光伏组件串电压测试记录

光伏组件串电压测试记录

太阳能光伏组串电压测试记录工程名称内蒙古利硕30MWp光伏发电项目

测试地点区测试时间年月日测试仪器型号FLUKE 15B+ 测量人

光伏组串数量天气情况

区(号)逆变器电压

(V)

区(号)

逆变器

电压

(V)

区(号)

逆变器

电压

(V)

区(号)

逆变器

电压

(V)

第1串第1串第1串第1串第2串第2串第2串第2串第3串第3串第3串第3串第4串第4串第4串第4串第5串第5串第5串第5串第6串第6串第6串第6串第7串第7串第7串第7串第8串第8串第8串第8串第9串第9串第9串第9串第10串第10串第10串第10串

区(号)逆变器电压

(V)

区(号)

逆变器

电压

(V)

区(号)

逆变器

电压

(V)

区(号)

逆变器

电压

(V)

第1串第1串第1串第1串第2串第2串第2串第2串第3串第3串第3串第3串第4串第4串第4串第4串第5串第5串第5串第5串第6串第6串第6串第6串第7串第7串第7串第7串第8串第8串第8串第8串第9串第9串第9串第9串第10串第10串第10串第10串

施工单位:

年月日监理单位:

年月日

光伏组件生产四 EL检测

光伏组件生产四——EL检测 太阳能电池组件缺陷检测仪——即EL测试仪是利用晶体硅的电致发光原理、利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷。 EL 检测仪具有灵敏度高、检测速度快、结果直观形象等优点,是提升光伏组件品质的关键设备;红外检测可以全面掌握太阳电池内部问题,为改进生产工艺提供依据,提升产品质量,可以对问题组件进行及时返修,尽可能的降低损失。方便层压前和层压后太阳能电池组件的测试,更换不同规格的太阳能电池组件后设备能方便地调整,保证太阳能电池组件的安全。 使用EL检测仪 通过EL测试仪可以清楚的发现太阳能组件电池片上的黑斑、黑心以及组件中的裂片,包括隐裂和显裂、劣片及焊接缺陷等问题,从而及时发现生产中出现的问题,及时排除,进而改进工艺。对提高效率和稳定生产都有重要的作用,因而太阳电池电致发光测试仪被认为是太阳电池产线上的“眼睛”。 EL检查的生产工艺及注意事项 不同规格的电池片要使用不同的电流和电压,具体如下 注意事项

1.使用前确保太阳能电池组件规格是否有调整,严禁未经调整随意测试 不同规格的组件。 2.太阳能电池组件在传输过程中不得随意拉动或者停止太阳能电池组件,确保人员和产品的安全。 3.在检查直流电源前,请在切断电源10分钟后再用万用表等确认进行工作。 4.禁止随意使用U盘拷贝数据,避免病毒传染,重要数据流失。 5.如一段时间不使用,应同时关闭电脑及所有电源。 6.打开直流稳压电源后,确认电源上面的数值是否符合规格。 7.请勿在暗箱内放置任何物体。 EL检测阶段常见问题及解决方法 1、破片 生产过程中由于铺设、层压操作不当导致热应力、机械应力作用不均匀都有可能出现破片现象。 2、黑芯 黑芯一般是由于原材料商在拉硅棒的时候没有拉均匀所致。 3、断栅 断栅的原因是丝网印刷参数没调好或丝网印刷质量不佳,或者是硅片切割不均匀,也有可能出现断层现象。 4、暗片

光伏特性曲线实验报告

绪论 一实验目的 本实验课程的目的,旨在通过课内实验教学,使学生掌握太阳能发电技术方面的基本实验方法和实验技能,帮助和培养学生建立利用所学理论知识测试、分析和设计一般光伏发电电路的能力,使学生巩固和加深太阳能发电技术理论知识,为后续课程和新能源光伏发电技术相关专业中的应用打好基础。 二实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。三注意事项 1、实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及线路板的组成和接线要求。 2、实验时每组同学应分工协作,轮流接线、记录、操作等,使每个同学受到全面训练。 3、接线前应将仪器设备合理布置,然后按电路图接线。实验电路走线、布线应简洁明了、便于测量。 4、完成实验系统接线后,必须进行复查,按电路逐项检查各仪表、设备、元器件的位置、极性等是否正确。确定无误后,方可通电进行实验。 5、实验中严格遵循操作规程,改接线路和拆线一定要在断电的情况下进行。绝对不允许带电操作。如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。 6、测量数据或观察现象要认真细致,实事求是。使用仪器仪表要符合操作规程,切勿乱调旋钮、档位。注意仪表的正确读数。. 7、未经许可,不得动用其它组的仪器设备或工具等物。 8、实验结束后,实验记录交指导教师查看并认为无误后,方可拆除线路。最后,应清理实验桌面,清点仪器设备。 9、爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 10、自觉遵守学校和实验室管理的其它有关规定。 四实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验仪器设备(名称、型号); 3.实验原理; 4.实验主要步骤及电路图; 5.实验记录(测试数据、波形、现象); 6.实验数据整理(按每项实验的实验报告要求进行计算、绘图、误差分析等);.回答每项实验的有关问答题。7.

