大学物理上册作业详细答案
大学物理教程(上)课后习题答案解析

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。
解:(1)由运动方程消去时间t 可得轨迹方程,将t =21)y =或1=(2)将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+= (3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。
求(1)质点的速度;(2)速率的变化率。
解 (1)质点的速度为sin cos d rv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。
求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。
解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。
大学物理第五版上册习题集答案

当t = 3s时:v = 2.7 m s
由牛顿第二定律有:因为a = 0.3 + 0.4 x = v dv dx
所以:(0.3 + 0.4x)dx = v ⋅ dv
x
v
∫ (0.3 + 0.4x)dx = ∫ v ⋅ dv
0
0
得: v = 0.6x + 0.4x2 ⇒ v = 5 m s
10、答:(1) 设 A 射入 B 内,A 与 B 一起运动的初速率为v 0 ,则由动量守恒
∫ ∫ ∫ ∫ V=
R
r E1 ⋅ dr +
∞
R E2 ⋅ dr =
R Qr dr + r 4πε 0 R3
∞ Q ⋅ dr = Q(3R 2 − r 2 )
R 4πε 0r 2
8πε 0 R3
12、(1)解答:建立以 A 作为坐标原点,AB 作为 x 轴的坐标系,则由点电荷叠加原理
v dE
=
k
dq r2
2、[解答]圆盘对水平面的压力为 N = mg ,
压在水平面上的面积为 S = πR 2 ,压强为 p = N S = mg πR 2 .当圆盘滑动时,在盘上取 一 半 径 为 r 、 对 应 角 为 dθ 面 积 元 , 其 面 积 为 dS = rdθdr , 对 水 平 面 的 压 力 为 dN = pdS = prdrdθ ,所受的摩擦力为 df = μdN = μprdrdθ ,其方向与半径垂直,摩擦
ω = 6mv0 (M + 3m)l
4
9、[解答]子弹射入后系统的转动惯量为: J = 1 Ml 2 + m( 3 l)2 = 0.054
3
4
( 1 ) 子 弹 摄 入 过 程 中 系 统 角 动 量 守 恒 , 有 : mv( 3 l) = Jω 4
大学物理习题上册答案.doc

练习题参考答案第一章4 3y[31.1(1) —7im;(2) -------- c m/s o3 4〃1.2(1) 4 i —4tj m/s;— 4j m/s2 (2) 4 i —8 j m/s;— 4 j m/s2 (3) 4^/2 m/s1.3(1) r = (31+ 5)i + t2 + 31— m (2) Ar = 3 i + 3.5 j m (3) — A尹一一V = r = 3i + 5j(m・sT)Ar_ dr _ _ _ _(4)V= —= 3f + (f + 3)7(m-s^); 3i + 5j(m・sT)drdV(5) a =——=j(m-s 2) a2 = j(m-s 2)dt1.4(1) y = 2-x2/9 (2) r=6i-2j(SI); v=3i -4j(SI); a=-2j (SI)1.5V2 a1.6(1)。
= A。
—® [(月之一口2)cos 仞+ 2伽sin 仞];(2)『=(2〃 + 1)〃/2刃,(〃 =0, 1, 2 ..............)” 1如之11.7一 = --- 1----v 2 v Q1.8v = 16 -2x21.9(1) 17.2m/s, 51.6m/s; (2) 23.0m/s1.100.91.11 5.76m1.12后 s1.13证:两个物体在任意时刻的速度为v A = v0 cos ai + (y0 sin a- gt)j v B = v0 cos /3i + (y0 sin/? - gt)jA V BA=VB ~V A wOoCOS^ — VoCOScOj + QoSinK — VoSina)/与时间无关,故8相对物体A的速度是常矢量。
JR2b2 +(v0 -bt)4 F (v0 - At, "I v01.15(1)。
= -------- -- ——,e = arctg — ------ )一;(2)t = —(3)〃:R \_ Rb \ b1.16(1)%=2.30xIO?"技,劣=4.80m • L , (2)。
大学物理上学习指导作业参考答案

m1
解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力
T
.设
m2
相对地面的加速度为
a
2
,取向上为正;m1
相对地面的加速
度为 a1(即绳子的加速度),取向下为正.
