食品化学1

食品化学1
食品化学1

食品化学_在线作业_1

交卷时间:2016-06-01 12:00:52

一、单选题

1.

(5分)假设如果把水分一滴一滴地加入完全干燥的苏打饼干当中,水首先会怎样与食品中的成分发生相互作用呢_____。

? A. 从以上事实尚不能判断水与哪一种物质优先发生作用。

? B. 水首先与饼干当中的盐、碳酸氢钠等离子化合物形成化合水。

? C. 水首先与饼干当中的盐、碳酸氢钠等离子化合物形成单层吸附水。

? D. 水首先与蛋白质、碳水化合物等亲水物质形成单分子层吸附,然后形成多分子层吸附。

纠错

得分:5

知识点:食品化学

展开解析

答案B

解析

2.

(5分)维生素B6的化学名称是_____。

? A. 吡哆醇

? B. 视黄醇

? C. 硫胺素

? D. 生物素

纠错

得分:5

知识点:食品化学

展开解析

答案A

解析

3.

(5分)用于延缓含油脂食品氧化的抗氧化剂,通常属于以下哪一类化学物质_____。? A. 酚类物质

? B. 酯类物质

? C. 羧酸类物质

? D. 醌类物质

纠错

得分:5

知识点:食品化学

展开解析

解析

4.

(5分)要使蛋白质类食品具有良好的持水性,可以添加以下哪一种添加剂_____。? A. 谷氨酸单钠

? B. 维生素C

? C. 磷酸盐

? D. 大豆磷脂

纠错

得分:5

知识点:食品化学

展开解析

答案C

解析

5.

(5分)下面哪一点不是固相化酶的优点_____。

? A. 便于产物和底物的分离

? B. 使酶反应可以连续进行

? C. 提高了酶的活性

? D. 提高了酶的利用率

得分:5

知识点:食品化学

展开解析

答案C

解析

6.

(5分)以下哪一类物质不是食品中苦味的来源_____。? A. 含硫原子和双键的小分子物质

? B. Mg2+等半径较大的离子

? C. 咖啡因等生物碱

? D. 柚皮苷等甙类

纠错

得分:5

知识点:食品化学

展开解析

答案A

解析

7.

(5分)一种富含不饱和脂肪酸的脂肪发生了氧化,你估计它的碘价测定值会有怎样的变化_____。

? A. 不发生变化

? B. 上升

? C. 下降

? D. 先上升后下降

纠错

得分:5

知识点:食品化学

展开解析

答案C

解析

8.

(5分)关于冷冻低温储藏可以延长生鲜食品保质期的原因,以下哪一种解释是不正确的_ ____。

? A. 因为低温下分子移动性降低,使多数化学反应速度下降

? B. 因为低温下多数酶的活动受到抑制,因此食品的品质不易变化

? C. 因为低温下自由水分结冰,水分活度比未结冰前下降,因而食品中各种反应不易发生

? D. 因为低温下微生物的活动受到抑制,因此避免了食品的腐败

纠错

得分:5

知识点:食品化学

展开解析

答案C

解析

9.

(5分)蔗糖、葡萄糖、果糖、乳糖4种糖中,按照溶解性的大小排列是_____。? A. 果糖>葡萄糖>蔗糖>乳糖

? B. 果糖>蔗糖>乳糖>葡萄糖

? C. 果糖>蔗糖>葡萄糖>乳糖

? D. 蔗糖>果糖>葡萄糖>乳糖

纠错

得分:5

知识点:食品化学

展开解析

答案C

解析

10.

(5分)在烤蛋糕时为了让色泽美观,往往在表面刷一层蛋液,为什么_____。

? A. 因为鸡蛋中含有糖类,可以在高温下发生焦糖化反应

? B. 因为鸡蛋中含有黄色的核黄素,它是天然色素

? C. 因为鸡蛋中富含蛋白质,可以与蛋糕中的糖类发生美拉德反应

? D. 因为鸡蛋中含有酚氧化酶,可以在表面促进褐变

纠错

得分:5

知识点:食品化学

展开解析

答案C

解析

11.

(5分)要生产一种富含类胡萝卜素的颜色鲜艳的食品,可能发生的问题是_____。? A. 该色素可能受到水解酶的催化作用发生降解而导致产品褪色。

? B. 该色素可能在加热中被大量破坏而导致产品褪色。

? C. 该色素可能在储藏过程中发生氧化而导致产品褪色。

? D. 该色素可能因为溶水流失而导致产品褪色。

纠错

得分:5

知识点:食品化学

展开解析

解析

12.

(5分)以下哪一种风味的感知阈值最低_____。

? A. 酸味

? B. 咸味

? C. 甜味

? D. 苦味

纠错

得分:5

知识点:食品化学

展开解析

答案D

解析

13.

(5分)除了不饱和脂肪酸,脂质自由基还可能引起下列哪种食品成分的损失_____。? A. 维生素

? B. 钙元素

? C. 蛋白质

? D. 碳水化合物

得分:5

知识点:食品化学

展开解析

答案C

解析

14.

(5分)有关食品的风味,以下哪一种说法不正确_____。

? A. 在焙烤制品当中,羰氨反应是风味物质产生的重要来源之一。

? B. 在葱和蒜当中,胱氨酸和半胱氨酸产生的硫化氢是风味的主要来源。? C. 在水果当中,小分子醛、醇、酯类等挥发性物质是香气的主要成分。? D. 在牛奶当中,短链脂肪酸是风味的主要来源。

纠错

得分:5

知识点:食品化学

展开解析

答案B

解析

15.

(5分)从结构上来分析,以下哪一种淀粉制成的粉条最不容易煮烂_____。

? A. 磷酸淀粉

? B. 可溶性淀粉

? C. 交联淀粉

? D. 氧化淀粉

纠错

得分:5

知识点:食品化学

展开解析

答案C

解析

16.

(5分)相比之下,以下哪一种措施抑制土豆片的酶促褐变的效果最差_____。? A. 加入1%氯化钠

? B. 加入1%亚硫酸钠

? C. 加入1%柠檬酸

? D. 加入1%抗坏血酸

纠错

得分:5

知识点:食品化学

展开解析

解析

17.

(5分)如果希望迅速地将淀粉水解成小分子糊精,应当加入哪一种酶_____。? A. α-1,6糖苷键酶

? B. 葡萄糖淀粉酶

? C. α-淀粉酶

? D. β-淀粉酶

纠错

得分:5

知识点:食品化学

展开解析

答案C

解析

18.

(5分)化学结构为多个共轭双键的维生素是_____。

? A. 视黄醇

? B. 核黄素

? C. 吡哆醇

? D. 叶酸

得分:5

知识点:食品化学

展开解析

答案A

解析

19.

(5分)仅从化学稳定性来说,以下哪一种脂肪更适合用来进行高温煎炸烹调_____。? A. 富含饱和脂肪酸的椰子油

? B. 含长链不饱和脂肪酸的鱼油

? C. 富含单不饱和脂肪酸的橄榄油

? D. 富含多不饱和脂肪酸的大豆油

纠错

得分:5

知识点:食品化学

展开解析

答案C

解析

20.