消防设施月年度检测记录表(全)

消防系统维护保养检测报告 项目名称:检测日期:年月日 报告类型:月检□季检查□年检□ 一、消防系统检测内容: 、火灾自动报警系统□ 、应急广播系统 □ 、消防电话 □ 、消火栓系统□ 、自动喷水灭火系统 □ 、防排烟系统 □ 、防火分隔□ 、气体灭火系统 □ 、应急照明系统 □ 、消防炮系统□ 、消防供电配电 □ 、消防供水设施 □ 、灭火器□ 、消防电梯 □ 、其他 □ 说明:实施检测内容以消防系统维护保养合同为准,并在□内打“√” 二、本周期主要维护保养内容: 三、本周期主要维修整改内容:

四、消防系统维护保养检测依据: 、《建筑消防设施地维护管理》、《建筑消防设施检测技术规程》 、《建筑设计防火规范》、《高层民用建筑设计防火规范》(年版) 、《火灾自动报警系统设计规范》、《火灾自动报警系统施工及验收规范》 、《自动喷水灭火系统施工及验收规范》、《气体灭火系统施工及验收规范》 建筑消防设施检测记录表(一) 系统检测项目检测内容实测部位及记录运行 情况 故障描述及处理情况 消防供电配电消防配电柜试验主、备带你切换功能;消防电源主、 备电源供电能力测试 发电机组试验发电机组自动、手动启动功能,试验 发电机启动电源充放电功能 应急电源试验应急电源充放电功能 储油设施核对储油量 联动试验试验费消防电源地联动切断功能 火灾火灾探测器试验报警功能

自动报警系统手动报警按钮试验报警功能 监管装置试验监管装置报警功能,屏蔽信息显示功 能 警报装置试验报警功能 报警控制器试验火警报警、故障报警、火警优先、打 印机打印、自检、消音等功能;火灾显示 盘和显示器地报警功能、显示功能 消防联动控制 器 试验联动控制器及控制模块地手动、自动 联动控制功能;试验控制器显示功能,试 验电源部分主、备用电源充、放电功能远程监控系统试验信息传输装置显示、传输功能;试验 监控主机信息显示、告警受理、派单、接 单、远程开锁等功能,试验电源部分主、 备电源切换,备用电源充、放电功能 消防供水设施消防水池核对储水量、自动进水阀进水功能,液体 检测装置报警功能 消防水箱核对储水量、自动进水阀进水功能、模拟 消防水箱出水,测试消防水箱供能力 稳(增)压泵及 气压水罐 模拟系统渗漏,测试稳压泵、增压泵及气 压水罐稳压、增压能力,自动启泵、停泵 及联动启动主泵地压力工况,主、备泵切 换功能

光伏组件生产四——EL检测

光伏组件生产四——EL检测太阳能电池组件缺陷检测仪——即EL测试仪是利用晶体硅的电致发光原理、利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷。 EL 检测仪具有灵敏度高、检测速度快、结果直观形象等优点,是提升光伏组件品质的关键设备;红外检测可以全面掌握太阳电池内部问题,为改进生产工艺提供依据,提升产品质量,可以对问题组件进行及时返修,尽可能的降低损失。方便层压前和层压后太阳能电池组件的测试,更换不同规格的太阳能电池组件后设备能方便地调整,保证太阳能电池组件的安全。 使用EL检测仪 通过EL测试仪可以清楚的发现太阳能组件电池片上的黑斑、黑心以及组件中的裂片,包括隐裂和显裂、劣片及焊接缺陷等问题,从而及时发现生产中出现的问题,及时排除,进而改进工艺。对提高效率和稳定生产都有重要的作用,因而太阳电池电致发光测试仪被认为是太阳电池产线上的“眼睛”。 EL检查的生产工艺及注意事项 不同规格的电池片要使用不同的电流和电压,具体如下

注意事项 1.使用前确保太阳能电池组件规格是否有调整,严禁未经调整随意测试不同规格的组件。 2.太阳能电池组件在传输过程中不得随意拉动或者停止太阳能电池组件,确保人员和产品的安全。 3.在检查直流电源前,请在切断电源10分钟后再用万用表等确认进行工作。 4.禁止随意使用U盘拷贝数据,避免病毒传染,重要数据流失。 5.如一段时间不使用,应同时关闭电脑及所有电源。 6.打开直流稳压电源后,确认电源上面的数值是否符合规格。 7.请勿在暗箱内放置任何物体。 EL检测阶段常见问题及解决方法 1、破片 生产过程中由于铺设、层压操作不当导致热应力、机械应力作用不均匀都有可能出现破片现象。 2、黑芯

光伏组件转换效率测试和评定方法技术规范

CNCA/CTS0009-2014 中国质量认证中心认证技术规范 CQC3309—2014 光伏组件转换效率测试和评定方法 Testing and Rating Method for the Conversion Efficiency of Photovoltaic (PV) Modules 2014-02-21发布2014-02-21实施 中国质量认证中心发布

目次 目次.................................................................................... I 前言.................................................................................. II 1范围 (1) 2规范性引用标准 (1) 3术语和定义 (1) 3.1组件总面积 (1) 3.2组件有效面积 (1) 3.3组件转换效率 (2) 3.4组件实际转换效率 (2) 3.5 标准测试条件 (2) 3.6 组件的电池额定工作温度 (2) 3.7 低辐照度条件 (2) 3.8 高温度条件 (2) 3.9 低温度条件 (2) 4测试要求 (2) 4.1评定要求 (2) 4.2抽样要求 (3) 4.3测试设备要求 (3) 5测试和计算方法 (4) 5.1预处理 (4) 5.2组件功率测试 (4) 5.3组件面积测定 (6) 5.4组件转换效率计算 (6)