1分
解得
m1g T m1a1
T m2 g m2a2
a2 a1 a2
a1
(m1
m2 )g m1 m2
m2a2
T (2g a2 )m1m2 m1 m2
解: 设人到船之间绳的长度为 l ,此时绳与水面成 角,由图可知
l2 h2 s2
将上式对时间 t 求导,得 2l dl 2s ds dt dt
题 1-4 图
根据速度的定义,并注意到 l , s 是随 t 减少的,
∴
v绳
dl dt
ห้องสมุดไป่ตู้
v0 , v船
ds dt
即
v船
ds dt
l s
dl dt
l s
EKB=
1 2
mv
2 x
1 2
mv
2 y
1 2
ma 2 2
2分
(2) F maxi may j = ma 2 cos t i mb 2 sin t j
2分
由 A→B
Wx
0 a
Fx dx
y2=h+v2y
t2-
1 2
gt
2 2
3分 ⑤
⑥
落地时 y2 =0,可得
t2 =4 s , t2=-1 s(舍去)
故
x2=5000 m
3分
l
v0
v
m M
4、质量为 M=1.5 kg 的物体,用一根长为 l=1.25 m 的细绳悬挂在天花板 上.今有一质量为 m=10 g 的子弹以 v0=500 m/s 的水平速度射穿物体,刚穿出
(配合教材上册)大学物理学课后作业与自测题参考答案与部分解析

dt dx dt
dx
K
0
v0 K
K
答案 (1)3°36′;(2)0.078
解析 (1)轮胎不受路面左右方向的力,而法向力应在水平方向上.
因而有 Nsin θ=mv21,Ncos θ=mg,所以 tan θ= v21 ,代入数据可得θ=3°36′.
R
Rg
(2)当有横向运动趋势时,轮胎与地面间有摩擦力,最大值为μN′,这里 N′为该时刻地面对车的支
Rcot α. at
(2)S=1att2=1Rcot α. 22
2-4 2-5
答案
R-b cc
解析 v=s′=b+ct,at=c,an=vR2=(b+Rct)2,令 at=an,得 t=
R-b. cc
答案 北偏东 19.4°,170 km/h
解析 设下标 A 指飞机,F 指空气,E 指地面,由题可知:
v0 v
0
作业 2
ABBCF
2-2
(1)gsin θ;gcos θ;(2)-g;2 3v2;(3)v0+bt; 2 3g
b2+(v0+bt)4;(4)1ct3;2ct;c2t4;(5)69.8 m/s
R2
3
R
2-3 答案 (1) Rcot α;(2)1Rcot α
at
2
解析 (1)物体的总加速度 a 为 a=at+an,tan α=aant=(aattt)2=aRtt2,t= R
解析 (1)dx=vdt,dx=vdt=v,adx=vdv, adx = vdv , (-kx)dx = vdv ,-1kx2=1v2+C,因
dv dv a
22
为质点静止于 x=x0,所以 C=-1kx20,所以 v=± k(x20-x2). 2
大学物理课后习题答案(上册)

由受力分析图可知:
所以当所以 增大,小球对木板的压力为N2将减小;
同时:
所以 增大,小球对墙壁的压力 也减小。
2-2. 质量分别为m1和m2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度aA和aB分别为多少?
解:(1)轨道方程为
这是一条空间螺旋线。
在O 平面上的投影为圆心在原点,半径为R的圆,螺距为h
(2)
(3)
思考题1
1-1. 质点作曲线运动,其瞬时速度为 ,瞬时速率为 ,平均速度为 ,平均速率为 ,则它们之间的下列四种关系中哪一种是正确的?
(1) ;(2) ;(3) ;(4)
答: (3)
1-2. 质点的 关系如图,图中 , , 三条线表示三个速度不同的运动.问它们属于什么类型的运动?哪一个速度大?哪一个速度小?
解:在绳子中距离转轴为r处取一小段绳子,假设其质量为dm,可知: ,分析这dm的绳子的受力情况,因为它做的是圆周运动,所以我们可列出: 。
距转轴为r处绳中的张力T(r)将提供的是r以外的绳子转动的向心力,所以两边积分:
2-3. 已知一质量为 的质点在 轴上运动,质点只受到指向原点的引力作用,引力大小与质点离原点的距离 的平方成反比,即 , 是比例常数.设质点在 时的速度为零,求质点在 处的速度的大小。
解:由题意和牛顿第二定律可得:
再采取分离变量法可得: ,
两边同时取积分,则:
所以:
2-4. 一质量为 的质点,在 平面上运动,受到外力 (SI)的作用, 时,它的初速度为 (SI),求 时质点的速度及受到的法向力 .
