简单描述量子力学表象

合集下载

量子力学_7.1量子态的不同表象和幺正变换

量子力学_7.1量子态的不同表象和幺正变换

(10)
0 1/ 2 ( pmn ) ia 0 0
1/ 2 0 2/2 0
0 2/2 0 3/ 2
0 3 / 2 0 0
(11)
7.1 量子态的不同表象,么正变换
量子力学教程(第二版)

( k , j ) kj (10)
ak k (11)
对于任意态矢量 ,可以用它们展开 其中
k
ak ( k , )
这一组数 (a1 , a2 ,)就是态(矢)在F表象中的表示, 它们分别是态矢与各基矢的标积. 与平常解析几何不同的是: ①这里的“矢量”(量子态)一般是复量; ②空间维数可以是无穷的,甚至不可数的. 现在考虑同一个态在另一组力学量完全集 F′中的表示. F′表象的基矢,即F′的本征态 'a ,它们满足正交归一性


四、不同表象中基矢的关系 量子态和力学量(算符)的不同表示形式,称为表象。
形式上与此类似,在量子力学中,按态叠加原理,任何一个量 子态,可以看成抽象的Hilbert空间中的一个“矢量”.体系的任何一 组对易力学量完全集F的共同本征态,可以用来构成此空间的一组 正交归一完备的基矢(称为F表象)
或记为
A1 A1 R ( ) A2 A2
cos R( ) sin sin cos (6)
把A在两坐标中的表示联系起来的变换矩阵 矩阵R的矩阵元是两个坐标系的基矢之间的标积, 它表示基矢之间的关系.故当R 给定,则任何一个矢 量 在 两 坐 标 系 间 的 关 系 也 随 之 确 定 .
(12)
是一个对角矩阵 任何力学量在自身表象中的表示都是对角矩阵.

量子力学的表象变换与矩阵形式

量子力学的表象变换与矩阵形式

基矢变换的一个重要应用是求解量子力学中的本征值 问题。通过选择合适的基矢,可以将一个复杂的二次 型哈密顿量变为简单的形式,从而方便求解。
坐标表象与动量表象
01
坐标表象和动量表象是量子力学中最常用的两种表象。在 坐标表象中,波函数是坐标的函数,而在动量表象中,波 函数是动量的函数。
02 03
在坐标表象中,哈密顿量是一个关于坐标的二次型,而在 动量表象中,哈密顿量是一个关于动量的二次型。因此, 这两种表象适用于不同类型的问题。在求解一些与位置和 动量有关的物理问题时,选择合适的表象可以大大简化计 算过程。
表象变换
基矢变换
基矢变换的基本思想是通过线性组合的方式,将一组 旧的基矢变换为新的基矢。在量子力学中,这种变换 通常是通过一个可逆矩阵来实现的。
基矢变换是指在不同表象之间进行转换时,基矢的选 择会发生改变。在量子力学中,一个量子态由一个波 函数来描述,而波函数在不同的表象下会有不同的形 式。基矢变换就是用来描子计算
01
量子纠缠是量子力学中的一种现象,指两个或多个量子系统之 间存在一种特殊的关联,使得它们的状态无法单独描述。
02
量子纠缠在量子计算中具有重要作用,是量子并行性和量子算
法复杂性的基础。
利用量子纠缠,可以实现更高效的量子算法和量子通信协议。
03
量子通信与量子密码学
量子通信利用量子力学原理实现 信息的传输和保护,具有无条件
描述了密度矩阵的演化,其矩阵形式为密度矩阵与时间导数的乘积。
矩阵形式的测量与观测
量子测量
通过测量操作,将量子态投影到测量 算子的本征态上,其结果以概率的形 式给出。
观测结果
观测结果以概率分布的形式给出,反 映了量子态的测量结果与测量算子的 本征值的关联。

浅谈量子力学中表象的应用

浅谈量子力学中表象的应用
() 1
2 2 2 动量算 符 ..
P P
)( 一-)- f d i f "i
根 据厄密算 符 的定 义 , 1 式 可变为 : () ( = m ( 一J p
在动 量表象 中 , 量算 符 在 直 角坐 标 系 中 的 动 三个分 量分别 是 :
px px P Py
2 1 坐标 表 象 . 2 1 1 坐标 算符 ..