前言 本技术规范根据国际标准IEC 61853:2011和江苏省地方标准DB32/T 1831-2011《地面用光伏组件光电转换效率检测方法》,结合光伏组件产品测试能力的现状进行了编制,旨在规范光伏组件转换效率的测试与评定方法。 本技术规范由中国质量认证中心(CQC)提出并归口。 起草单位:中国质量认证中心、国家太阳能光伏产品质量监督检验中心、中国电子科技集团公司第四十一研究所、中广核太阳能开发有限公司、中国三峡新能源公司、晶科能源控股有限公司、上海晶澳太阳能科技有限公司、常州天合光能有限公司、英利绿色能源控股有限公司。 主要起草人:邢合萍、张雪、王美娟、朱炬、王宁、曹晓宁、张道权、刘姿、陈康平、柳国伟、麻超。

光伏检测技术

北极星太阳能光伏网讯:前言:金太阳工程结束了,还需要做金太阳认证吗?并网逆变器为什么没有3C认证?欧洲的光伏产品认证就是TUV认证吗? 一个完整的光伏认证体系包括: (1)认证标准,包括安规,性能,和并网要求。 (2)认证机构,如中国的CQC,CGC,欧美TUV,BV,VDE,UL,日本的JET. (3)检测实验室,如中检南方,国家光伏质检中,上电所。 1、认证标准 2、认证机构 认证机构是独立于制造厂、销售商和使用者(消费者)的、具有独立的法人资格的第三方机构,故称认证 为第三方认证。认证机构的主管部门是国家认证认可监督管理委员会(CNCA)。 2.1、金太阳认证 金太阳认证源于金太阳工程,2009年7月,财政部、科技部、国家能源局联合印发了《关于实施金太阳示范工程的通知》,通知要求财政补助资金支持的项目“采用的光伏组件、控制器、逆变器、蓄电池等主要 设备必须通过国家批准认证机构的认证”。获得金太阳认证,可申请国家“金太阳工程”补贴,亦可作为 工程招标中的认证依据。 2.2、CGC和CQC 2013年金太阳示范工程结束,中国实施集中式光伏标杆上网电价与分布式光伏两种度电补贴方式。太阳能产品认证工作由中国质量认证中心和北京鉴衡认证中心两家承担,目前都是采用国家能源局2013年发出的,光伏并网逆变器技术标准NB/T32004-2013,由于历史原因,通过鉴衡认证中心(CGC)的证书,还会有金 太阳标志,有人习惯称为金太阳认证。中国质量认证中心(CQC)则有“太阳能产品认证”标志。由于引用的标准都是一样,两个机构都发的证书效果也是一样的。 2.3、3C认证和CQC CCC是指“中国强制认证”,是国家针对涉及人类健康和安全,动植物生命和健康,以及环境保护和公共 安全的产品实行的认证制度。CCC认证的英文名称为“ChinaCompulsoryCertification”,缩写为“CCC”,因此简称“3C”。

光伏组件测试

1.1.1组件电性能测试 1 组件测试仪校准:开始测试前使用相应的标准板校准测试仪;之后连续工作四小时(或更换待测产品型号)校准测试仪一次。 2 标准板选用:测试单晶硅组件使用单晶硅标准板;测试多晶硅组件使用多晶硅标准板。 测试120W以上(包括120W)组件:使用160W标准板校准测试; 测试50~120W(包括50W)组件:使用80W标准板校准测试; 测试30~50W(包括30W)组件:使用30W标准板校准测试; 测试30W以下组件:使用15W标准板校准测试。 3 短路电流校准允许误差:±3%。 4 每次校准后填写《组件测试仪校准记录》。 2 组件的测试: 1太阳模拟器光强均匀度测试:①太阳模拟器光强均匀度≤3%;②每周一、四校正测试一次。 2 太阳模拟器光强稳定性测试:①太阳模拟器光强稳定性≤1%;②每天测试前校正测试一次。 3电池组件测试前,需在测试室内静止放置24小时以上,然后进行测试。 .4 测试环境温度湿度:①温度:25±3℃;②湿度:20~80%;③测试室保证门窗关闭,无尘。 3组件重复测试精度:<±1%。 12.4组件电性能参数: 12.4.1国内组件:①三十六片串接:工作电压:≥16.0V;开路电压: ≥19.8V。 ②七十二片串接:工作电压:≥33.5V;开路电压: ≥42.4V。 ③六十片串接:工作电压:≥28.0V;开路电压: ≥34.0V。 ④五十四片串接:工作电压:≥25.0V;开路电压: ≥32.0V。 ⑤功率误差:±3%。 12.4.2国外组件:①三十六片串接:工作电压:≥16.8V;开路电压: ≥20.5V。 ②七十二片串接:工作电压:≥33.5V;开路电压: ≥42.4V。 ③六十片串接:工作电压:≥27.4V;开路电压: ≥34.0V。 ④五十四片串接:工作电压:≥25.0V;开路电压: ≥32.0V。 ⑤功率误差 2.0 仪器/工具/材料 2.1 所需原、辅材料:1.外观检查合格的组件 2.2 设备、工装及工具:1.组件测试仪;2.标准组件; 3.合格印章 3.0 准备工作 3.1 工作时必须穿工作衣,鞋;做好工艺卫生,用抹布清洗工作台 3.2 按《太阳能模拟器操作规范》开启并设置好组件测试仪;每班次开始生产测试前必须用标准

