨练才能掌握。

第四步,表面精加工。

经过锻造的金属器具,表面通常会出现各种瑕疵和凹凸不平的地方,需要进行精加工。

古代锻造匠人利用磨刀石、打磨工具等,将器具表面进行抛光、打磨,使其表面光滑,美观。

中国传统锻造工艺在历史长河中扮演着重要的角色。

对于现代人来说,虽然传统锻造已经被现代工艺所代替,但古代锻造匠人留下的精湛技艺和匠心独具的艺术作品,都值得我们去品味和欣赏。

同时,传统锻造工艺无论是在材料的选择、工具的制作以及工艺的流程等方面,都有其固有的优越性,我们应该尝试将其和现代工艺结合,不断创新和发展,让它在现代社会中得到更加广泛的应用和发扬光大。

第二章锻造

第二章锻造
滚压操作时需不断翻转坯料,但不作送进运动。
弯曲模膛:对于弯曲的杆类模锻件,需采用弯 曲模膛来弯曲坯料。坯料可直接或先经其它 制坯工步后放入弯曲模膛进行弯曲变形。
切断模膛:它是在上模与下模的角部组成的一 对刃口,用来切断金属。单件锻造时,用它 从坯料上切下锻件或从锻件上切下钳口;多 件锻造时,用它来分离成单个锻件。
4.模锻圆角半径
模锻圆角:指模锻件中断面形状和平面形状变
化部位棱角的圆角和拐角处的圆角。
作用:圆角结构可使金属易于充满模膛,避免锻
模的尖角处产生裂纹,减缓锻件外尖角处的磨损, 从而提高锻模的使用寿命。同时可增大锻件的强 度。
大小:模锻件外圆角半径(r)取1.5~12mm,内
圆角半径(R)比外圆角半径大 2~3倍。模膛越深 圆角半径的取值就越大。
二、坯料重量和尺寸的确定
坯料重量可按下式计算:
G坯料=G锻件+G烧损+G料头
式中:G坯料——坯料重量; G锻件——锻件重量; G烧损——加热中坯料ቤተ መጻሕፍቲ ባይዱ面因氧化而烧损的重量; 第一次加热取被加热金属重量的2%~3%; 以后各次加热的烧损量取1.5%~2.0%。 G料头——锻造过程中冲掉或被切掉的那部分金属
第4二.2节锻锻造造
锻造:在加压设备及工具作用下,使坯料、 铸锭产生局部或全部的塑性变形,以获得 一定尺寸、形状和质量的锻件的加工方法。
第一节 锻造方法
一、自由锻
定义:指用简单的通用工具,或在锻造设备的上
下砧间直接使坯料变形而获得所需的几何形状及 内部质量锻件的方法。
设备:
锻锤 中小型锻件 液压锤 大型件
适用范围:大批量生产中锻制中小型锻件。
优点:锻件精度高、生产率高、劳动条件好、节