(5分)什么样的蛋白质乳化能力强_____。

? A. 三级结构不发达,疏水氨基酸比亲水氨基酸多

? B. 三级结构发达,疏水氨基酸比亲水氨基酸多

? C. 三级结构发达,分子中亲水和疏水部分相对集中? D. 三级结构不发达,分子中亲水和疏水部分相对集中纠错

得分:5

知识点:食品化学

食品化学第二章水知识点总结

食品化学第二章水知识点总结 第二章水分 2.1食品中的水分含量和功能2.1.1水分含量 ?普通生物和食物中的水分含量为3 ~ 97%?生物体中水的含量约为70-80%。动物体内的水分含量为256±199,随着动物年龄的增长而减少,而成年动物体内的水分含量为58-67% 不同部位水分含量不同:皮肤60 ~ 70%; 肌肉和器官脏70 ~ 80%;骨骼12-15%植物中 水分的含量特征?营养器官组织(根、茎和叶的薄壁组织)的含量高达70-90%?生殖器官和组织(种子、微生物孢子)的含量至少为12-15%表2-1某些食物的含水量 食物的含水量(%) 卷心菜,菠菜90-95猪肉53-60新鲜鸡蛋74牛奶88冰淇淋65大米12面包35饼干3-8奶油15-20 2.2水的功能 2.2.1水在生物体中的功能 1。稳定生物大分子的构象,使它们表现出特定的生物活性2。体内化学介质使生化反应顺利进行。营养物质,代谢载体4。热容量大,体温调节5。润滑 。此外,水还具有镇静和强有力的作用。护眼、降血脂、减肥、美容2.2.2水的食物功能1。食品成分 2。展示颜色、香气、味道、形状和质地特征3。分散蛋白质、淀粉并形成溶胶4。影响新鲜度和硬度

5。影响加工。它起着饱和和膨胀的作用。它影响 2.3水的物理性质2. 3.1水的三态 1,具有水-蒸汽(100℃/1个大气压)2、水-冰(0℃/1个大气压)3、蒸汽-冰(> 0℃/611帕以下) 的特征:水、蒸汽、冰三相共存(0.0098℃/611帕)* * 2.3.2水的重要物理性质256水的许多物理性质,如熔点、沸点、比热容、熔化热、汽化热、表面张力和束缚常数 数,都明显较高。*原因: 水分子具有三维氢键缔合, 1水的密度在4℃时最高,为1;水结冰时,0℃时冰密度为0.917,体积膨胀约为9%(1.62毫升/升)。实际应用: 是一种容易对冷冻食品的结构造成机械损伤的性质,是冷冻食品工业中应注意的问题。水的沸点与气压成正比。当气压增加时,它的沸腾电流增加。当空气压力下降时,沸点下降 低 : (1)牛奶、肉汁、果汁等热敏性食品的浓缩通常采用减压或真空来保护食品的营养成分。低酸度罐头的灭菌(3)高原烹饪应使用高压3。水的比热大于 。水的比热较大,因为当温度升高时,除了分子的动能需要吸收热量外,同时相关分子在转化为单个分子时需要吸收热量。这样水温就不容易随着温度的变化而变化。例如,海洋气候就是这样

食品化学复习提纲(回答问题)

二、回答问题 1)试论述水分活度与食品的安全性的关系? 水分活度是控制腐败最重要的因素。总的趋势是,水分活度越小的食物越稳定,较少出现腐败变质现象。具体来说水分活度与食物的安全性的关系可从以下按个方面进行阐述: 1.从微生物活动与食物水分活度的关系来看:各类微生物生长都需要一定的水分活度,大多数细 菌为0.94~0.99,大多数霉菌为0.80~0.94,大多数耐盐菌为0.75,耐干燥霉菌和耐高渗透压酵母为0.60~0.65。当水分活度低于0.60时,绝大多数微生物无法生长。 2.从酶促反应与食物水分活度的关系来看:水分活度对酶促反应的影响是两个方面的综合,一方 面影响酶促反应的底物的可移动性,另一方面影响酶的构象。 3.从水分活度与非酶反应的关系来看:脂质氧化作用:在水分活度较低时食品中的水与氢过氧化 物结合而使其不容易产生氧自由基而导致链氧化的结束,当水分活度大于0.4 水分活度的增 加增大了食物中氧气的溶解。加速了氧化,而当水分活度大于0.8 反应物被稀释, 4.氧化作用降低。Maillard 反应:水分活度大于0.7 时底物被稀释。水解反应:水分是水解反 应的反应物,所以随着水分活度的增大,水解反应的速度不断增大。 2)什么是糖类的吸湿性和保湿性?举例说明在食品中的作用? 糖类含有许多羟基与水分子通过氢键相互作用。具有亲水功能。吸湿性是指糖在较高的空气湿度下吸收水分的性质。表示糖以氢键结合水的数量大小。保湿性指糖在较低空气湿度下保持水分的性质。表示糖与氢键结合力的大小有关,即键的强度大小。软糖果制作则需保持一定水分,即保湿性(避免遇干燥天气而干缩),应用果葡糖浆、淀粉糖浆为宜。蜜饯、面包、糕点制作为控制水分损失、保持松软,必须添加吸湿性较强的糖。 3)多糖在食品中的增稠特性与哪些因素有关? 由于分子间的摩擦力,造成多糖具有增稠特性。多糖的黏度主要是由于多糖分子间氢键相互作用产生,还受到多糖分子质量大小的影响。流变学的基本内容是弹性力学和黏性流体力学。食品的流变学性质和加工中的切断、搅拌、混合、冷却等操作有很大关系,尤其是与黏度的关系极大。 4)环糊精在食品工业中的应用? 利用环糊精的疏水空腔生成包络物的能力,可使食品工业上许多活性成分与环糊精生成复合物,来达到稳定被包络物物化性质,减少氧化、钝化光敏性及热敏性,降低挥发性的目的,因此环糊精可以用来保护芳香物质和保持色素稳定。环糊精还可以脱除异味、去除有害成分。它可以改善食品工艺和品质此外,环糊精还可以用来乳化增泡,防潮保湿,使脱水蔬菜复原等。