接地电阻测试记录表

接地电阻测试记录表

(2)接地电阻应定期(至少每季一次)进行测试; (3)测试人为电工,监测人可以是施工员、安全员等施工管理人员。 接地电阻测试记录表 工程名称铜梁琼江安居提水二期工程泵 站、原水管线三标段 测试仪器名称兆欧表 测试仪器型号ZC52B – 4 型测试人监测人 接地类别及要求接地类别及 标准阻值 编 号 接地位置或 设备名称 实测阻值 Ω 季节 系数 测试 结果 测试 日期 备注 工作接地 ≤10Ω 1 柴油发电机0.6合格2013年 9月1日 重复接地 ≤10Ω 1 总配电箱0.1合格2013年 9月1日 2 分总配电箱1 0.4合格2013年 9月1日 3 分总配电箱2 0.8合格2013年 9月1日 4 分总配电箱3 1.3合格2013年 9月1日 5 分总配电箱4 1.1合格2013年 9月1日 防雷接地 ≤30Ω 1 无 保护接地 ≤4Ω 1 柴油发电机0.3合格2013年 9月1日 2 电焊机0.9合格2013年 9月1日 3 钢筋弯曲机0.3合格2013年 9月1日 4 钢筋切断机1合格2013年 9月1日

5 木工圆盘锯0.4合格2013年 9月1日 (2)接地电阻应定期(至少每季一次)进行测试; (3)测试人为电工,监测人可以是施工员、安全员等施工管理人员。 接地电阻测试记录表 工程名称铜梁琼江安居提水二期工程泵 站、原水管线三标段 测试仪器名称兆欧表 测试仪器型号ZC52B – 4 型测试人监测人 接地类别及要求接地类别及 标准阻值 编 号 接地位置或 设备名称 实测阻值 Ω 季节 系数 测试 结果 测试 日期 备注 工作接地 ≤10Ω 1 柴油发电机0.6合格2013年 10月5日 重复接地 ≤10Ω 1 总配电箱0.3合格2013年 10月5日 2 分总配电箱1 0.2合格2013年 10月5日 3 分总配电箱2 0.7合格2013年 10月5日 4 分总配电箱3 1.2合格2013年 10月5日 5 分总配电箱4 1.1合格2013年 10月5日 防雷接地 ≤30Ω 1 无 保护接地 ≤4Ω 1 柴油发电机0.2合格2013年 10月5日 2 电焊机0.8合格2013年 10月5日 3 钢筋弯曲机0.2合格2013年 10月5日

08 光伏电站监控系统设计(廖文本)

第八章光伏电站监控系统设计 【学习目标】 1.熟悉光伏发电系统监控体系结构和监控系统功能; 2.熟悉光伏监控系统内容及本地监控软件功能和设计要素; 3.熟悉光伏监控系统主要部件及选配方法; 4.熟悉自动监控系统辅助设备内容及选配要素。 【本章简介】 对大型并网光伏发电系统而言,太阳电池组件较多,布置也很分散,因此需要设置必要的数据监控系统,对光伏发电系统的设备运行状况、实时气象数据进行监测与控制,确保光伏电站在有效而便捷的监控下稳定可靠地运行。 8.1光伏电站监控系统结构与布局 1. 光伏并网监控系统的结构设计 光伏并网监控系统主要由现场监控、本地下、上位机监控和远程监控三大部分组成。现场监控是通过 LCD显示屏和应急启停按键实现对设备的监控,每隔一段时间就读取各监控参数的值。下位机主要包括汇流箱、并网逆变器、环境采集仪等设备。本地上位机监控指本地监控计算机、Web服务器以及部署在上述服务器中的应用软件。远程监控指通过以太网与本地监控服务器相连,电力调度中心的操作人员可以随时随地通过互联网和IE浏览器实施远程监控。下图8-1为10MW并网光伏发电系统监视结构设计图。 光伏 阵列 汇流箱 逆变器LCD显示 通讯管理机 光端机 光伏 阵列 汇流箱 逆变器 通讯管理机光端机 . . . 工业交 换机 服务器 本地监 控 与调度 远程监控 与调度 环境监控 LCD显示 图8-1 10MW光伏系统监控结构

2.光伏并网监控系统的功能设计 光伏并网发电系统需要监测的状态量有:电网电压、电网频率、锁相、直流电压、直流电流、驱动电流、驱动电压、设备温度等。当这些状态量都正常时,表明系统是处于正常工作状态。光伏并网发电系统需要采集的数据有:光伏电池瞬时输出电流、并网各相电压、并网各相电流、系统的启停状态、电网频率、光伏并网系统当日发电量、光伏并网系统累计发电量、风向、风速、日照强度、环境温度,这些数据有的是采集来的原始量,有的是经过原始量计算得来的。 现场监控能够反映受监控设备的实时工作状态和设定的参数,同时可以对设备的启停进行控制,它不仅能实现监测,还可供维修人员操作界面控制现场设备。根据实际需要,现场监控具备以下功能: (1) 数据显示 在现场及时显示电站的运行状况,实时显示光伏电池阵列的输出电压电流、并网电压电流、逆变电压电流、并网功率、总功率因数、电网频率、逆变效率、环境温度等。 (2) 故障监测 实时监测太阳能光伏并网发电站的运行状态,当电站有故障时,监控系统立即发出报警信号,及时通知电站管理人员进行处理。 (3) 数据管理 将太阳能光伏发电站的运行数据存储起来,当光伏电站发生故障时,可将存储的电站运行数据传送给远程监控中心,方便管理人员进行故障分析,做出相应的处理。此外还包括历史数据存储、数据导出等。 (4) 密码管理 操作人员在进行参数设置和起停控制等命令时需输入用户名和密码。 本地监控是在电站的监控室中,监控的功能除了数据显示、故障检测,还包括实时曲线绘制、数据管理、报警信息显示、报表功能等,为设备的状态和工作效率的分析提供有力的数据支持。 上位机监控是在电站的本地监控室中,在本地监控计算机上采用C/S模式,实现对各个设备的监控,功能划分如图2.12所示,包括实时显示并统计各直流侧电压电流、瞬时功率、每日发电量、总发电量、CO2减排量、故障记录、报警及断路器状态等参数和状态量;实时监测升压变压器和汇流箱的电压、电流及其运行状况;实时监测逆变器的所有运行参数和发