( =X : 1 I) )
2 1 3 任 意力 学量 F .. [ 】
以一 维 为 例 , 示 任 意 力 学 量 F的 算 符 为 表
,~
)本征函数为 ,
) 。
2 2 动量 表 象 . 2 2 1 坐标 算符
收 稿 日期 :0 1 1— 7 2 1 一O 2
作者简介 : 皮艳梅 (9 9一) 女 , 16 , 黑龙江 巴彦人 , 副教授 , 主要从事量子力学 、 原子与分子物理研 究 ; 牟艳 男( 9 3一) 吉林德 惠人 , 18 , 讲
师 , 士 , 要 从 事 材 料 物 理 研 究 ; 秀 平 (9 9一) 女 , 龙 江 安 达 人 , 师 , 要 从 事 理 论 物 理 研究 。 硕 主 张 17 , 黑 讲 主
1 表 象
即在 坐标 表 象 中 , 标 算 符 就 是 坐 标 自身 。 坐 坐标 算符 在直 角坐 标系 中的三 个分 量分 别是 :

Y Y
Z = Z
在经 典力 学 中 , 坐 标 和 动量 来 描 述 物 体 的 用 运 动状态 , 当 坐 标 和 动 量 确 定 后 , 他 的 力 学 即 其 量也 随之 确 定 , 体 的 运 动 状 态 就 完 全 确 定 了 。 物 在量 子力 学 中 , 于微 观 粒 子 具 有 波 粒 二 象 性 , 由 粒子 的坐 标 和动 量 不 能 同时 确定 。 因此 , 量 子 在 力学 中用 算符 表示 微 观粒 子 的力 学 量 , 波 函数 用 来描 写微 观粒 子 的运 动状 态 。 描写 量 子 体 系 状 态 的波 函数 可 以是 坐 标 的 函数 , 相应 的力 学 量 则 是 用作 用 在 坐 标 函数 上 的 算符 来表示 。波 函数 也 可 以选 用 其 他 变量 ( 动 如 量、 能量 等 ) 的函数 , 相应 的力 学 量则 是 用作 用在 这种 波 函数 上 的算 符来 表示 … 。 量子 力学 中态 和力 学 量 的具 体 表 示 方 式 称 为表象 … 。量子 力 学 中 常用 的表 象 有 坐标 表 象 、 动量 表象 、 能量 表象 和 角动 量表 象等 。

量子力学讲义IV.表象理论(矩阵表述)

量子力学讲义IV.表象理论(矩阵表述)

量⼦⼒学讲义IV.表象理论(矩阵表述)IV. 表象理论 ( 矩阵表述 )1.如何⽤矩阵表⽰量⼦态与⼒学量,并说明理由?答:矩阵表⽰⼀般⽤于本征值为离散谱的表象(相应的希尔伯空间维数是可数的)。

具体说,如果⼒学量的本征⽮为,相应本征值分别为。

假定⼀个任意态⽮为,将它展开For personal use only in study and research; not for commercial use则态⽮在表象中波函数便可⽤展开系数的⼀列矩阵表⽰其意义是:在态中,取的概率为,这与表象中波函数意义是类似的。