食品化学各章重点内容

第一章食品中的水分 1食品的水分状态与吸湿等温线中的分区的关系如何? 2食品的水分活度Aw与食品温度的关系如何? 3食品的水分活度Aw与食品稳定性的关系如何?(水分活度对食品稳定性/品质有哪些影响?)4在水分含量一定时,可以选择哪些物质作为果蔬脯水分活度降低剂? 5水具有哪些异常的物理性质?并从理论上加以解释。 6食品的含水量和水分活度有何区别? 7 如何理解液态水既是流动的,又是固定的? 8水与溶质作用有哪几种类型?每类有何特点? 9为什么说不能用冰点以下食品水分活度预测冰点以上水分活度的性质? 10 水在食品中起什么作用? 11为什么说食品中最不稳定的水对食品的稳定性影响最大? 12冰对食品稳定性有何影响?(冻藏对食品稳定性有何影响?)采取哪些方法可以克服冻藏食品的不利因素? 13食品中水的存在状态有哪些?各有何特点? 14试述几种常见测定水分含量方法的原理和注意事项? 15 水分活度、分子移动性和Tg在预测食品稳定性中的作用有哪些?请对他们进行比较? 16 为什么冷冻食品不能反复解冻—冷冻? 17 食品中水分的转移形式有哪些类型?如何理解相对湿度越小,在其他相同条件时,空气干燥能力越大? 第二章食品中的糖类 1为什么杏仁,木薯,高粱,竹笋必须充分煮熟后,在充分洗涤? 2利用那种反应可测定食品,其它生物材料及血中的葡萄糖?请写出反应式? 3什么是碳水化合物,单糖,双糖,及多糖? 4淀粉,糖元,纤维素这三种多糖各有什么特点? 5单糖为什么具有旋光性? 6如何确定一个单糖的构型? 7什么叫糖苷?如何确定一个糖苷键的类型? 8采用什么方法可使食品不发生美拉德反应? 9乳糖是如何被消化的?采用什么方法克服乳糖酶缺乏症? 10低聚糖的优越的生理活性有哪些? 11为什么说多糖是一种冷冻稳定剂? 12什么是淀粉糊化和老化? 13酸改性淀粉有何用途? 14 HM和LM果胶的凝胶机理? 15卡拉胶形成凝胶的机理及用途? 16什么叫淀粉糊化?影响淀粉糊化的因素有哪些?试指出食品中利用糊化的例子? 17影响淀粉老化的因素有哪些?谈谈防止淀粉老化的措施?试指出食品中利用老化的例子? 18试述膳食纤维及其在食品中的应用?试从糖的结构说明糖为何具有亲水性? 19 阐述美拉德反应的机理及其对食品加工的影响。 20 焦糖是如何形成的?它在食品加工中有何作用?影响因素有哪些? 第三章食品中的蛋白质 1.有机溶剂(如乙醇、丙酮)为何能使蛋白质产生沉淀? 2.为什么通常在面粉中添加氧化剂能使面粉弹性增强,添加还原剂则使弹性降低? 3.盐对蛋白质的溶解性有何影响? 4.简述影响蛋白质水合作用的外界因素有哪些?且如何影响的?

食品化学名词解释及简答题整理

1.水分活度:食品中水分逸出的程度,可以用食品中水的蒸汽压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。 2.吸温等温线:在恒定温度下,食品的水分含量(用每单位干物质质量中水的质量表示)与它的Aw之间的关系图称为吸湿等温线(Moisture sorption isotherms缩写为MSI)。 分子流动性(Mm):是分子的旋转移动和平转移动性的总度量。决定食品Mm值的主要因素是水和食品中占支配地位的非水成分。 3.氨基酸等电点:偶极离子以电中性状态存在时的pH被称为等电点 4. 蛋白质一级结构:指氨基酸通过共价键连接而成的线性序列; 二级结构:氨基酸残基周期性的(有规则的)空间排列; 三级结构:在二级结构进一步折叠成紧密的三维结构。(多肽链的空间排列。) 四级结构:是指含有多于一条多肽链的蛋白质分子的空间排列。 5.蛋白质变性:天然蛋白质分子因环境因素的改变而使其构象发生改变,这一过程称为变性。 6.蛋白质的功能性质:在食品加工、保藏、制备和消费期间影响蛋白质在食品体系中性能的那些蛋白质的物理和化学性质。 7.水合能力:当干蛋白质粉与相对湿度为90-95%的水蒸汽达到平衡时,每克蛋白质所结合的水的克数。 8单糖:指凡不能被水解为更小单位的糖类物质,如葡萄糖、果糖等。 9.低聚糖(寡糖):凡能被水解成为少数,2-6个单糖分子的糖类物质,如蔗糖、乳糖、麦芽糖等。 10.多糖:凡能水解为多个单糖分子的糖类物质,如淀粉、纤维素、半纤维素、果胶等。 11.美拉德反应:凡是羰基与氨基经缩合,聚合生成类黑色素的反应称为羰氨反应。 12.淀粉的糊化:在一定温度下,淀粉粒在水中发生膨胀,形成粘稠的糊状胶体溶液,这一现象称为"淀粉的糊化"。 13.糊化淀粉的老化:已糊化的淀粉溶液,经缓慢冷却或室温下放置,会变成不透明,甚至凝结沉淀。 14改性淀粉:为适应食品加工的需要,将天然淀粉经物理、化学、酶等处理,使淀粉原有的物理性质,如水溶性、粘度、色泽、味道、流动性等发生变化,这样经过处理的淀粉称为变(改)性淀粉。 15同质多晶现象:化学组成相同的物质可以形成不同形态晶体,但融化后生成相同液相的现象叫同质多晶现象,例如由单质碳形成石墨和金刚石两种晶体。 16脂的介晶相(液晶):油脂的液晶态可简单看作油脂处于结晶和熔融之间,也就是液体和固体之间时的状态。此时,分子排列处于有序和无序之间的一种状态,即相互作用力弱的烃链区熔化,而相互作用力大的极性基团区未熔化时的状态。脂类在水中也能形成类似于表面活性物质存在方式的液晶结构。 17油脂的塑性是与油脂的加工和使用特性紧密相关的物理属性。其定义为在一定外力的作用下,表观固体脂肪所具有的抗变性的能力。 18乳化剂:能改善乳浊液各构成相之间的表面张力(界面张力),使之形成均匀、稳定的分散体系的物质。19油脂自动氧化(autoxidation):是活化的含烯底物(如不饱和油脂)与基态氧发生的游离基反应。生成氢过氧化物,氢过氧化物继而分解产生低级醛酮、羧酸。这些物质具有令人不快的气味,从而使油脂发生酸败(蛤败)。 20抗氧化剂:能推迟会自动氧化的物质发生氧化,并能减慢氧化速率的物质。

食品化学

绪论 一、名词解释 1.食品化学:是从化学的角度和分子水平上研究食品成分的结构、理化性质、营养作用、安全性及享受性,以及各种成分在食物生产、食品加工和贮藏期间的变化及其对食品属性影响的科学。 2.营养素:是指能维持人体正常生长发育和新陈代谢所必需的物质。 3.食物或食料:指含有营养素的物料。 4.食品:将食物或食料进行加工以满足人们的营养及感官需要和保障其安全的产品。 水分 一、名词解释 1.离子水合作用:即不具有氢键受体又没有给体的简单无机离子与水相互作用时,仅仅是离子-偶极结合作用。 2.疏水相互作用:水体系中存在多个分离的疏水性基团,疏水基团之间相互聚集,从而使他们雨水的接触面积减小的过程。 3.疏水水合作用:疏水性物质与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强的过程。 4.水分活度:是指食品中水分蒸汽分压与同温度下纯水的饱和蒸汽压之比。定义式为a w=P/P0 5.水分吸着等温线:在恒温条件下,食品的含水量与水分活度aw的关系曲线。 6.单分子层水:和食品中非水物质结合的第一层水。 7.滞后现象:同一种食品按回收法与解析法制作的MSI图形不一致,不相互重叠的现象。 8.状态图:描述不同含水量的食品在不同温度下所处的物理状态(平衡状态和非平衡状态的信息)的图线。 二、问答题 1. 简述食品中水分的存在状态。