光伏组件能力检验方式

光伏组件能力检验方式 通过观察实验室参加能力验证的表现,实验室客户、管理机构和评价机构可以了解实验室是否有能力胜任所从事的检测活动,监控实验室能力的持续状况,识别实验室之间的差异,为实验室管理提供信息。不仅如此,实验室通过参加能力验证,可以了解自身能力,将其作为实验室内部质量控制的外部补充措施,从而满足持续改进的要求。光伏实验室的检测能力与水平尚需进一步提升。为了科学评估国内光伏组件实验室的检测能力,提高检测数据的准确性,需要通过国际通行的能力验证活动来推动和提高实验室的技术和管理水平,确定和核查实验室检测能力。 一、国内外光伏相关能力验证工作 当前,在国际上常见的光伏产品能力验证计划并不多,各主要光伏生产国的国家计量机构不定期进行小型标准光伏器件的比对,其中较有影响力的一次是美国能源部组织的历时四年的PEP93国际标准太阳电池比对,全世界有10个国家的13个太阳能电池测试实验室参加,我国天津电源研究所参加了这次比对活动,并最终具有了光伏计量基准WPVS的标定资格。近几年,澳大利亚的IFMQualityServices 组织了几次光伏组件的能力验证,但因样品传递周期过长而迟迟未有结果。而一些拥有多家光伏检测实验室的国际大型认证机构,会不定

期开展光伏产品检验能力的比对。目前,在国内尚未有正式官方的针对光伏组件产品的能力验证活动,仅在检测机构中有少量的自行组织的实验室间比对活动,但国家相关主管部门充分关注光伏检测技术的发展水平。近期,国家科技部在国家级课题“碳排放和碳减排评价机构认可关键技术”中的关于低碳产品检测数据质量控制关键技术研究与示范项目中包含了对光伏组件产品能力验证技术的研究,并将作为今后开展能力验证活动的重要依据。同时,北京鉴衡认证中心(CGC)近期也正在筹备签约检测实验室的组件测试能力比对活动。 二、方案规划与设计 光伏组件产品的能力验证作为一个全新的项目,在方案设计时,需根据样品本身的特性,制定出适于开展能力验证并达到预期目的的计划。但因样品本身的复杂性,检测方法的多样性,在方案设计过程中会遇到不少困难与问题。 1.样品选择 常用光伏组件分为晶硅组件和薄膜组件两大类,聚光组件因市场化程度低暂不考虑。因晶硅组件中多晶硅组件光电性能不如单晶硅组件稳定,相对来说易破损;薄膜组件因其固有的光致衰退特性,性能随时间变化较大而不够稳定。方案采用单晶硅组件,选取由72片125

光伏组件安全鉴定测试规范

XXXXX有限公司光伏组件安全鉴定测试规范

1.目的 为了合理的验证光伏组件安全性能,以确保必要的测试项目得到统一和规定,进而保证产品质量,满足产品设计需求。 2.适用范围 本规范没有涉及海上和交通工具应用时的特殊要求,也不适用于集成了交/直流逆变器的组件。本规范的试验程序和通过判据为了发现由误用应用等级,不正确的使用方法或组件内部元件破碎而引起的火灾、电击和人身伤害的隐患。 3.术语定义

光伏组件的应用等级定义如下: A级:公众可接近的、危险电压、危险功率应用 通过本等级鉴定的组件可用于高于直流50V或240W以上的系统,同时这些系统是公众有可能接触或接近的。通过本标准和IEC61730-2适用于本应用等级的安全鉴定的组件被认为满足安全等级II的要求。 B级:限制接近的、危险电压、危险功率应用 通过本等级鉴定的组件可用于以围栏或特定区划限制公众接近的系统。通过本应用等级的组件只提供了基本的绝缘保护,这类组件被认为满足安全等级0的要求。 C级:限定电压、限定功率应用 通过本等级鉴定的组件只能用于低于直流50V和240W的系统,这些系统公众是有可能接触和接近的。通过本标准和IEC61730-2适用于本应用等级的安全鉴定的组件被认为满足安全等级III的要求。 注:安全等级在IEC61140中规定。 4.引用标准 IEC 61646,地面用薄膜光伏组件设计鉴定和定型 5.测试内容 组件应进行的试验由IEC61730-1确定的应用等级决定,下表列出各等级所需的试验项目。试验的顺序应根据测试序列进行。 基于应用等级的试验要求

5.1外观检查MST01 5.1.1目的

光伏组件故障分析..