大锻件的锻造工艺

大锻件的锻造工艺

大锻件的锻造工艺大锻件通常由大铸锭直接锻压成形。

大铸锭内部通常存在严重的偏析、缩孔、夹杂与晶粒粗大等铸造缺陷,且随着大锻件的规格不断增大,铸造缺陷越来越严重。

因此,改形与改性是大锻件锻造的两大关键任务。

大锻件一般采用自由锻成形。

根据锻造方式的不同,大锻件的自由锻工艺分为镦粗和拔长两类。

镦粗镦粗是使坯料高度减小、横截面积增加的锻造工艺。

除了饼类锻件的成形主要应用镦粗工序之外,许多重要轴类锻件的成形也常采用镦粗工序。

镦粗的主要目的是增大坯料横截面积,提高拔长的锻造比,改善锻件的横向力学性能和减少力学性能的异向性。

镦粗方法有普通平砧镦粗、凹形砧镦粗、锥形板镦粗与M形板镦粗等。

Array 1.普通平砧镦粗普通平砧面镦粗是最早采用的镦粗工艺。

传统的理论认为,镦粗过程中锻件中心点处于三向压应力状态,镦粗有利于压实心部孔隙缺陷,且不会在心部产生新的裂纹缺陷。

但是在实际生产中却发现,大型饼类锻件在经历大变形量的普通平砧镦粗工艺后,超声波探伤不合格率仍较高,主要原因是其内部出现横向裂纹缺陷。

显然,普通平站镦粗过程中锻件中心部位并不是一直处于三向压应力状态。

为此,从主动和被动塑形变形区等概念出发,于20世纪90年代初提出了普通平站镦粗圆柱体的两个新理论——刚塑性力学模型的拉应力理论和静水应力力学模型的切应力理论。

采用有限元数值模拟的方法,定量地分析了普通平站徽粗过程中圆柱体中心点部位应力场的演变规律,结果表明,原始高径比大于1.6的圆柱体毛坯中心点在镦粗过程中出现了两向拉应力状态,随着压下率的增大,圆柱体毛坯中心点的拉应力先增大后减小,并达到临界压下率时拉应力转变为压应力,且该临界压下率随着原始高径比的减小而减小。

对于原始髙径比为2.33 的圆柱体而言,该临界压下率为35%,对应的锻件瞬时高径比为1.129。

因此,开坯时,压下率应该大于40%,但是每次压下率应该在材料容许的塑性范围之内。

所以,圆柱体毛坯的原始高径比最好为2〜2. 2。

常用的锻造方法

常用的锻造方法

2武20汉20理/1工0/1大6学金工学部
2武30汉20理/1工0/1大6学金工学部 确定模锻件的机械加工余量及公差 机械加工余量一般为1~4 mm, 锻造公差一般取在±0.3~3 mm之间。
标注模锻斜度 当模膛宽度b小而深度h大时,
模锻斜度要取大些。内壁斜度要略大 于外壁斜度(a 2> a 1)。
2武0汉20理/1工0/1大6学金工学部
3.3.3.1 模锻件图的制定
选择模锻件的分模面
分模面即是上下锻模在模锻件上的分界面。 制订模锻锻件图时,必须按以下原则确定分模面位置: ➢要保证模锻件能从模膛中取出,分模面应选在模锻件最大 尺寸的截面上。 ➢按选定的分模面制成锻模后,应使上下两模沿分模面的模 膛轮廓一致,以便在安装锻模和生产中容易发现错模现象, 及时调整锻模位置。 ➢最好把分模面选在模膛深度最浅的位置处。这样可使金属 很容易充满模膛,便于取出锻件,并有利于锻模的制造。 ➢选定的分模面应使零件上所加的敷料最少。 ➢最好使分模面为一个平面,使上下锻模的模膛深度基本一 致,差别不宜过大,以便于制造锻模。
当镦粗的高径比 H / D > 2.5~3 时:
拔长:使坯料横截面面积减小,长度增加的锻造工序。适用于锻制长
轴类工件。拔长时将坯料沿轴向送进连续锻压,一次变形量为: 3/4方坯边长或0.4-0.8砧宽
规则:拔长矩形坯料时,要不断将坯料翻转90°,以免偏心与弯曲;
拔长园形坯料时,最好使用V形垫铁。
2武60汉20理/1工0/1大6学金工学部
弯曲模结构示意图
2武160汉20理/1工0/1大6学金工学部
3.3.2.2 固定模膛成型工艺的分类及设备
固定模膛成型工艺主要分为 锤上模膛成型工艺和压力机上模 膛成型工艺。