大学物理上册课后习题集答案解析
习题解答 习题一1-1 |r D |与r D 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r D 是位移的模,D r 是位矢的模的增量,即r D 12r r -=,12r r r-=D ;(2)t d d r 是速度的模,即t d d r ==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r += 式中trd d 就是速度径向上的分量,∴trt d d d d 与r 不同如题1-1图所示. 题1-1图(3)t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量. ∵有t t(v =v 表轨道节线方向单位矢),所以t vt v t v d d d d d d tt += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd t 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d t r而求得结果;又有人先计算速度和加速度的分v =22d d d d ÷øöçèæ+÷øöçèæt y t x 及a =222222d d d d ÷÷øöççèæ+÷÷øöççèæt y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=, jt y i t xt r a j t y i t x t r v222222d d d d d d dd d d d d +==+==\ 故它们的模即为22222222222222d d d d d d d d ÷øöçèæ+÷øöçèæ=+=÷øöçèæ+÷øöçèæ=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
大学物理上册-课后习题答案全解
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13= 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23= 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2+ 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= (m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = (m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = (s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02= 2a s ,可得上升的最大高度为:h 1 = v y 02/2g = (m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = (m).根据自由落体运动公式s = gt 2/2,得下落的时间为:= (s). 因此人飞越的时间为:t = t 1 + t 2 = (s).人飞越的水平速度为;v x 0 = v 0cos θ = (m·s -1), 所以矿坑的宽度为:x = v x 0t = (m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = (m·s -1),落地速度为:v = (v x 2 + v y 2)1/2 = (m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程图,解得:.这里y = -70m,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= (s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v/d t = -kv2,k为常数.(1)试证在关闭发动机后,船在t时刻的速度大小为;(2)试证在时间t内,船行驶的距离为.[证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t,所以:积分.因此.证毕.[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.由于a = d2x/d t2,而 d x/d t = v,a = d v/d t,分离变数得方程:,解方程即可求解.在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则d v/d t = -kv n.(1)如果n = 1,则得,积分得ln v = -kt + C.当t = 0时,v = v0,所以C = ln v0,因此ln v/v0 = -kt,得速度为:v = v0e-kt.而d v = v0e-kt d t,积分得:.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.如果n≠2,可得,读者不妨自证.1.5 一质点沿半径为的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t3.求:(1)t = 2s时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答](1)角速度为ω = dθ/d t = 12t2= 48(rad·s-1),法向加速度为a n= rω2= (m·s-2);角加速度为β = dω/d t = 24t= 48(rad·s-2),切向加速度为a t= rβ = (m·s-2).