一.接线盒 光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电 流。光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料 应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。 目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部 分组件质量问题来自于接线盒自身的设计和品质。作为光伏组件制造商的配套企业,接线盒 制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全 的保护。所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。 常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限 公司(简称“华阳检测”,于 2009 年 12 月获得了 CNAS 实验室认可,认可范围包括光伏组) 件、光伏材料共 119 项检测能力。公司自 2008 年开始进行接线盒检测(依据标准:VDE 0126-5:2008),讫今共完成 30 家接线盒供应商、50 多款接线盒的

检测和质量分析,获得了

大量的检测数据。 结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65 防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼 热丝试验。 接线盒测试常见失败项目统计图:

一、户外组件因接线盒问题引起的故障图片 接线盒引线端子烧毁 接线盒烧毁 引起组件背板烧焦 组件碎裂 二、接线盒在认证测试中常见失败项目及原因分析 1.接线盒 IP65 防冲水测试 防水性能是接线盒性能的重要指标。认证测试中,先进行老化预处理测试,然后进行防 冲水测试,再通过外观结构检查和工频耐压测试进行评判。测试能否顺利通过,取决于接线 盒的密封保护程度,而接线盒的密封保护直接影响到成品组件的防触电保护和漏电防护的等 级。就目前常规构造的接线盒而言,其设计和材料的缺陷已在认证测试中显露无疑。 图 1 IP65 防冲水测试测试图片

光伏发电组件在线监测与故障诊断系统研制

光伏发电组件在线监测与故障诊断系统研制 光伏发电组件是光伏发电系统实现光-电转换的关键部件,其理论使用寿命可达20~25年,但受材质、工艺控制、气候环境等因素影响,运行中的光伏组件不可避免地会出现一些性能异常或故障,若这些故障得不到及时发现与清除,将会直接对整套光伏发电系统的正常运行产生不良影响,严重时会导致火灾等毁灭性灾害事件。国内外学者针对光伏组件的故障诊断进行了广泛研究,提出了红外图像分析法、多传感器检测法、对地电容测量法和时域反射分析法等多种方法。红外图像分析法和多传感器检测法可以实现在线检测,但成本高、投资大;对地电容测量法和时域反射分析法只适用于离线应用。 标签:光伏组件;故障诊断;峰值功率;开路电压 引言 光伏发电具有设计安装容易、地域限制小、扩容性强、噪声低以及寿命长等特点,日益成为新能源发电的主要形式之一。现阶段,光伏发电系统中光伏组件所占投资比重仍较大,约占总造价40%左右。通常,光伏组件的设计寿命约为25年,然而由于其长期工作在比较恶劣的环境中,各种故障情况难以避免,使得实际使用寿命大为降低。一旦光伏组件发生运行故障,直接危害是损坏组件本身,降低发电效率。 1光伏发电组件基本认识 1.1光伏发电基本原理 光伏发电是利用半导体P-N结的光生伏特效应将光能直接转变为电能。太阳光照在半导体P-N结上,形成新的空穴-电子对,在P-N结电场的作用下,空穴由N区流向P区,电子由P区流向N区,接通电路后就形成电流。 1.2光伏电池等效模型 半导体光生伏特效应的光电转换过程具有复杂非线性特征,从内部等效参数与外部电气特性两方面对光伏电池进行了简化描述。 2故障分析与规律综合 光伏发电系统常工作在较恶劣的室外环境中,如沙漠、山顶或屋顶等,因此难免会发生各种故障,其中短路和异常老化是2种比较常见的故障。造成短路故障的原因有:由老化、振动、磨损导致的机械故障;暴露在紫外线和过电压(雷电)下而产生的外壳老化及电弧毁坏了绝缘线路,造成绝缘失效;绝缘网格没有对齐;在金属平面上的介质涂层有空洞和污渍;在铜箔互连处有腐蚀现象存在;绝缘体与电池之间存在错位;电池与金属基板之间形成短路;安装不规范导致电池之

光伏组件生产工艺流程

光伏组件生产工艺流程: A、工艺流程: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库; B、工艺简介: 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。(我们公司采用的是手工焊接) 3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。 4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。 5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。 6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。

光伏组件生产常用设备仪器介绍

组件生产常用设备仪器介绍组件测试仪(博硕) 操作规范 组件测试仪操作规程 面板各部件功能

A、电压表——用于显示设置电压的大小 B、充电显示——黄(绿)色发光二极管。显示设备的充电状态,灯亮表示充电完成,可以使用。 C、充电进行——用于显示设备的充电状态。灯亮充电进行,灯灭表示充电结束 D、光强调节——调节光源电压 E、负载调节——调节此钮,使电子负载和光强曲线平顶保持同步,最大限度使用“闪光平顶”。 F、电源指示——显示供电电源的通断 G、放电——用于维修时对电容进行放电(注意:正常时禁止操作此按钮)。 H、电源开关——接通/断开供电电源 I、触发——插接触发线 J、电源(~220V)——电源插座 K、电池组件——插接连接电池组件的组件测试线 1调试 1.1接通设备电源和计算机电源,预热15分钟。 1.2进行电池组件测试前要校准电流、电压、光源通道零点。测试组件前要校准组件测试仪的电压与电流零点。电压、电流数值的准确与否会直接影响到组件的电压、电流和功率。如果不填入光强通道的零点不能正常测量。 2校准 2.1将组件测试线从“电池组件”插座取下。 2.2双击“CS”出现如下画面: 2.3双击“ ”图标,出现如下界面

CH0对应的数值-4630即为电流零点 CH1对应的数值-4604即为电压零点 CH2对应的数值-4628即为光强通道零点 (电流零点、电压零点、光强零点的实际数值以实测数据为准) 2.4双击“ ”图标,显示如下窗口 2.5单击“设置” ,显示如下窗口 2.6进行“硬件设置” 将上面步骤2.3读取的CH2对应的方格内的数字填入到光强零点对应的方格内、CH1对应的方格内的数字填入到电压零点对应的方格内、CH0对应的方格内的数字填入到电流零点对应的方格内。点击“应用”、“确定”,电压、电流零点校准完毕。