⼒学量⽤厄⽶⽅阵表⽰,。

显然,⼀列矩阵和⽅阵维数与希尔伯空间维数是相等的。

⽤矩阵表⽰⼒学量,有如下理由:第⼀可以反映⼒学量作⽤于⼀个量⼦态得到另⼀个量⼦态的事实。

设,式中,。

取,两端左乘,取标积得,即第⼆矩阵乘法⼀般不满⾜交换率,这恰好能满⾜两个⼒学量⼀般不对易的要求。

第三厄⽶矩阵的性质能体现⼒学量算符的厄⽶性。

对于本征值为连续谱的表象(希尔伯空间维数不可数),也可形式的运⽤矩阵表⽰,这时可将矩阵元素看成式连续分布的。

2.量⼦⼒学中,不同表象间:基⽮、波函数、⼒学量是如何变换的?答:量⼦⼒学中由⼀个表象到另⼀个表象的变换为⼳正变换,它类似于欧⽒空间中坐标转动。

设表象中的基⽮为表象中的基⽮为(1) 基⽮变换关系为式中,(为⼳正矩阵)。

设有任意态,则态在及表象中波函数分别为矩阵。

(2) 波函数变换规则为:矩阵。

(3) ⼒学量变换规则为:。

(式中与为⼒学量在、表象中矩阵)3.正变换有什么特征?答:⼳正变换特点:(1⼳正变换不改变态⽮的模,这⼀特征相当于坐标旋转变换;(2⼳正变换不改变⼒学量本征值;(3)⼒学量矩阵之迹 TrF与矩阵⾏列式 dgtF亦不因⼳正变换⽽改变.4. 学量在其⾃⾝表象中如何表⽰?其本征⽮是什么 ?答:如果⼒学量本征值为离散谱,那么,它在其⾃⾝表象中表⽰式为对⾓矩阵,为诸本征值。

本征⽮为单元素⼀列矩阵如果⼒学量本征值为连续谱,则它在其⾃⾝表象中为纯变量其本征⽮为函数。

第五章量子力学的矩阵形式和表象变换

第五章量子力学的矩阵形式和表象变换

例题: 例题:一维粒子运动的状态是
Axe , x ≥ 0 ψ ( x) = { 0, x ≤ 0
求1)粒子动量的几率分布; )粒子动量的几率分布; 2)粒子的平均动量 )

− λx
∫x
0
ν −1 − µx
e
dx =
1
µ
ν
(ν − 1)! (ν ∈ N 0 )
解:由于波函数为归一化,首先要对波函数进行归一化 由于波函数为归一化,


0
( x − λx )e
2
− 2 λx
dx
3. 能量表象
考虑任意力学量Q本征值为λ 考虑任意力学量 本征值为λ1, λ 2,…, λ n…,对应的正交本 本征值为 对应的正交本 则任意波函数ψ ) 征函数 u1(x), u 2 (x),… u n (x) …, 则任意波函数ψ(x)按Q的 的 本征函数展开为 本征函数展开为
P2 H = T +V = + Fx 2m
在动量表象中, 的 在动量表象中,x的 算符表示为
1 ψ p (x) = e 1/ 2 (2πh)
i px x h
i px x h
d i 1 ψ p ( x) = x e 1/ 2 dp h (2πh )
d i ˆ = xψ p ( x) x = ih dp h
总结
直角坐标系中,矢量 的方向由 三个单位矢量基 直角坐标系中,矢量A的方向由i,j,k三个单位矢量基 三个单位矢量 决定,大小由 三个分量(基矢的系数)决定。 矢决定,大小由Ax,Ay,Az三个分量(基矢的系数)决定。
在量子力学中,选定一个 表象 表象, 在量子力学中,选定一个F表象,将Q的本征函数 的本征函数 u1(x), u2(x),… un(x),…看作一组基矢,有无限多个。 看作一组基矢 看作一组基矢,有无限多个。 大小由a1(t), a2(t), …an(t),…系数决定。 大小由 系数决定。 系数决定 所以,量子力学中态矢量所决定的空间是无限维的 所以,量子力学中态矢量所决定的空间是无限维的 空间函数,基矢是正交归一的波函数。 空间函数,基矢是正交归一的波函数。数学上称为 希尔伯特( 希尔伯特(Hilbert)空间 )空间. 常用的表象有坐标表象、动量表象、 常用的表象有坐标表象、动量表象、能量表象和角 动量表象

第四章 表象理论1

第四章 表象理论1

(4.2-6)
因此算符 在Q表象中是一个矩阵, (4.2-6)式也可简写为:
称为矩阵元。
(4.2-7)
说明: 力学量算符 于表象基矢
在 表象中的矩阵元 依赖
2. 厄密矩阵 对其取复共轭得到 根据厄密算符的定义
故有:
(4.2-8)
(4.2-8)式表示算符在Q表象中的表示是一个厄密矩阵 。
补充: 1、转置矩阵:矩阵A的行列互换,所得的新矩阵称 为矩阵A的转置矩阵,用符号 表示。 即:如果,则由(43) 得到(4.1-5)
在动量表象中, 粒子具有确定动量p’ 的波函数是以动 量p为变量的函数: 同理可得: 在坐标表象中, 粒子具有确定坐标x’ 的波函数是以坐标x 为变量的函数: 坐标算符的本征值方程为:
(4.1-6)
2. 一般情况 在任意力学量Q 的表象中, 假设具有分立的本征值, 对应的本征函数是 :
体系的归一化条件 写成矩阵形式: 对表象的理解: (1) 状态ψ : 态矢量
(4.1-13)
(2) Q表象: 坐标系 (无限维希耳伯特空间)。
(3) 本征函数: (4) 基矢量的分量。
坐标系的基矢量。 是态矢量ψ 在表象中沿各
态矢 在 表象基矢上的分量
构成了 在 表象中的
表示 ,由于
构成的空间维数可以是无穷的,甚至是不
故有:
内容小节
1、表象:量子力学中状态和力学量的具体表示方式 2、ψ(x,t) 态在动量表象中的表示:
其中: 3、ψ(x,t) 态在Q表象中的波函数是:
4、力学量F在Q表象中的表示 力学量F在Q表象中的表示是一个矩阵:
其中矩阵元: 算符在自身表象中是一个对角矩阵。
§4.3 量子力学公式的矩阵表述