食品中的水分一般分为自由水与结合水两种状态。结合水指存在于非水成分附近的、与溶质分子之间通过化学键结合的水;自由水指没有被非水物质化学结合的,而主要通过物理作用而滞留的水。 2.简述食品中结合水和自由水的性质区别。 1)食品中结合水与非水成分缔合强度大,其蒸汽压也比自由水低得多。 2)结合水的冰点比自由水低得多。 3)结合水不能作为溶质的溶剂。 4)自由水能被微生物利用,而结合水不能。 3.简述食品中水分与非水成分的相互作用。 1)水与离子和离子基团的相互作用:离子-偶极的极性结合; 2)水与具有氢键键合能力的中性基团的相互作用:与水通过氢键键合; 3)水与非极性物质的相互作用: 疏水水合作用:疏水基团附近水分子之间氢键键合增强; 疏水相互作用:疏水基团与水的接触面积减小的过程。 4)水与双亲分子的相互作用。 4.论述水分活度与脂质氧化的关系,并分析可能的原因。 1)水分活度与脂质氧化的关系:在水分活度较低时食品中的水与氢过氧化物结 合而使脂质不容易产生氧自由基而导致链氧化结束的过程; 2)当水分活度小于0.35时,脂类氧化反应很迅速; 3)当水分活度为0.35-0.7时,水分活度的增加增大了食物中氧气的溶解,加 速了氧化; 4)当水分活度大于0.7反应物被稀释,脂类氧化反应速率降低。 5.论述冰在食品稳定性中的作用。 1)冷冻对反应速率有两个相反的影响。降低温度使反应变得缓慢,而冷冻所产 生的浓缩效应有时候会导致反应速率的增大。 2)不利:随着食品原料的冻结、细胞内冰晶的形成,将破坏细胞的结构,细胞 壁发生机械损伤,解冻时细胞内的物质会移至细胞外,结合水减少,使一些食物冻结后失去饱满性、膨胀性和脆性,会对食品质量造成不利影响。3)有利:食品冻结后会伴随浓缩效应,这将形成低共熔混合物,水的结构和水

食品化学重点

食品化学学习目的与要求 第一章绪论 1.了解食品化学的概念、发展简史、研究内容和目的以及食品化学在食品科学中的作用和地位。 2.掌握食品中主要的化学变化以及对食品品质的影响。4页图表 3.熟悉食品化学的一般研究方法。 1. 食品化学:研究食品的组成,特性及其产生的化学变化的科学。 食品化学:死的或将死的生物物质。 2.食品化学研究内容四个方面 ①确定食品化学的化学组成、营养价值、功能(艺)性质、安全性和品质等重要方面; ②食品在加工和储藏过程中可能发生的各种化学和生物化学变化及其反应动力学; ③确定上述变化中影响食品品质和安全性的主要因素; ④将研究结果应用于食品的加工和储藏。 3.食品化学的研究方法 食品化学的研究成果最终转化为:合理的配料比、有效的反应物接触屏障、适当的保护或催化措施的应用、最佳反应时间和温度的设定、光照、氧含量、水分活度和pH值等的确定,从而得出最佳的食品加工储藏方法。第二章水 1.了解水在食品中的重要作用、冰的结构及性质、含水食品的水分转移规律,水在食品中的存在状态以及水在食品体系中的 行为对食品质地、风味和稳定性的影响。 2.掌握水的结构及性质,水分活度和水分等温吸湿线的概念及意义 3.理解水分活度与食品的稳定性之间的关系。 1.水在食品中的作用: 水在食品加工储藏过程中是化学和生物化学的反应介质,又是水解过程的反应产物。 从食品的理化性质上讲,水在食品中起着溶解分散蛋白质、淀粉等可溶性成分的作用,使它们形成溶液或凝胶。 从食品品质方面讲,对食品的鲜度、硬度、流动性、风味等方面都有重要的影响,水的质量关系到产品的质量。 从食品的安全性方面讲,水是微生物繁殖的必须条件。 从食品工艺角度讲,水起着膨润、浸透、均匀化的功能。 2.水和冰的物理性质: 高的熔点和沸点,具有很大的表面张力、热容以及相变热值。 介电常数大。 水的密度很小,水在凝固时具有异常的膨胀性(水结冰后体积约增加9%)。 水的黏度低,具有流动性。 水的热导率较大,0℃时冰的热导率为同温下水的热导率的4倍。 3.水在食品中的存在状态 一、水与溶质的相互作用 类型实例作用强度 (与水-水氢键比) 偶极-离子水-游离离子 水-有机分子上的带电基团 较大 偶极-偶极水-蛋白质NH 水-蛋白质CO 水-侧链OH 近似相等

食品化学复习知识点

第二章 一、水的结构 水是唯一的以三种状态存在的物质:气态、液态和固态(冰) (1)气态在气态下,水主要以单个分子的形式存在 (2)液态在液态下,水主要以缔合状态(H2O)n存在,n可变 氢键的特点;键较长且长短不一,键能较小(2-40kj/mol) a.氢键使得水具有特别高的熔点、沸点、表面张力及各种相变热; b.氢键使水分子有序排列,增强了水的介电常数;也使水固体体积增大; c.氢键的动态平衡使得水具有较低的粘度; d.水与其它物质(如糖类、蛋白类)之间形成氢键,会使水的存在形式发生改变,导致固定态、游离态之分。 (3)固态在固体(冰)状态下,水以分子晶体的形式存在;晶格形成的主要形式是水分子之间的规则排列及氢键的形成。由于晶格的不同,冰有11种不同的晶型。 水冷冻时,开始形成冰时的温度低于冰点。把开始出现稳定晶核时的温度称为过冷温度; 结晶温度与水中是否溶解有其它成分有关,溶解成分将使水的结晶温度降低,大多数食品中水的结晶温度在-1.0~-2.0C?。 冻结温度随着冻结量的增加而降低,把水和其溶解物开始共同向固体转化时的温度称为低共熔点,一般食品的低共熔点为-55~-65℃。 水结晶的晶型与冷冻速度有关。 二、食品中的水 1.水与离子、离子基团相互作用

当食品中存在离子或可解离成离子或离子基团的盐类物质时,与水发生静电相互作用,因而可以固定相当数量的水。例如食品中的食盐和水之间的作用 2.水与具有氢键能力的中性基团的相互作用 许多食品成分,如蛋白质、多糖(淀粉或纤维素)、果胶等,其结构中含有大量的极性基团,如羟基、羧基、氨基、羰基等,这些极性基团均可与水分子通过氢键相互结合。因此通常在这些物质的表面总有一定数量的被结合、被相对固定的水。带极性基团的食品分子不但可以通过氢键结合并固定水分子在自己的表面,而且通过静电引力还可吸引一些水分子处于结合水的外围,这些水称为邻近水(尿素例外)。 3.结合水与体相水的主要区别 (1)结合水的量与食品中所含极性物质的量有比较固定的关系,如100g蛋白质大约可结合50g 的水,100g淀粉的持水能力在30~40g;结合水对食品品质和风味有较大的影响,当结合水被强行与食品分离时,食品质量、风味就会改变; (2)蒸汽压比体相水低得多,在一定温度下(100℃)结合水不能从食品中分离出来;(3)结合水不易结冰,由于这种性质使得植物的种子和微生物的孢子得以在很低的温度下保持其生命力;而多汁的组织在冰冻后细胞结构往往被体相水的冰晶所破坏,解冻后组织不同程度的崩溃; (4)结合水不能作为可溶性成分的溶剂,也就是说丧失了溶剂能力; (5)体相水可被微生物所利用,结合水则不能。 食品的含水量,是指其中自由水与结合水的总和。 三、水分活度 1水分活度与微生物之间的关系 水分活度决定微生物在食品中的萌芽、生长速率及死亡率。