光伏调试测试验收记录表

调试申请表 工程名称:XXXXXXX编号:YR-TSCS -001 本表一式 4 份,由总承包单位填报,建设单位存 2 份、总承包单位存 2 份

并网前单位工程调试报告 并网前单位工程验收报告

一、工程概况 XXXXXXX200kw光伏项目,地点位于省市,工程规模为200kWp。 二、工程责任主体 建设单位: XXXXXX 总承包单位: XXXXXXX 三、施工情况 本工程以项目经理为主打的质量管理领导小组,在确保安全的前提下,责任分明,分工清楚。采用定人、定岗、定时制度层层严把质量关。 1、施工进度:电气安装及并网工作全部完成。 2、接地系统:并网系统等分项工程,按检验批已经验收。 3、在施工过程中,严格执行报验制度,杜绝不合格工程材料使用在工程中,工程在开工以来所用材料全部合格。 四、施工质量 电气安装工程按照施工图纸要求保质量完成。 五、结论 电气设备安装牢固,布线合理,电气连接正常,太阳能光伏系统输出电压在逆变器允许输入电压围,仪表都能正常显示,逆变器工作正常,风扇正常旋转,系统正常工作,整套系统运行正常,太阳能光伏并网系统调试成功。 建设单位(章):总承包单位(章):

光伏并网系统调试过程记录表 1、调试前、对照附件A 光伏并网系统调试检查表、依次对照各个检查项目进行检查,要求所有项目都符合要求。 2、检查并确保屋顶2台组串逆变器交流开关(AC开关)设置为零(水

平位置)。直流侧输入开关处于断开位置。 3、用万用表测试屋面太阳伏能光系统到组串式逆变器直流侧的开路电压,测试数值记录到附件B(组串式逆变器直流侧的开路电压测试记录表)。通过测试,发现电压正常,符合逆变器输入要求。 4、闭合组串式逆变器直流输入空开。 5、闭合逆变器AC开关,顺时针旋转AC开关至竖直位置。 6、逆变器正常启动,面板指示灯run亮起,风扇开始正常工作,各设备指示灯及仪表指示都正常。 7、查看逆变器运行参数,是否正常,正常后,依次投入该屋面交流汇流箱对应的其他逆变器,检查是否正常,正常后,系统调试完毕。 配电房并网系统调试结论 工程名称:

光伏组件测试作业指导书

设备名称:Quicksun820 1 试用范围 本标准规定测试工序的具体操作、注意事项、主要的质量控制点以及检验项相关标准。 本标准适用于测试工序培训的依据。 2 人员要求 2.1 测试工序人员要经过培训并且要持证上岗。 2.2 熟悉设备安全操作规程,正确操作设备。 2.3 严格按设计图纸、工艺文件、技术标准生产,并做好生产记录。 3 岗前准备 3.1 安全防护措施 3.1.1 着装要求:工作帽、工作鞋; 3.2 工艺装备 3.2.1 设备:Quicksun820 工具:刻度尺、卷尺; 3.2.2 材料:接线盒盖、标签; 3.2.3 环境要求:温度23-28℃;相对湿度小于70%RH; 4 生产过程控制要点 4.1 标准组件的使用及校准; 4.2 组件外观检查; 5 工艺方法 5.1 工艺参数 5.2 设备参数设定

5.2.1 西安测试仪 打开西安模拟仪的设备总电源开关。 在电脑上双击“太阳电池参数测试” 软件,并点击确定。 进入操作界面后,将“量程”处改为 “10A,100V”,填写“定电压点电流” 处的电压值(根据组件的开路电压而 填写)。 在上方标题栏中打开“选择端口”选 项,然后点击“串口5”,鼠标左键 点击确定。

对标准组件进行EL测试,保证标准组件完好。 按照组件尺寸,调整滑轨尺寸,保证组件可以在滑轨上运动自由。 将测试夹加在组件接线盒出线端;红色夹“正极”,黑色夹“负极”。

点击上方标题栏的“数据”按钮,选择“参数调整”选项。 “参数调整”选项弹出一个对话框,在对话框内按照标准组件上的标准值,更改设置中的“电流调整”内的“修正值”,“电压调整”内的“修正值”;并分别选中在“电流调整”、“电压调整”、“温度调整”下方的“更新”选项;最后点击确定。 点击“开始测试”按钮;开始校对标准组件。校对标准组件3-4次,直到测出的Pm值与标准组件的Pm值保持一致,公差范围保证在±0. 1W之内。

(整理)太阳能光伏组件功率测试作业指导.

1.0 适用范围 1.1 本作业指导书适用于晶体硅太阳能电池组件电性能测试工序 2.0 仪器/工具/材料 2.1 所需原、辅材料:1.静置超过12h的组件; 2.2 设备、工装及工具:1.组件测试仪;2.标准组件 3.0 准备工作 3.1 工作时必须按车间着装规范穿工作衣鞋,做好工艺卫生,用抹布清洗工作台; 3.2 按《太阳能模拟器操作规范》开启并预热十分钟,并按照客户对功率电流分档要求在分档报警设置中设定好对应的参数; 测试环境要求: 3.3.1测试室与组件静置室环境温保持25±2℃之间; 3.3.2测试环境相对密封,不受太阳光等光线的影响,测试区没有较大的气流波动; 4.0 作业流程 4.1 取一托在静置室静置超过12h的组件,并用红外测温枪测试组件表面温度在25±2℃间; 4.2 在标准组件存放箱中取二级标准板,用红外测温枪测试表面温度在25±2℃间,根据《太阳能模拟器操作规范》对测试仪校准,校准功率与标定功率偏差±0.2W以内,并将校准结果填写至《标准组件校准记录表》上,在测试过程中每两小时进行一次校准并记录在表格中; 4.3 在生产部盘中新建当日数据保存文件夹,在软件中设置保存路径,在软件中将测试方式改为循环测试; 4.4 待测组件置于测试仪台面的指定位置处(用黑色胶带标识),温度传感器必须置于组件上方,将组件引出线与测试仪引出线连接,红色接组件正极黑色接组件负极; 4.5 用扫描枪扫组件背面条形码测试,闪光过程中保证无异物遮挡测试仪光线; 4.6 按测试仪显示功率和电流分档说明填写流转单,并将组件抬至规定的电流分档区域; 4.7 在组件侧面(接地标志旁边)贴对应的电流分档颜色标签; 4.8 根据不同的包装方式,测试完的组件每托放置与包装一托组件数量相同的组件,单最高不超过35快,并托至包装区; 精品文档