量子力学讲义第七章讲义


(8)
是|>在F表象中的基矢|j>方向的投影。式(8)即的本征方程在F表象中的表
述形式。
(6) A2=0,但A=0不一定成立
5、对角矩阵 6、单位矩阵
除对角元外其余为零 即
单位矩阵与任何矩阵A的乘积仍为A:IA=A,并且与任何矩阵都是可
对易的:IA=AI
7、转置矩阵:把矩阵A的行和列互相调换,所得出的新矩阵称为A的转
置矩阵。
m列n行n列m行 共轭矩阵: m列n行n列m行转成共轭复数
8、厄密矩阵:
矢量。选取一个特定力学量F表象,相当于选取特定的坐标系。该坐标
系是以力学量F的本征函数系为基矢,态矢量在各基矢上的分量则为展
开系数,在F表象中态矢量可用这组分量来表示。
F表象的基矢有无限多个,所以态矢量所在的空间是一个无限维的 抽象的函数空间,称为Hilbert空间。
§7.2 力学量(算符)的矩阵表示
它就是与本征值相应的本征态在F表象中的表示。 给定算符如何求本征值与本征函数 ——(1)先求用矩阵表示的本征 方程;(2)代入久期方程求得本征值的解;(3)本征值代入本征方程 求本征函数。
4、 举例: 例1、已知体系的哈密顿算符Ĥ与某一力学量算符在能量表象中的矩阵 形式为:
, 其中和b为实常数,问
(1)、H和B是否是厄密矩阵; (2)、H和B是否对易; (3)、求算符的本征值及相应的本征函数; (4)、算符的本征函数是否也是Ĥ的本征函数。
态矢与的标积记为,
而记为
若,则称与正交;若,则称为归一化态矢。 设力学量完全集F的本征态(离散)记为|k>,它们的正交归一性表
示为
连续谱的本征态的正交“归一性”,则表成函数形式。 例如动量本征态,,坐标本征态,等。

量子力学导论Chap2-2

结论:微观系统的状态由一个线性矢量空间中的矢量
在抽象线性矢量空间中矢量无长度,矢量间无角度。
描述
这是关于量子态的原理的基本内容,
是“粒子有波动性”这一事实的数学表
§2.3 Schrö dinger方程
1、Schrö dinger 方程的引进 经典力学认为质点同时具有精确位置和精确动量, 两种描述质点运动的方程: 1)牛顿力学框架下描述质点的动力学方程为 F=m a 2)分析力学框架下描述质点的运动方程是拉格朗日 方程(从能量角度出发的方程,动能和势能)
有一集合S,满足如下条件: 设 a 1 和 a 2 均属于S, 则 b 1 a 1 2 a 2 也属于 S, 即:如果集合 S 中两元素的线性叠加仍然属于 S, 则 S 为一个 线性矢量空间。
如果 1 和 2 都是一个微观系统可能存在的状态,则
= 1 1 +2 2 也是这一系统的一个可能的状态。
( r , 0 )e
d r
3
(r , t )
1 ( 2 )
3

d r ' d pe
3
3
i [ p ( r r ' ) / Et / ]
( r ' ,0 )
可见, 初始时刻的 (r,0) 完全决定了以后任何时刻 的(r,t)。