食品化学知识点

第一章绪论 1、食品化学:是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、贮存和运销过程中的变化及其对食品品质和食品安全性影响的科学,是为改善食品品质、开发食品新资源、革新食品加工工艺和贮运技术、科学调整膳食结构、改进食品包装、加强食品质量控制及提高食品原料加工和综合利用水平奠定理论基础的学科。 2、食品化学的研究范畴 第二章水 3、在温差相等的情况下,为什么生物组织的冷冻速率比解冻速率更快? 4、净结构破坏效应:一些离子具有净结构破坏效应(net structure-breaking effect),如:K+、Rb+、Cs+、NH4+、Cl- 、I- 、Br- 、NO3- 、BrO3- 、IO3-、ClO4- 等。这些大的正离子和负离子能阻碍水形成网状结构,这类盐溶液的流动性比纯水更大。 净结构形成效应:另外一些离子具有净结构形成效应(net structure-forming effect),这些离子大多是电场强度大、离子半径小的离子或多价离子。它们有助于形成网状结构,因此这类离子的水溶液的流动性比纯水的小,如:Li+、Na+、Ca2+、Ba2+、Mg2+、Al3+、F-、OH-等。 从水的正常结构来看,所有离子对水的结构都起到破坏作用,因为它们都能阻止水在0℃下结冰。

5、水分活度 目前一般采用水分活度表示水与食品成分之间的结合程度。 aw=f/f0 其中:f为溶剂逸度(溶剂从溶液中逸出的趋势);f0为纯溶剂逸度。 相对蒸气压(Relative Vapor Pressure,RVP)是p/p0的另一名称。RVP与产品环境的平衡相对湿度(Equilibrium Relative Humidity,ERH)有关,如下: RVP= p/p0=ERH/100 注意:1)RVP是样品的内在性质,而ERH是当样品中的水蒸气平衡时的大气性质; 2)仅当样品与环境达到平衡时,方程的关系才成立。 6、水分活度与温度的关系: 水分活度与温度的函数可用克劳修斯-克拉贝龙方程来表示: dlnaw/d(1/T)=-ΔH/R lnaw=-ΔH/RT+C 图:马铃薯淀粉的水分活度和温度的克劳修斯-克拉贝龙关系 7、食品在冰点上下水分活度的比较: ①在冰点以上,食品的水分活度是食品组成和温度的函数,并且主要与食品的组成有关;而在冰点以下,水分活度仅与食品的温度有关。 ②就食品而言,冰点以上和冰点以下的水分活度的意义不一样。如在-15℃、水分活度为0.80时微生物不会生长且化学反应缓慢,然而在20℃、水分活度为0.80 时,化学反应快速进行且微生物能较快地生长。 ③不能用食品在冰点以下的水分活度来预测食品在冰点以上的水分活度,同样也不能用食品冰点以上的水分活度来预测食品冰点以下的水分活度。 8、水分吸附等温线 在恒定温度下,用来联系食品中的水分含量(以每单位干物质中的含水量表示)与其水分活度的图,称为水分吸附等温线曲线(moisture sorption isotherm,MSI)。 意义: (1)测定什么样的水分含量能够抑制微生物的生长; (2)预测食品的化学和物理稳定性与水分含量的关系; (3)了解浓缩和干燥过程中样品脱水的难易程度与相对蒸气压(RVP)的关系; (4)配制混合食品必须避免水分在配料之间的转移; (5)对于要求脱水的产品的干燥过程、工艺、货架期和包装要求都有很重要的作用。 9、MSI图形形态

(整理)食品化学知识点1

名词解释 单糖构型:通常所谓的单糖构型是指分子中离羰基碳最远的那个手性碳原子的构型。如果在投影式中此碳原子上的—OH具有与D(+)-甘油醛C2—OH相同的取向,则称D型糖,反之则为L型糖 α异头物β异头物:异头碳的羟基与最末的手性碳原子的羟基具有相同取向的异构体称α异头物,具有相反取向的称β异头物 转化糖:蔗糖水溶液在氢离子或转化酶的作用下水解为等量的葡萄糖与果糖的混合物,称为转化糖, 轮纹:所有的淀粉颗粒显示出一个裂口,称为淀粉的脐点。它是成核中心,淀粉颗粒围绕着脐点生长。大多数淀粉颗粒在中心脐点的周围显示多少有点独特的层状结构,是淀粉的生长环,称为轮纹 膨润与糊化:β-淀粉在水中经加热后,一部分胶束被溶解而形成空隙,于是水分子浸入内部,与余下的部分淀粉分子进行结合,胶束逐渐被溶解,空隙逐渐扩大,淀粉粒因吸水,体积膨胀数十倍,生淀粉的胶束即行消失,这种现象称为膨润现象。继续加热胶束则全部崩溃,淀粉分子形成单分子,并为水包围,而成为溶液状态,由于淀粉分子是链状或分枝状,彼此牵扯,结果形成具有粘性的糊状溶液。这种现象称为糊化。 必需脂肪酸:人体及哺乳动物能制造多种脂肪酸,但不能向脂肪酸引入超过Δ9的双键,因而不能合成亚油酸和亚麻酸。因为这两种脂肪酸对人体功能是必不可少的,但必须由膳食提供,因此被称为必需

脂肪 油脂的烟点、闪点和着火点:油脂的烟点、闪点和着火点是油脂在接触空气加热时的热稳定性指标。烟点是指在不通风的情况下观察到试样发烟时的温度。闪点是试样挥发的物质能被点燃但不能维持燃烧的温度。着火点是试样挥发的物质能被点燃并能维持燃烧不少于5 s 的温度。 同质多晶现象:化学组成相同的物质,可以有不同的结晶结构,但融化后生成相同的液相(如石墨和金刚石),这种现象称为同质多晶现象。 油脂的氢化:由于天然来源的固体脂很有限,可采用改性的办法将液体油转变为固体或半固体脂。酰基甘油上不饱和脂肪酸的双键在高温和Ni、Pt等的催化作用下,与氢气发生加成反应,不饱和度降低,从而把在室温下呈液态的油变成固态的脂,这种过程称为油脂的氢化蛋白质熔化温度:当蛋白质溶液被逐渐地加热并超过临界温度时,蛋白质将发生从天然状态至变性状态的剧烈转变,转变中点的温度被称为熔化温度Tm或变性温度Td,此时天然和变性状态蛋白质的浓度之比为l。 盐析效应:当盐浓度更高时,由于离子的水化作用争夺了水,导致蛋白质“脱水”,从而降低其溶解度,这叫做盐析效应。 蛋白质胶凝作用:将发生变性的无规聚集反应和蛋白质—蛋白质的相互作用大于蛋白质—溶剂的相互作用引起的聚集反应,定义为凝结作用。凝结反应可形成粗糙的凝块。变性的蛋白质分子聚集并形成有