锻造生产工艺

锻造生产工艺

锻造生产工艺锻造是金属加工中常用的一种方法,其主要通过对金属材料施加压力使其改变原始形状来达到加工的目的。

锻造工艺可以提高金属材料的强度和硬度,改善材料的内部结构和性能,因此被广泛应用于各个工业领域。

锻造生产工艺一般分为冷锻和热锻两种,根据金属材料和产品要求的不同,选择不同的锻造工艺来进行加工。

冷锻是指在室温下进行锻造的工艺。

其主要适用于大多数非铁金属和铸铁材料的加工,可以通过冷锻将材料加工成各种形状的零件和产品。

冷锻一般分为自动冷锤锻和轻型冷锤锻两种。

自动冷锤锻是利用冷锤机进行的锻造过程。

冷锤机通过连续的快速锤击,使金属材料在受到压力的作用下发生塑性变形,从而形成所需的形状。

自动冷锤锻具有生产效率高、产品质量好的特点,适用于大批量生产。

轻型冷锤锻是通过手工操作的锻造过程。

工人根据产品要求和图纸,在冷锤机辅助下对金属材料进行锻造加工。

轻型冷锤锻适用于小批量生产和个性化定制,能够满足各种复杂形状和高精度的产品要求。

热锻是指在高温条件下进行锻造的工艺。

通过加热金属材料,使其变得柔软和可塑性,并在高温下进行锻造加工。

热锻常用于锻造一些复杂形状和大尺寸的零件和产品,可以大幅提高材料的塑性和流动性。

热锻通常分为自由锻造和模锻两种。

自由锻造是通过自由锻造机来进行的。

自由锻造机利用自由锻锤的重锤和高速下落的力量,对金属材料进行锻造加工。

自由锻造适用于中小型零件的生产,可以满足不同形状和尺寸的产品需求。

模锻是通过在模具中进行锻造加工的工艺。

模锻适用于需要更高精度和质量的产品制造。

通过模锻,可以获得更好的形状和尺寸控制,提高产品的精确度和一致性。

无论是冷锻还是热锻工艺,在进行锻造加工前,都需要对金属材料进行预热处理,以消除应力、改善材料的塑性和可锻性。

预热处理能够提高锻造效果和产品质量,减少不良变形和裂纹的产生。

总之,锻造生产工艺是一种重要的金属加工方法,可以改善材料的性能和结构,满足不同形状和规格的产品需求。

通过选择适当的锻造工艺和合理的预热处理,可以获得高质量的锻造产品,提高生产效率和产品竞争力。

锻造工艺介绍

锻造工艺介绍锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形,以获得具有一定机械性能、一定形状和尺寸的锻件的加工方法。