光伏电站测试操作手册

光伏电站测试操作手册 一、绝缘电阻测试 1、集线箱接地点绝缘测试 ?测试方法: 将绝缘电阻测试仪旋钮旋至“1000V”档,黑色COM表笔接到集线箱接 地排上,正极红色表笔接到支架或者其他外部接地点,按住测试仪上的 “测试”旋钮,当表上的数值变化率较小时,松开“测试”旋钮,记录 测试结果。 ?测试要求: 测试绝缘电阻为0MΩ。 2、浪涌保护器绝缘性测试 ?测试方法: 断开浪涌保护器正负极熔断器,将绝缘电阻测试仪旋钮旋至“1000V” 档,黑色COM表笔接到集线箱接地排上,正极红色表笔分别接到浪涌保 护器正负极,按住测试仪上的“测试”旋钮,当表上的数值变化率较小 时,松开“测试”旋钮,记录测试结果。 ?测试要求: 在集线箱接地点绝缘电阻为0MΩ的前提下,测试绝缘电阻大于1MΩ。 3、组串正负极对地绝缘电阻测试 ?测试方法: 断开光伏组串正负极熔断器,断开集线箱与汇线柜之间的直流断路器, 将绝缘电阻测试仪旋钮旋至“1000V”档,黑色COM表笔接到集线箱接 地排上,正极红色表笔分别接到各光伏组串正负极,按住测试仪上的“测 试”旋钮,当表上的数值变化率较小时,松开“测试”旋钮,记录测试 结果。 ?测试要求: 在集线箱接地点绝缘电阻为0MΩ的前提下,测试绝缘电阻大于1MΩ。 ★注意事项:

a) 应当测试所有集线箱。 b) 测试前如有降水现象,则应当于方阵场无明显积水或系统部件上无明 显水珠、雾水后开始测试。 c) 组串正负极对地绝缘电阻测试应当在弱光条件下进行。 二、接地连接电阻测试 ?测试方法: 确认与待测接地点相关的电源断开。从待测点开始,每隔5至10米成一 条直线将两个辅助测试接地极插入大地,将测试仪连接线绿色E极、黄 色P极和红色C极分别与测试仪的E、P、C极对应连接好,同时E极接 于待测点、P极接在靠近待测点的辅助测试接地极、C极接在远离待测点 的辅助测试接地极。将测试仪旋钮旋至“EARTH VOLTAGE”档位,若显 示电压超过10V,请再次确认断开测接地点相关的电源。在无电压值或 者电压值小于10V的情况下,将旋钮旋至“2000Ω”档位,按下测试旋 钮,LED指示灯亮,当接地电阻数值稳定后,记录数据。 ?测试要求: 接地电阻值小于10Ω或者达到要求。 三、开路电压及极性测试 ?测试方法: 断开正负极组串熔断器,断开集线箱与汇线柜断路器。将万用表或者钳 形表旋钮旋至直流电压测试档位,红色正极表笔接依次在组串正极,同 时黑色负极表笔对应的接在组串负极上,在辐照度大于700W/m2的条 件下测试每个组串的开路电压及极性,记录开路电压值,做好极性标记。 ?测试要求: 开路电压值与设计相符,极性无错误。

光伏发电实验报告

光伏发电实验报告 This model paper was revised by the Standardization Office on December 10, 2020

太阳能电池板伏安特性测试实验报告 学院:机电工程学院 专业:电子科学与技术 年级: 09 姓名:吴福川 学号: 指导教师:刘银春 一、实验目的 1、了解并掌握光伏发电的原理 2、了解太阳能电池板的开路电压、短路电流及功率曲线 3、了解太阳能电池板的转换效率 4、熟悉太阳能表和太阳能电池测试仪的功能 二、实验内容 1、光伏电池的开路电压与短路电流特性测试 2、光伏发电的负载福安特性测试

3、 最大输出功率与光照强度的关系测试 三、实验仪器 四、实验原理 太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 的关系式为: )1e (I I U o -?=β (1) (1)式中,o I 和β是常数。 由半导体理论,二极管主要是由能隙为V C E E -的半导体构成,如图1所示。C E 为半导体导电带,V E 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的影响而产生光电流。

假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个 理想二极管、一个并联电阻sh R 与一个电阻s R 所组成,如图2所示。 图2中,ph I 为太阳能电池在光照时的等效电源输出电流,d I 为光照时通过太阳能电池内部二极管的电流。由基尔霍夫定律得: 0R )I I I (U IR sh d ph s =---+ (2) (2)式中,I 为太阳能电池的输出电流,U 为输出电压。由(1)式可得, d sh ph sh s I R U I )R R 1(I --=+ (3) 简化 假定∞=sh R 和0R s =,太阳能电池可 为图3所示电路。 这里,)1e (I I I I I U 0ph d ph --=-=β。 在短路时,0U =,sc ph I I =;

相关文档
最新文档