食品化学

食品化学 ①根据化学结构和化学性质,碳水化合物是属于一类多羟基醛或酮的化合物。 ②糖苷的溶解性能与配体有很大关系。 ③淀粉溶液冻结时形成两相体系,一相为结晶水,另一相是玻璃态。 ④一次摄入大量苦杏仁易引起中毒,是由于苦杏仁苷在体内彻底水解产生氢氰酸,导致中毒。 ⑤多糖分子在溶液中的形状是围绕糖基连接键振动的结果,一般呈无序的无规线团状。 ⑥喷雾或冷冻干燥脱水食品中的碳水化合物随着脱水的进行,使糖-水的相互作用转变成糖-风味 剂的相互作用。 ⑦环糊精由于内部呈非极性环境,能有效地截留非极性的风味成分和其他小分子化合物。 ⑧碳水化合物在非酶褐变过程中除了产生深颜色类黑精色素外,还产生了多种挥发性物质。 ⑨褐变产物除了能使食品产生风味外,它本身可能具有特殊的风味或者增强其他的风味,具有这种 双重作用的焦糖化产物是麦芽酚和乙基麦芽酚。 ⑩糖醇的甜度除了木糖醇的甜度和蔗糖相近外,其他糖醇的甜度均比蔗糖低。 11甲壳低聚糖是一类由N-乙酰-(D)-氨基葡萄糖或D-氨基葡萄糖通过β-1,4 糖苷键连接起来的低聚合度的水溶性氨基葡聚糖。 12卡拉胶形成的凝胶是热可逆的,即加热凝结融化成溶液,溶液放冷时,又形成凝胶。 13硒化卡拉胶是由亚硒酸钠与卡拉胶反应制得。 14褐藻胶是由糖醛酸结合成的大分子线性聚合物,大多是以钠盐形式存在。 15儿茶素按其结构,至少包括有A、B、C三个核,其母核是α-苯基苯并吡喃衍生物。 16食品中丙烯酰胺主要来源于高温加工过程。 17低聚木糖是由2~7个木糖以β(1→4)糖苷键结合而成。 18马铃薯淀粉在水中加热可形成非常黏的透明溶液。 19淀粉糊化的本质就是淀粉微观结构从有序转变成无序 20N-糖苷在水中不稳定,通过一系列复杂反应产生有色物质,是引起美拉德褐变的主要原因。 21脂肪酸是指天然脂肪水解得到的脂肪族一元羧酸。 22天然脂肪中主要是以三酰基甘油形式存在。 23乳脂的主要脂肪酸是棕榈酸、油酸和硬脂酸。 24花生油和玉米油属于油酸一亚油酸酯。 25海产动物油脂中含大量长链多不饱和脂肪酸,富含维生素A和维生素D。 26种子油脂一般来说不饱和脂肪酸优先占据甘油酯Sn-2位置。 27人造奶油要有良好的涂布性和口感,这就要求人造奶油的晶型为细腻的β’型。 28在动物体内脂肪氧化酶选择性的氧化花生四烯酸,产生前列腺素、凝血素等活性物质。 29脂类的氧化热聚合是在高温下,甘油酯分子在双键的α-碳上均裂产生自由基。 30酶促酯交换是利用脂肪酶作催化剂进行的酯交换。 31自然界中的油脂多为混合三酰基甘油酯,构型为L-型。 32月桂酸酯来源于棕榈植物,其月桂酸含量高,不饱和脂肪酸含量少,熔点较低。 豆油、小麦胚芽油、亚麻籽油和紫苏油属于亚麻酸酯类油脂。 33动物脂肪含有相当多的全饱和的三酰甘油,所以熔点较高。 34精炼后的油脂其烟点一般高于240℃。 35α 型油脂中脂肪酸侧链为无序排列,它的熔点低,密度小,不稳定。 36β型的脂肪酸排列得更有序,是按同一方向排列的,它的熔点高,密度大,稳定性好。 37天然油脂中,大豆油、花生油、橄榄油、椰子油、红花油、可可脂和猪油等容易形成β型晶体38棉子油、棕榈油、菜籽油、乳脂和牛脂易形成稳定的β’型晶体。

食品化学名词解释

食品化学名词解释 1、食品化学:一门将基础学科和工程学的理论用于研究食品基本的物理、化学和生物化学性质以及食品加工原理的学问,是一门主要涉及细菌学、化学、生物学和工程学的综合性学科。它是一门涉及到食品的特性及其变化、保藏和改性原理的科学。 2、结合水:是一个样品在某一个温度和较低的相对湿度下的平衡水分含量 3、疏水水合:热力学上,水与非极性物质,如烃类、稀有气体以及脂肪酸、氨基酸和蛋白质的非极性基团相混合无疑是一个不利的过程(ΔG >0)。ΔG= ΔH- T ΔS ΔG为正是因为ΔS是负的。熵的减少是由于在这些不相容的非极性物质的邻近处形成了特殊的结构。此过程被称为疏水水合。 4、疏水缔合(疏水相互作用):当两个分离的非极性基团存在时,不相容的水环境会促使它们缔合,从而减小了水-非极性界面,这是一个热力学上有利的过程(ΔG<0)。此过程是疏水水合的部分逆转,被称为“疏水相互作用”。R(水合的)+R(水合的)→R2(合的)+H 2O 5、水分活度:AW=f/f0 f:溶剂(水)的逸度。逸度:溶剂从溶液逃脱的趋势f0 :纯溶剂的逸度。 6、相对蒸汽压”(RVP)p/p0 是测定项目,有时不等于A w,因此,使用p/p0 项比A w 更为准确。在少数情况下,由于溶质特殊效应使RVP成为食品稳定和安全的不良指标。 7、吸着等温线:在恒定温度下,食品水分含量(每单位质量干物质中水的质量)对P/P0作图得到水分吸着等温线(moisture sorption isotherms,缩写为MSI)。 8、滞后现象:滞后现象就是样品的吸湿等温线和解吸等温线不完全重叠的现象 9、玻璃化温度(Tg):非晶态食品从玻璃态到橡胶态的转变称玻璃化转变,此时的温度称玻璃化温度 10、美拉德反应(羰氨反应):食品在油炸、焙烤、烘焙等加工或贮藏过程中,还原糖(主要是葡萄糖)同游离氨基酸或蛋白质分子中氨基酸残基的游离氨基发生羰氨反应,这种反应被称为美拉德反应。 11、糊化:当β-淀粉在水中加热到一定温度时,淀粉发生膨胀,体积变大,结晶区消失,双折射消失,原来的悬浮液变成粘稠胶体溶液的过程。