锻造和冲压同属塑性加工性质,统称锻压。

锻造是机械制造中常用的成形方法。

通过锻造能消除金属的铸态疏松、焊合孔洞,锻件的机械性能一般优于同样材料的铸件。

机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。

锻造按坯料在加工时的温度可分为冷锻和热锻。

冷锻一般是在室温下加工,热锻是在高于坯料金属的再结晶温度上加工。

有时还将处于加热状态,但温度不超过再结晶温度时进行的锻造称为温锻。

不过这种划分在生产中并不完全统一。

钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

锻造按成形方法则可分为自由锻、模锻、冷镦、径向锻造、挤压、成形轧制、辊锻、辗扩等。

坯料在压力下产生的变形基本不受外部限制的称自由锻,也称开式锻造;其他锻造方法的坯料变形都受到模具的限制,称为闭模式锻造。

成形轧制、辊锻、辗扩等的成形工具与坯料之间有相对的旋转运动,对坯料进行逐点、渐近的加压和成形,故又称为旋转锻造。

锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金。

材料的原始状态有棒料、铸锭、金属粉末和液态金属。

一般的中小型锻件都用圆形或方形棒料作为坯料。

棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。

只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。

铸锭仅用于大型锻件。

铸锭是铸态组织,有较大的柱状晶和疏松的中心。

因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。

经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。

锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。

锻造工艺过程

锻造工艺过程锻造,这一古老而又充满活力的金属加工工艺,在现代工业中依然占据着举足轻重的地位。

它是通过对金属材料施加压力,利用其塑性变形,以获得所需形状和尺寸的工件。

锻造工艺不仅能够改善金属的内部组织,提高其力学性能,而且能够生产出其他工艺难以成形的复杂零件。

下面,我们将详细探讨锻造工艺的整个过程。

一、锻造前的准备锻造前的准备工作至关重要,它直接影响到后续工艺的顺利进行和工件的质量。

首先,需要根据产品的要求选择合适的原材料。

不同的金属材料具有不同的塑性、强度和硬度,因此选择合适的材料是确保锻造成功的第一步。

其次,对原材料进行预处理,如去除表面氧化皮、切割成合适的大小和形状等。

预处理的目的是为了提高材料的塑性和减少锻造过程中的缺陷。

二、加热加热是锻造过程中不可或缺的一环。

通过加热,金属材料的塑性得到提高,变形抗力降低,从而更容易在锻造力的作用下发生塑性变形。

加热温度的控制非常关键,过高的温度可能导致金属过烧,过低的温度则可能使金属塑性不足。

因此,需要根据金属的种类和锻造要求,精确控制加热温度和时间。

三、锻造锻造是整个工艺过程的核心环节。

在这一步骤中,加热后的金属材料被放置在锻压设备的模具之间,通过施加压力使其发生塑性变形。

锻造过程中,金属材料的晶粒被细化,内部组织得到改善,力学性能得到提高。

同时,通过合理的模具设计和锻造工艺参数的选择,可以获得所需的形状和尺寸的工件。

四、冷却锻造完成后,工件需要进行冷却处理。

冷却的目的是使工件在保持锻造形状的同时,降低其温度,以便于后续的加工和处理。

冷却速度的控制同样重要,过快的冷却速度可能导致工件内部产生应力,从而影响其力学性能和使用寿命。

因此,需要根据金属的种类和工件的要求,选择合适的冷却方法和冷却速度。

五、热处理热处理是锻造工艺中的重要补充环节。

通过对工件进行加热、保温和冷却等操作,可以进一步调整其内部组织,提高其力学性能和耐腐蚀性能。

热处理的种类很多,如退火、正火、淬火和回火等,每种热处理方法都有其特定的目的和应用范围。

锻造件产品加工工艺简介

锻造件产品加工工艺简介# [锻造件产品加工工艺简介]## 1. 锻造工艺的历史:从古老技艺到现代工业的基石其实啊,锻造工艺的历史那可真是源远流长,就像一条古老而奔腾不息的河流。

早在几千年前,当人类还处于文明的萌芽期,锻造就已经悄然诞生了。

那时候的人们发现,通过加热金属,然后用锤子敲打,可以把金属变成自己想要的形状。

比如说,原始人制作简单的箭头或者刀具,他们把从矿石中提炼出来的铜或者铁,放在火里烧得通红,然后用石头或者简单的金属锤子敲打。

这就像是在给金属做一次“整形手术”,让它从一块粗糙的原料变成了有用的工具。

随着时间的推移,到了古代文明昌盛的时期,像古希腊、古罗马和中国的古代王朝,锻造工艺更是有了长足的发展。

铁匠们成为了城镇中不可或缺的手艺人。

他们能够打造出精美的兵器,像中国古代的宝剑,那可是经过无数次的锻造和锤炼才打造出来的。

据说,有的宝剑在锻造过程中要反复折叠锻打,就像我们揉面一样,把面一层一层叠起来再揉,这样做出来的宝剑不仅锋利无比,而且还很坚韧。

到了工业革命时期,锻造工艺迎来了巨大的变革。

机械开始逐渐取代人力,大型的锻造设备被发明出来。

以前靠铁匠一锤一锤敲打的小作坊式生产,逐渐演变成了大规模的工厂化生产。

火车的车轮、大型机械的零部件等都开始通过锻造工艺来制造。

可以说,锻造工艺从古老的手工艺,一步步发展成为现代工业生产的重要组成部分,就像一个从农村走进大城市打拼并取得巨大成功的人一样。

## 1.1 古代锻造工艺的独特魅力古代的锻造工艺虽然没有现在这么先进的设备,但却有着独特的魅力。

那时候的铁匠们凭借着自己的经验和精湛的技艺,创造出了许多令人惊叹的作品。

就拿欧洲中世纪的骑士盔甲来说吧,这可是铁匠们的杰作。

他们要根据骑士的身材,一块一块地锻造出盔甲的各个部分,然后再精心地组装起来。

这个过程就像是制作一件超级精致的拼图,每一块都必须严丝合缝。

而且,为了让盔甲既坚固又轻便,铁匠们会在锻造过程中巧妙地控制金属的厚度和纹理。

锻造工艺介绍

锻造工艺介绍锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形,以获得具有一定机械性能、一定形状和尺寸的锻件的加工方法。