j
j dS
s
定义为几率流密度矢量
定域几率守恒或粒子数守恒
平方可积,则当 r , ~ r -(3/2+s),s > 0。
于是
i
t

*

{2 r

2
( ) d S

高等量子力学角动量算符和角动量表象自旋表象


在量子力学中,波函数可以在不同的表 象之间进行转换。对于角动量表象和坐 标表象之间的转换,可以通过傅里叶变
换或拉普拉斯变换实现。
在进行表象转换时,需要注意不同表象 之间基函数的正交性和完备性,以及转 换过程中可能出现的数学困难和物理意
义的变化。
在实际应用中,可以根据具体问题的需 要选择合适的表象进行描述和计算,以
未来发展趋势预测
要点一
发展新的理论和方法
随着科学技术的不断进步和计算能力 的不断提高,未来有望发展出更为精 确和高效的理论和方法来处理角动量 和自旋相关的问题。例如,基于量子 计算机的新型算法和模拟方法有望在 解决复杂多体问题方面取得突破。
要点二
拓展应用领域
角动量和自旋作为量子力学中的基本 概念和工具,在各个领域都有着广泛 的应用前景。未来有望将角动量和自 旋的理论和方法拓展到更多的领域, 如量子信息、量子计算、量子模拟等 前沿领域。
自旋算符定义及性质描述
自旋算符定义
自旋算符是用于描述粒子自旋状态的算符,包括自旋角动量算符和其分量算符。
自旋算符性质
自旋算符满足角动量算符的一般性质,如对易关系、本征值问题等。此外,自旋 算符还具有一些特殊性质,如自旋量子数的取值只能是整数或半整数。
自旋算符在量子力学中地位和作用
描述粒子内禀属性
角动量性质
角动量是守恒的,即在没有外力矩作 用的情况下,物体的角动量保持不变 。此外,角动量具有叠加性,多个物 体的角动量可以相加。
量子力学中角动量重要性
描述微观粒子状态
在量子力学中,角动量是描述微观粒子状态的重要物理量之一,它与粒子的自 旋、轨道运动等密切相关。
解释原子光谱
角动量的量子化假设成功解释了原子光谱的规律性,为量子力学的发展奠定了 基础。

薛定谔表象和海森堡表象

薛定谔表象和海森堡表象
薛定谔表象和海森堡表象是两种用于描述量子力学系统的数学框架。

薛定谔表象是一种基于波函数的描述方式。

在薛定谔表象中,量子力学系统的状态由波函数表示,波函数随时间演化按照薛定谔方程进行。

薛定谔表象强调的是波函数的性质和演化规律,可以通过求解薛定谔方程来得到系统的时间演化。

海森堡表象是一种基于算符的描述方式。

在海森堡表象中,量子力学系统中的物理量由算符表示,而不是波函数。

算符的期望值随时间演化按照海森堡运动方程进行。

海森堡表象强调的是算符的性质和演化规律,可以通过求解海森堡运动方程来得到系统的时间演化。

两种表象之间的转换可以使用变换矩阵进行,这个变换矩阵称为时间演化算符。

时间演化算符将薛定谔表象和海森堡表象联系起来,通过它可以在两种表象之间进行变换。

两种表象各有其适用的场景,选择使用哪种表象取决于具体的问题和研究目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单描述量子力学表象
在量子力学中,表象是一种数学框架,用于描述系统的状态和性质。

表象可以理解为是一组基底,用于展开量子态和算符,使得它们可以被表示为矩阵或向量。

常见的表象有位置表象、动量表象、自旋表象等。

其中,位置表象是最常用的表象之一,它把每个粒子的位置作为基础变量,粒子的波函数可以被写成位置的函数。

在位置表象中,一个量子态可以表示为一个无限维的复数函数,即波函数。

波函数的平方表示粒子出现在相应位置的概率密度。

相对地,动量表象将每个粒子的动量作为基本变量,并用动量的本征态来展开量子态。

在动量表象中,波函数表示为动量的函数,其平方表示粒子的动量出现在相应范围内的概率密度。

除此之外,自旋表象用于描述电子、质子等带有自旋的粒子,它的基底是自旋向上和自旋向下两个本征态。

自旋表象也可以被用于描述其他粒子的自旋情况。

总之,不同的表象提供了描述量子系统不同方面的方法,使得我们可以更好地理解量子系统的性质和行为。

相关文档
最新文档