(2)总加速度为a = (a t2 + a n2)1/2,当a t = a/2时,有4a t2 = a t2 + a n2,即.由此得,即,解得.所以 =(rad).(3)当a t = a n时,可得rβ= rω2,即: 24t = (12t2)2,解得:t = (1/6)1/3 = (s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α.运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s). 将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 内下降的距离h = .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于,所以a t = 2h /Δt 2 = (m·s -2).物体下降3s 末的速度为v = a t t = (m·s -1),这也是边缘的线速度,因此法向加速度为= (m·s -2).1.8 一升降机以加速度·s -2上升,当上升速度为·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= (s).算得h 2 = ,即螺帽相对于升降机外固定柱子的下降距离为.[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为. [证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为 .(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为. 证毕.图A B AB v v + uv - u A Bv u u vv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕.方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = ,静摩擦因素为μs = .求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = (N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = (N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = (N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为图1h lα图 mf =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = (N).因此要将板从物体下面抽出,至少需要的力.2.3 如图所示:已知F = 4N ,m 1 = ,m 2 = ,两物体与水平面的的摩擦因素匀为.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = (m·s -2),绳对它的拉力为= (N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 ,即:. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2, 因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动; (2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ是mb cos φ,邻边是mg + mb sin φ,由此可得: , 12图 2 图 (2)因此角度为; 而张力为 .(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =的小球,拴在长度l =的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为 , 因此 , 即 v d v = -gl sin θd θ, (1) 取积分 , 得 ,解得:= (m·s -1). 由于:, 所以T B = 2mg = (N). (2)由(1)式积分得 ,当 θ = 60º时,v C = 0,所以C = -lg /2, 因此速度为.切向加速度为a t = g sin θ;法向加速度为 .由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= (m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = (N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.由于,所以,图图因此v d v = g cosθd s= g d h,h表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为.2.8质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x– 1/x0)/m]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mv d v = f(x)d x,积分即可求解.如果f(x) = -k/x n,则得.(1)当n = 1时,可得利用初始条件x = x0时,v = 0,所以C = ln x0,因此,即.(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:(1)小球速率随时间的变化关系v(t);(2)小球上升到最大高度所花的时间T.