食品化学—碳水化合物复习知识点

单糖和低聚糖的性质: (1)甜度 ? 又称比甜度,是一个相对值,通常以蔗糖作为基准物,一般以10%或15%的蔗糖水溶液在20℃时的甜度为1.0。各种单糖或双糖的相对甜度为:蔗糖 1.0,果糖 1.5,葡萄糖 0.7,半乳糖 0.6,麦芽糖0.5,乳糖0.4。 (2)溶解度 ? 常见的几种糖的溶解度如下:果糖78.94% ,374.78g/100g 水,蔗糖 66.60%,199.4g/100g 水,葡萄糖 46.71% ,87.67g/100g 水。 (3)结晶性 ? 就单糖和双糖的结晶性而言:蔗糖>葡萄糖>果糖和转化糖。淀粉糖浆是葡萄糖、低聚和糊精的混合物,自身不能结晶并能防止蔗糖结晶。 (4)吸湿性和保湿性 ? 吸湿性:糖在空气湿度较高的情况下吸收水分的情况。 ? 保湿性:指糖在较高空气湿度下吸收水分在较低空气湿度下散失水分的性质。对于单糖和双糖的吸湿性为:果糖、转化糖>葡萄糖、麦芽糖>蔗糖。 (5)渗透性 相同浓度下下,溶质分子的分子质量越小,溶液的摩尔浓度就越大,溶液的渗透压就越大,食品的保存性就越高。对于蔗糖来说:50%可以抑制酵母的生长,65%可以抑制细菌的生长,80%可以抑制霉菌的生长。 (6)冰点降低 当在水中加入糖时会引起溶液的冰点降低。糖的浓度越高,溶液冰点下降的越大。相同浓度下对冰点降低的程度,葡萄糖>蔗糖>淀粉糖浆。 (7)抗氧化性 糖类的抗氧化性实际上是由于糖溶液中氧气的溶解度降低而引起的 (8)粘度 对于单糖和双糖,在相同浓度下,溶液的粘度有以下顺序:葡萄糖、果糖<蔗糖<淀粉糖浆,且淀粉糖浆的粘度随转化度的增大而降低。与一般物质溶液的粘度不同,葡萄糖溶液的粘度随温度的升高而增大,但蔗糖溶液的粘度则随温度的增大而降低。 单糖和低聚糖属于多官能团类化合物,其中含有醛基、羰基、羟基等多种官能团,因此其化学性质比较复杂,除了有机化学、生物化学中讨论的外,这儿重点讨论这类化合物与食品相关的化学性质。 (1)还原反应 所有单糖及有还原端(即分子中有自由的半缩醛羟基)的低聚糖类均能发生还原反应,产物为糖醇类化合物。 CHO OH H 2OH H H HO 木糖 OH D-OH H 2OH H H HO OH CH 2OH 木糖醇能够还原糖类化合物的还原剂非常多,常 用的是钠汞齐(NaHg )和NaBH 4。由糖还原反应可以得到食品功能性成分。

食品化学重点复习资料(2)

2 论述水分活度与温度的关系。 ⑴当温度处于冰点以上时,水分活度与温度的关系可以用下式来表示: 1ln w H a R T κ?=- 式中T 为绝对温度;R 为气体常数;△H 为样品中水分的等量净吸着热;κ的意义表示为: p p κ-=样品的绝对温度纯水的蒸汽压为时的绝对温度纯水的蒸汽压为时的绝对温度 若以lnαW 对1/T 作图,可以发现其应该是一条直线,即水分含量一定时,在一定的温度范围内,αW 随着温度提高而增加。 ⑵当温度处于冰点以下时,水分活度与温度的关系应用下式来表示: ice ff w 0(SCW)0(SCW)p p p p a == 式中P ff 表示未完全冷冻的食品中水的蒸汽分压;P 0(SCW)表示过冷的纯水蒸汽压;P ice 表示纯冰的蒸汽压。在冰点温度以下的αW 值都是相同的。 4 论述冰在食品稳定性中的作用。 冷冻是保藏大多数食品最理想的方法,其作用主要在于低温,而是因为形成冰。食品冻结后会伴随浓缩效应,这将引起非结冰相的pH 、可滴定酸、离子强度、黏度、冰点等发生明显的变化。此外,还将形成低共熔混合物,溶液中有氧和二氧化碳逸出,水的结构和水与溶质间的相互作用也剧烈改变,同时大分子更加紧密地聚集在一起,使之相互作用的可能性增大。冷冻对反应速率有两个相反的影响,即降低温度使反应变得缓慢,而冷冻所产生的浓缩效应有时候会导致反应速率的增大。随着食品原料的冻结、细胞内冰晶的形成,将破坏细胞的结构,细胞壁发生机械损伤,解冻时细胞内的物质会移至细胞外,致使食品汁液流失,结合水减少,使一些食物冻结后失去饱满性、膨胀性和脆性,会对食品质量造成不利影响。采取速冻、添加抗冷冻剂等方法可降低食品在冻结中的不利影响,更有利于冻结食品保持原有的色、香、味和品质。 1 膳食纤维的理化特性。 (1)溶解性与黏性 膳食纤维分子结构越规则有序,支链越少,成键键合力越强,分子越稳定,其溶解性就越差,反之,溶解性就越好。膳食纤维的黏性和胶凝性也是膳食纤维在胃肠道发挥生理作用的重要原因。 (2)具有很高的持水性 膳食纤维的化学结构中含有许多亲水基团,具有良好的持水性,使其具有吸水功能与预防肠道疾病的作用,而且水溶性膳食纤维持水性高于水不溶性膳食纤维的持水性。 (3)对有机化合物的吸附作用 膳食纤维表面带有很多活性基团而具有吸附肠道中胆汁酸、胆固醇、变异原等有机化合物的功能,从而影响体内胆固醇和胆汁酸类物质的代谢,抑制人体对它们的吸收,并促进它们迅速排出体外。 (4)对阳离子的结合和交换作用 膳食纤维的一部分糖单位具有糖醛酸羧基、羟基和氨基等侧链活性基团。通过氢键作用结合了大量的水,呈现弱酸性阳离子交换树脂的作用和溶解亲水性物质的作用。 (5)改变肠道系统中微生物群系组成 膳食纤维中非淀粉多糖经过食道到达小肠后,由于它不被人体消化酶分解吸收而直接进入大肠,膳食纤在肠内发酵,会繁殖相当多的有益菌,并诱导产生大量的好氧菌群,代替了肠道内存在的厌氧菌群,从而减少厌氧菌群的致癌性和致癌概率。 (6)容积作用 膳食纤维吸水后产生膨胀,体积增大,食用后膳食纤维会对肠胃道产生容积作用而易引起饱腹感。 5 膳食纤维的生理功能。 (1)营养功能 可溶性膳食纤维可增加食物在肠道中的滞留时间,延缓胃排空,减少血液胆固醇水平,减少心脏病、结肠癌发生。不溶性膳食纤维可促进肠道产生机械蠕动,降低食物在肠道中的滞留时间,增加粪便的体积和含水量、防止便秘。 (2)预防肥胖症和肠道疾病 富含膳食纤维的食物易于产生饱腹感而抑制进食量,对肥胖症有较好的调节功能。此外,可降低肠道中消化酶的浓度而降低对过量能量物质的消化吸收;与肠道内致癌物结合后随粪便排出;加快肠腔内毒物的通过,减少致癌物与组织接触的时间。 (3)预防心血管疾病 膳食纤维通过降低胆酸及其盐类的合成与吸收,加速了胆固醇的分解代谢,从而阻