锻造和冲压同属塑性加工性质,统称锻压。

锻造是机械制造中常用的成形方法。

通过锻造能消除金属的铸态疏松、焊合孔洞,锻件的机械性能一般优于同样材料的铸件。

机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。

锻造按坯料在加工时的温度可分为冷锻和热锻。

冷锻一般是在室温下加工,热锻是在高于坯料金属的再结晶温度上加工。

有时还将处于加热状态,但温度不超过再结晶温度时进行的锻造称为温锻。

不过这种划分在生产中并不完全统一。

钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

锻造按成形方法则可分为自由锻、模锻、冷镦、径向锻造、挤压、成形轧制、辊锻、辗扩等。

坯料在压力下产生的变形基本不受外部限制的称自由锻,也称开式锻造;其他锻造方法的坯料变形都受到模具的限制,称为闭模式锻造。

成形轧制、辊锻、辗扩等的成形工具与坯料之间有相对的旋转运动,对坯料进行逐点、渐近的加压和成形,故又称为旋转锻造。

锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金。

材料的原始状态有棒料、铸锭、金属粉末和液态金属。

一般的中小型锻件都用圆形或方形棒料作为坯料。

棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。

只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。

铸锭仅用于大型锻件。

铸锭是铸态组织,有较大的柱状晶和疏松的中心。

因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。

经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。

锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锻造工艺方式方法
锻造是一种通过加热金属材料后进行塑性变形的工艺,其目的是获得所需的形状和尺寸,并提高材料的机械性能。

在锻造过程中,金属材料通常会被加热至其塑性温度以上,然后施加外力来改变其形状。

锻造工艺方式和方法主要包括锤击锻造、压力锻造、转矩锻造和挤压锻造等。

锤击锻造是一种传统的锻造工艺,它利用锻锤对金属材料进行变形。

在锤击锻造中,金属材料被加热至适当温度后,放置在锻锤工作台上,锻锤将其重复击打以改变其形状。

这种方式适用于制造较大、较重的金属零件,如汽车发动机曲轴。

压力锻造是一种利用机械压力对金属材料进行塑性变形的工艺。

它通常使用液压机或机械压力机,将金属材料放置在工作台上,施加压力来改变其形状。

压力锻造可以用于制造各种形状和尺寸的金属零件,如齿轮、连杆等。

转矩锻造是一种应用于锻造大型轴类零件的方法。

它是通过将金属材料夹持在一对旋转的杆件之间,然后施加扭矩来使其塑性变形。

这种方式可以制造出大直径的轴类零件,如风电机组主轴。

挤压锻造是一种在两个模具之间通过压力使金属材料挤压成为所需形状的工艺。

这种方式适用于制造复杂形状的零件,如铁路轨枕等。

在锻造过程中,还可以使用不同的锻造技术,如冷锻、热锻和等温锻造。

冷锻是在室温下进行的锻造,适用于低碳钢和合金钢等强韧性较好的材料。

热锻是在高温下进行的锻造,可以增强金属材料的塑性,适用于锻造高碳钢和不锈钢等材料。

等温锻造是在材料到达准确的温度后进行的锻造,以确保材料在整个锻造过程中保持稳定的温度。

总而言之,锻造工艺方式和方法根据金属材料的要求和所需零件的形状尺寸的不同而选择,通过锤击、压力、转矩和挤压等方式塑性变形金属材料,从而制造出高强度、高精度的金属零件。

相关文档
最新文档