[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤:由于v = d x/d t,所以,即,积分得,当t = 0时,x = 0,所以,因此 .(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为 ,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : .积分得:.当t = 0时,v = v 0,所以, 因此 .解得 .由于 , 积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得 .(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,积分得冲量为 , 方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt , 设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,图小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:.因此向心力给予小球的的冲量大小为= (N·s). [注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力 F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为,求球受到的平均冲力?[解答]球上升初速度为= 14(m·s -1),其速度的增量为= (m·s -1).棒给球冲量为I = m Δv = (N·s),对球的作用力为(不计重力):F = I/t = (N). 2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2). 根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;= (s).此时B 的速度大小为:v = at = 2(m·s -1).v x Δv v y物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = (m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得, 所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为. 摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即 , 或者 . 拉力的功元为:, 拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2,末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得: .图由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g ,根据公式v t 2 – v o 2= 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理规范作业上册答案全
a 16 2m / s
2
7
2.一艘行驶的快艇,在发动机关闭后,有一个与它的速
度方向相反的加速度,其大小与它的速度平方成正
比, 后行驶速度与行驶距离的关系。 解: 作一个变量代换
dv kv 2 ,式中k为正常数,求快艇在关闭发动机 dt
dv dv dx dv a kv v dt dx dt dx dv dv 得 : kv 到 kdx v dx
0.5tdt 3J 2 或 v2 5i 2 j , v4 5i 4 j 1 2 2 A Ek m(v4 v2 ) 3 J 2
4
18
2. 竖直悬挂的轻弹簧下端挂一质量为m的物体后弹簧伸 长y0且处于平衡。若以物体的平衡位置为坐标原点,相 应状态为弹性势能和重力势能的零点,则物体在坐标为 y时系统弹性势能与重力势能之和是【 D 】 m gy mgy2 m gy0 m gy2 0 mgy m gy (A) (B) (C) 2 (D) 2 2 y0 2y
m 1 AG dAG L gydy m gL 32 4 L 1 A外 AG mgL 32
0
m dAG gydy L
22
三、计算题 2 1.一质点在力 F 2 y i 3xj (SI)的作用下,从原点0 出发,分别沿折线路径0ab和直线路径0b运动到b点,
小不变,受到向心力作用,力的方向时刻变化
物体运动一周后,速度方向和大小不变,动量
变化量为0,冲量为0
11
二、填空题 1 .一物体质量为10 kg,受到方向不变的力F=30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于 ________;若物体的初速度为10m·-1,方向与力方 s 140kg.m/s 24m/s 向相同,则在t =2s时物体速度的大小等于________。
大学物理上活页作业答案
Part
04
结论
总结答案解析
答案A解析
此答案详细解释了问题中涉及的 物理原理和公式,并给出了正确 的计算过程和结论。
答案D解析
此答案提供了与问题相关的实际 应用案例,帮助学生更好地理解 物理原理和概念。
答案B解析
此答案提供了另一种解题思路, 通过不同的公式和计算方法得出 了正确的答案。
答案C解析
总结词
分析物理过程,选择合适的物理模型
详细描述
对于涉及多个物理过程的问题,需要仔细分析每个过程的物理特点和相互关系。根据分析结果,选择 合适的物理模型进行描述和计算。在选择物理模型时,要注意模型的适用条件和局限性,确保其能够
正确反映物理过程。同时,要注意不同物理过程之间的联系和影响,以便更好地理解和解决问题。
作业目的