食品化学知识点总结

食品化学知识点总结 1、食品剖析的目的包含两方面。一方面是确切了解营养成分,如维生素,蛋白质,氨基酸和糖类;另一方面是对食品中有害成分进行监测,如黄曲霉毒素,农药残余,多核芳烃及各类添加剂等。 2、食品化学是研究食品的组成、性质以及食品在加工、储藏过程中发生的化学变化的一门科学。 3、食品分析与检测的任务:研究食品组成、性质以及食品在贮藏、加工、包装及运销过程中可能发生的化学和物理变化,科学认识食品中各种成分及其变化对人类膳食营养、食品安全性及食品其他质量属性的影响。 4、生物体六大营养物质:蛋白质、脂类、碳水化合物、无机盐、维生素、水 5、蛋白质:催化作用,调节胜利技能,氧的运输,肌肉收缩,支架作用,免疫作用,遗传物质,调节体液和维持酸碱平衡. 蛋白质种类:动物蛋白和植物蛋白。 6、脂肪:提供高浓度的热能和必不的热能储备. 脂类分为两大类,即油脂和类脂油脂:即甘油三脂或称之为脂酰甘油,是油和脂肪的统称。一般把常温下是液体的称作油,而把常温下是固体的称作脂肪类脂:包括磷脂,糖脂和胆固醇三大类。 7、碳水化合物在体内消化吸收较其他产能营养素迅速且解酵。糖也被称为碳水化合物糖类可以分为四大类:单糖(葡萄糖等),低聚糖(蔗糖、乳糖、麦芽糖等等),多糖(淀粉、纤维素等)以及糖化合物(糖蛋白等等)。 8、矿物质又称无机盐.是集体的重要组成部分.维持细胞渗透压与集体的酸碱平衡,保持神经和肌肉的兴奋性,具有特殊生理功能和营养价值. 9、维生素维持人体正常分理功能所必须的有机营养素.人体需要量少但是也不可缺少 . 10、维生素A:防止夜盲症和视力减退,有抗呼吸系统感染作用;有助于免疫系统功能正常;促进发育,强壮骨骼,维护皮肤、头发、牙齿、牙床的健康;有助于对肺气肿、甲状腺机能亢进症的治疗。 11、维生素B1:促进成长;帮助消化。维生素B2:促进发育和细胞的再生;增进视力。维生素B5:有助于伤口痊愈;可制造抗体抵抗传染病。维生素B6:能适当的消化、吸收蛋白质和脂肪。维生素C:具有抗癌作用,预防坏血病。维生素D:提高肌体对钙、磷的吸收;促进生长和骨骼钙化。维生素E:有效的抗衰老营养素;提高肌体免疫力;预防心血管病。 第一章碳水化合物 1、碳水化合物的功能:①供能及节约蛋白质②构成体质③维持神经系统的功能与解毒④有益肠道功能⑤食品加工中重要原、辅材料⑥抗生酮作用 一、单糖、双糖及糖醇 2、单糖:凡不能被水解为更小分子的糖(核糖、葡萄糖)①葡萄糖:来源:淀粉、蔗糖、乳糖等的水解;作用:作为燃料及制备一些重要化合物;脑细胞的唯一能量来源②果糖:来源:淀粉和蔗糖分解、蜂蜜及水果;特点:代谢不受胰岛素控制;通常是糖类中最甜的物质,食品工业中重要的甜味物质。不良反应:大量食用而出现恶心、上腹部疼痛,以及不同血管区的血管扩张现象。 3、双糖:凡能被水解成少数(2-10个)单糖分子的糖。如:蔗糖葡萄糖 + 果糖①蔗糖:来源:植物的根、茎、叶、花、果实和种子内;作用:食品工业中重要的含能甜味物质;与糖尿病、龋齿、动脉硬化等有关②异构蔗糖(异麦芽酮糖)来源:蜂蜜、蔗汁中微量存在;特点:食品工业中重要的含能甜味物质;耐酸性强、甜味约为蔗糖的42%,不致龋。③麦芽糖:来源:淀粉水解、发芽的种子(麦芽);特点:食品工业中重要的糖质原料,温和的甜味剂,甜度约为蔗糖的l/2。④.乳糖:来源:哺乳动物的乳汁;特点:牛乳中的还原性二糖;发酵过程中转化为乳酸;在乳糖酶作用下水解;乳糖不耐症。功能:是婴儿主要食用的碳水化合物。构成乳糖的D—半乳糖除作为乳糖的构成成分外,还参与构成许多重要的糖脂(如脑苷脂、神经节苷酯)和精蛋白,细胞膜中也有含半乳糖的多糖,故在营养上仍有一定意义。 4、糖醇:①山梨糖醇(又称葡萄糖醇):来源:广泛存在于植物中,海藻和果实类如苹果、梨、葡萄等中多有存在;工业上由葡萄糖氢化制得。特点:甜度为蔗糖一样;代谢不受胰

食品化学复习

① 什么是食品化学?它的研究内容是什么? 1. 食品的化学组成及理化性质 2. 是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、储藏和运销中的变化及其对食品品质和安全性影响的学科。 ② 试述食品中主要的化学变化及对食品品质和安全性的影响。 ③ 你希望从这门学科中学到什么以及对这门课程的教学有何建议? 第二章 1. 名词解释:水分活度、水分吸附等温线、结合水、疏水水合作用、疏水相互作用、笼形水合物、滞后现象。 水分活度(water activity)是指食品中水的蒸汽压与该温度下纯水的饱和蒸汽压的比值,可用下式表示: o p p Aw 水分吸附等温线 (Moisture sorption isotherms,MSI)在恒定温度下,使食品吸湿或干燥,所得到的食品水分含量(每克干物质中水的质量)与Aw 的关系曲线。

疏水水合(Hydrophobic hydration):向水中添加疏水物质时,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,使得熵减小,此过程称为疏水水合。 疏水相互作用( Hydrophobic interaction):当水与非极性基团接触时,为减少水与非极性实体的界面面积,疏水基团之间进行缔合,这种作用称为疏水相互作用。 笼形水合物(Clathrate hydrates):是象冰一样的包含化合物,水为“宿主”,它们靠氢键键合形成象笼一样的结构,通过物理方式将非极性物质截留在笼内,被截留的物质称为“客体”。一般“宿主”由20-74个水分子组成,较典型的客体有低分子量烃,稀有气体,卤代烃等。 滞后现象(Hysteresis):回吸与解吸所得的水分吸附等温线不重叠现象即为“滞后现象”(Hysteresis)。 2. 请至少从4个方面分析Aw与食品稳定性的关系。 1.除脂肪氧化在Aw<0.3时有较高反应外,其它反应均是Aw愈小反应速度愈小。也就是说,对多数食品而言,低Aw有利于食品的稳定性。 2.Aw: 0-0.33范围内,水与脂类氧化生成的氢过氧化物以氢键结合,保护氢过氧化物的分解,阻止氧化进行。水与金属离子水合,降低了催化性。随 A w↑,反应速度↓过分干燥,食品稳定性下降 3.Aw:0.33-0.73范围内,水中溶解氧增加,大分子物质肿胀,活性位点暴露加速脂类氧化,催化剂和氧的流动性增加,随Aw↑,反应速度↑ 4.Aw >0.8随Aw↑,反应速度增加很缓慢,原因 : 催化剂和反应物被稀释,阻滞氧化

相关文档
最新文档