加深学生对物理学基本概 念和原理的理解,提高其 理论水平。
训练学生运用物理学知识解 决实际问题的能力,培养其 科学素养和实践能力。
通过习题的求解过程,培养 学生的逻辑思维和创造性思 维,提高其综合素质。
Part
02
作业题目及答案
题目一答案
总结词
理解基本概念
描述1
理解了牛顿第二定律的基本概念和应 用,能够正确分析物体的受力情况和 运动状态。
大学物理上活页作业 答案
• 引言 • 作业题目及答案 • 解题思路及解析 • 结论
目录
Part
01
引言
作业背景
大学物理是理工科专业的一门必修基础课程,旨在培养学生掌握物理学的基本原理、概 念和实验技能,为后续的专业课程学习打下基础。
活页作业是大学物理教学过程中的一个重要环节,旨在通过习题练习帮助学生巩固所学 知识,提高解题能力和思维水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2 时间、空间与运动学2.5已知质点沿x轴的运动方程x = f ( t), 怎样求其位移和路程?现有一质点按x= 3 t 2 - t 3 m 的规律运动。
试求:(1) 画出x—t图;(2) 最初4s 内的位移;(3) 最初4s 内的路程。
[分析与解答]在直线运动中,当确定了坐标x的正方向后,位移可由始、末两点的坐标之差来计算,即,其数值只与始末位置有关,并且可以是正值(位移与x轴正方向相同),也可以是负值(位移方向与x轴正方向相反);而路程是质点所走过路径的长度,它不仅与始末位置有关,而且与实际路径有关,并且总是正值。
一般来说只有在单向直线运动中(无反向点)两者数值相同,但在有反向的直线运动中,两者数值就不相同了。
(1)各时刻的数值如表所示。
则x—t曲线如题2.5图所示。
(2)最初4s是指从t=0到t=4s的时间间隔,其位移为式中负号表示位移的方向与x轴正方向相反。
若写成矢量式为(3)求路程时,应首先看有无速度反向点,若有,应求出速度反向的时刻和位置。
由令v=0,得t=2s,此时刻 v=0,a=-12,即为反向点。
此时的位置。
则最初4s内的路程由以上计算表明:位移与路程是两个不同的概念。
2.9通过阅读、研究本章例题, 小结一下求解平均速度与瞬时速度的方法。
今有一质点沿y 轴的运动方程为y = 10 - 5 t2 m, 试求:( 1) 1s~1.1s,1s~1.01s,1s~1.000 01s 各时间间隔的平均速度;( 2) 当t = 1s 时的速度;( 3) 通过上述计算, 如何领会瞬时速度和平均速度的关系与区别?( 4) 求t = 1s 时的加速度, 并分析该质点的运动情况;( 5) 本题能不能用来计算平均速度? 为什么?[分析与解答]:(1)按平均速度的定义,因此,欲求,必须求出。
为此,设时刻①时刻②两式相减,得③故平均速度为④则各时间间隔内的平均速度分别为(负号表示沿-j方向)(2)由题意,,故由时的速度为(方向沿方向)或(3)通过以上计算,可知平均速度与时间间隔有关,不同的时间段内的平均速度是不同的,但当时间间隔越小时,平均速度就越趋近于瞬时速度。
(4)同理可求出时的加速度为或由加速度和速度表达式可知:加速度是恒为负常数,在的情况下,速度值也恒为负值,且时,因此该质点从处由静止开始沿轴负方向作匀加速直线运动。
(5)平均速度只适用于匀变速直线运动(即为常数),若不等于常数,就不能用此式来计算平均速度了。
2.11一质点在xOy平面上运动,运动方程为x = 5 t + 3,,式中t以s 计,x、y以m计。
(1) 以时间t为变量, 写出质点位置矢量的表示式;(2) 描画质点的运动轨迹;(3) 求出t = 1s 时刻和t = 2s 时刻的位置矢量和这段时间内质点的位移;(4) 求出质点速度的分量表示式, 计算t = 4s 时质点速度的大小和方向;(5) 求出质点加速度的分量表示式,计算t=4s 时质点加速度的大小和方向。
[分析与解答](1) m(2)轨迹方程为(3) m; m;m的(4)则t=4s时,(5)则t=4s时,(沿y轴正方向)2.16一张CD光盘音轨区域的内半径= 2.2cm,外半径为= 5.6cm,径向音轨密度为n= 650条/mm。
在CD唱机内,光盘每转一圈,激光头沿径向向外移动(扫描)一条音轨,激光束相对于光盘是以v =1.3m/s 的恒定速率运动的。
试问:(1) 这张光盘的全部放音时间是多少?(2) 当激光束到达离盘心r = 5cm 处时, 光盘转动的角速度和角加速度各是多少?[分析与解答] (1)光盘上的音轨是一条间距很小的螺旋线(即阿基米德螺线)。
为此,求其总长度时,可先求距光盘中心为r,宽度为dr内的音轨长度dl,即激光束扫过dl所需时间dt为故光盘的全部放音时间t为(2)由得r=5.0cm处的为2.18一水手在静水中能以v = 1.10m/s 的速度划船前进。
今欲横渡一条宽为1000m, 水流速度u =0.55m/s 的长江河段。
试问:(1) 他若要从出发点A 横渡, 并到达正对岸的B 点, 他应如何确定划行方向? 到达正对岸需要多少时间?(2) 在划速不变的情况下, 如果希望用最短的时间过江, 他应如何确定划行方向? 船到达对岸的位置在何处?[分析与解答](1)根据题设条件,选船为研究对象(物),岸为静止参考系S,水为动参考系. 船对岸的绝对速度船为,水对岸的牵连速度为u,则船对水的相对速度应满足要使船能到达正对岸的B点,则必须使的方向垂直于对岸(即沿A-B的方向),于是,船的滑行方向就必须沿与V成角的方向才行。
即船到达B点所需的时间为(2)要使船过江所用的时间最短,在划速V不变的情况下,必须使有最大值。
显然,此时。
则船过江的最短时间为设船到达下游的C点,则 m2.23已知质点在xOy平面上的运动方程为, 试求:( 1) 质点的运动轨迹;( 2) t 时刻的速度v ;( 3) t 时刻的加速度a。
[分析与解答](1)已知则,质点的运动轨迹为半径R=1的圆周。
2.24质点沿x 轴正向运动, 加速度与速度成正比, 且方向相反, 即a = - kv, k为常量, 设t = 0 时,, 试求:( 1) 质点的速度v( t) , 并加以讨论;( 2) 质点的运动方程x( t)。
[分析与解答](1)质点作直线运动时得积分并代入上、下限后得整理得由上式可知:速度v随时间t按指数规律衰减,即质点沿x轴正向作变减速运动。
(2)由得积分并整理得由上式可知,质点运动的最远位置为2.25质点在x 方向运动, 已知速度v = 8 + (SI) , 当t = 8 s 时, 质点在原点左边52m 处。
试求:( 1) 质点的加速度和运动方程;( 2) 初速度和初位置;( 3) 分析质点的运动性质。
[分析与解答](1)加速度由得积分得运动方程为(2)当t=0时,(3)在t>0时,故质点从原点左侧628m处,以初速度,沿x轴正方向(向右)作变加速运动。
练习3 牛顿运动定律3. 10 在一只半径为R 的半球形碗内, 有一粒质量为m 的小钢球, 沿碗的内壁作匀速圆周运动。
试求: 当小钢球的角速度为ω时, 它距碗底的高度h 为多少?[分析与解答] 取小球为隔离体,受重力和支承力(如图??)。
其中,沿x轴方向的分力提供小球作圆周运动的向心力。
有①②且③解得可见,h随ω的增大而增大。
3. 13质量为m 的物体在黏性介质中由静止开始下落, 介质阻力与速度成正比, 即= βv,β为常量。
试( 1) 写出物体的牛顿运动方程。
( 2) 求速度随时间的变化关系。
( 3) 其最大下落速度为多少?( 4) 分析物体全程的运动情况。
[分析与解答] (1)物体受向下的重力mg和向上的阻力F,则牛顿运动方程为(2)由分离变量并积分得 -整理后得(3)当时,有最大下落速度(4)由有得物体由静止开始向下作加速运动,并逐渐趋近于最大速度为,此后趋于做匀速运动,物体在任意时刻开起点的距离由上式表示。
3.15质量为m的小球从点A由静止出发,沿半径为r的光滑圆轨道运动到点C(见图),求此时小球的角速度和小球对圆轨道的作用力。
[分析与解答] 取小球为隔离体,受力情况如图。
取自然坐标系,由牛顿运动定律分别列出切向和法向运动方程为- ①②由于,代入式①并分离变量后积分得③则小球在c点的角速度为将式③代入式②,得其反作用力即为小球对轨道的作用力。
3.16 如图所示,在密度为的液体上方有一悬挂的长为L,密度为的均匀直棒,棒的下方恰与液面接触。
今剪断挂线,棒在重力P和浮力F 作用下竖直下沉, 若> , 求棒下落过程中的最大速度。
[分析与解答] 按题设条件,剪断细线后,杆在下沉过程只受重力和浮力的作用(不计液体的黏滞阻力),随着杆往下沉,浮力逐渐增大,当重力和浮力相等时,杆下沉的加速度a=0,此时速度最大。
取x坐标向下如图,根据牛顿第二定律,有①式中,,浮力,故式①可写成②对式②分离变量并积分,有得③设杆的速度最大时,杆进入液体的长度为x=l,则式③中的v即为最大速度。
此时mg=F,即得④将式④代入式③,得杆的最大速度为练习4 守恒定律4.4 高空作业时系安全带是非常必要的,假如一质量为 51.0kg的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来。
知此时人离原处的距离为2.0m,安全带弹性缓冲作用时间为0.50s。
求安全带对人的平均冲力。
[分析与解答]可以对全过程和冲撞过程利用动量定理求解。
安全带对人的平均冲力为,重力为。
(1) 对全过程和冲撞过程利用动量定理安全带对人的平均冲力为,作用时间为;重力为,作用时间为。
由动量定理,得(2) 对冲撞过程利用动量定理安全带对人的平均冲力为,重力为。
冲撞前人的下落速度为m/s,由动量定理,得4.10如图所示, 一根细绳跨过一质量可忽略且轴为光滑的定滑轮, 两端分别拴有质量为m和M 的物体A, B, 且M稍大于m。
物体B 静止在地面上, 当物体A 自由下落h距离后, 绳子才被拉紧。
求绳子刚被拉紧时, 两物体的速度及B 能上升的最大高度。
质点的动量矩定理、动量矩守恒定律[分析与解答]把整个过程分成三个阶段来处理。
第一阶段物体A自由下落。
物体A自由下落h 距离时,正好拉紧绳子,此时物体A的速度为,方向向下。
第二阶段,绳子被拉紧,物体A和物体B同时受到绳子的冲力作用。
经过极短时间△t 后,以共同的速度V运动,此时,物体的受力情况如图(B)所示。
如取竖直方向为正方向,则物体Ad的速度由-v增为-V,物体B的速度由0增为V。
根据动量原理得:①②题4.10图由于作用时间极短,绳子冲力的冲量远大于重力的冲量,故式①,式②可简化为因,解得:第三阶段,绳子拉紧后,物体A向下运动,B向上运动,但由于M>m,A和B 都作减速运动,故有Mg-T=Ma,T-mg=ma 求得物体B以速度V上升,其加速度与速度方向相反。
设最后B上升的高度为H,则有故4.14我国第1 颗人造卫星—东方红1号沿椭圆轨道绕地球飞行, 近地点439km, 远地点2384km, 已知在近地点的速度v1 = 8.1 km/s , 试求卫星在远地点的速度v2。
[分析与解答](1)求:如图所示,地球的中心点O位于椭圆轨道的一个焦点上。
设卫星运动时仅受地球引力的作用,由于该引力总指向O点,故卫星在运动的全过程中对O点的动量矩守恒。
即:①由于两者的方向一致,式①可直接用大小来表示,有:得4.18 一倔强系数为K的轻弹簧,竖直放置,下端悬一质量为m的小球。
先使弹簧为原长,而小球恰好与地接触。
再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。
求在此过程中外力所作的功。
解答:先建立坐标系,弹簧为原长处为坐标零点,向上为正,外力小球刚能脱离地面时,弹簧伸长x,有则外力所作的功为:4.20求解下列各题:(1) 质量为m 的物体自静止出发沿x 轴运动, 设所受外力为F x= bt, b为常量, 求在时间T(s) 内此力所做的功。