2018年全国各地中考数学真题汇编:三角形(山东专版)(解析版)
2018年全国各地中考数学真题汇编:三角形(四川专版)(解析卷)

2018年全国各地中考数学真题汇编(四川专版)三角形参考答案与试题解析一.选择题(共7小题)1.(2018•成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC ≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.2.(2018•自贡)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.16解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.3.(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.8解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.4.(2018•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:9解:已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为1:9,故选:D.5.(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.6.(2018•南充)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.解:∵∠ACB=90°,D为AB的中点,∴CD=BD=AD,∵∠ACB=90°,∠A=30°,∴∠B=60°,∴△CBD为等边三角形,∴CD=BC=2,∵E,F分别为AC,AD的中点,∴EF=CD=1,故选:B.7.(2018•达州)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2 C.D.3解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二.填空题(共3小题)8.(2018•乐山)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是22.5度.解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.9.(2018•南充)如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF=.解:∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF﹣DE=2﹣,故答案为:10.(2018•广安)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF= 2.解:作EH⊥OA于H,∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°,∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2,故答案为:2.三.解答题(共16小题)11.(2018•成都)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.12.(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.13.(2018•自贡)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=BC=6,BH==6,在Rt△ACH中,tanA==,∴AH=8,∴AC==10,∴AB=AH+BH=8+6.14.(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.15.(2018•遂宁)如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.16.(2018•内江)如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C.在△AED与△CFD中,∴△AED≌△CFD(ASA);(2)由(1)知,△AED≌△CFD,则AD=CD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.17.(2018•遂宁)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为i=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).解:作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100,∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=BF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200米,在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=100,∴BC=BE+EC=100+100(米).18.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.证明:∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=BC.19.(2018•内江)如图是某路灯在铅垂面内的示意图,灯柱AC的高为11米,灯杆AB 与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为18米,从D,E两处测得路灯B的仰角分别为α和β,且tanα=6,tanβ=,求灯杆AB的长度.解:过点B作BF⊥CE,交CE于点F,过点A作AG⊥AF,交BF于点G,则FG=AC=11.由题意得∠BDE=α,tan∠β=.设BF=3x,则EF=4x在Rt△BDF中,∵tan∠BDF=,∴DF===x,∵DE=18,∴x+4x=18.∴x=4.∴BF=12,∴BG=BF﹣GF=12﹣11=1,∵∠BAC=120°,∴∠BAG=∠BAC﹣∠CAG=120°﹣90°=30°.∴AB=2BG=2,答:灯杆AB的长度为2米.20.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.证明:∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠C=∠E..(2018•眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)解:如图,作BD⊥AC于点D,则∠BAD=60°、∠DBC=53°,设AD=x,在Rt△ABD中,BD=ADtan∠BAD=x,在Rt△BCD中,CD=BDtan∠DBC=x×=x,由AC=AD+CD可得x+x=13,解得:x=﹣3,则BC===x=×(4﹣3)=20﹣5,即BC两地的距离为(20﹣5)千米.22.(2018•广安)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD 至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.证明:∵四边形ABCD为正方形,∴∠B=90°,AD∥BC,(2分)∴∠EAF=∠BMA,∵EF⊥AM,∴∠AFE=90°=∠B,(4分)在△ABM和△EFA中,∵,∴△ABM≌△EFA(AAS),(5分)∴AB=EF.(6分)23.(2018•宜宾)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)解:作CH⊥AB于H,则四边形HBDC为矩形,∴BD=CH,由题意得,∠ACH=30°,∠CED=30°,设CD=x米,则AH=(30﹣x)米,在Rt△AHC中,HC==(30﹣x),则BD=CH=(30﹣x),∴ED=(30﹣x)﹣10,在Rt△CDE中,=tan∠CED,即=,解得,x=15﹣,答:立柱CD的高为(15﹣)米.24.(2018•广安)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.25.(2018•达州)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C的仰角为30°,再往雕塑方向前进4米至B 处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)解:如图,过点C作CD⊥AB,交AB延长线于点D,设CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即=,解得:x=2+2,答:该雕塑的高度为(2+2)米.26.(2018•资阳)如图是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小红身高1.5米.(1)当风筝的水平距离AC=18米时,求此时风筝线AD的长度;(2)当她从点A跑动9米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.解:(1)∵在Rt△ACD中,cos∠CAD=,AC=18、∠CAD=30°,∴AD====12(米),答:此时风筝线AD的长度为12米;(2)设AF=x米,则BF=AB+AF=9+x(米),在Rt△BEF中,BE===18+x(米),由题意知AD=BE=18+x(米),∵CF=10,∴AC=AF+CF=10+x,由cos∠CAD=可得=,解得:x=3+2,则AD=18+(3+2)=24+2,∴CD=ADsin∠CAD=(24+2)×=12+,则C1D=CD+C1C=12++=+,答:风筝原来的高度C1D为(+)米.。
【真题】18年山东省中考数学试卷含答案(word版)

【真题】2018年山东省中考数学试卷含答案(Word版)秘密★启用前试卷类型:A 二〇一八年东营市初中学业水平考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.2.数学试题答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用碳素笔答在答题卡的相应位置上. 第Ⅰ卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.?1的倒数是511 D.55224A.?5B.5C.?2.下列运算正确的是22A.??x?y???x?2xy?y B. a?a?a ?a3?a6 D.?x2y4 3.下列图形中,根据AB∥CD,能得到∠1=∠2的是A1 2 B1 ABABAB1 2 1 DCCDC2 2 DDCA B C D 4.在平面直角坐标系中,若点P在第二象限,则m的取值范围是A.m<?1 B.m>2C.?1<m<2 D.m>?1 5.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是捐款数额人数10 2 20 4 30 5 50 3 100 1 A.众数是100B.中位数是30 C.极差是20D.平均数是30 1 6.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.于会场布置需要,购买时以一束为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为A.19B.18C.16 D.15C16元20元?元FBAED 7.如图,在四边形ABCD 中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是A. AD=BC B. CD=BF C. ∠A=∠C D. ∠F=∠CDF 8.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是34??22A.31??B.32 C.D.31?? 29.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB 于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为() 10.如图,点E在△DBC的边DB上,点A在△DBC 内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD?CE;②∠ABD+∠ECB=45°;③BD ⊥CE;④BE2?2(AD2?AB2)?CD2.其中正确的是 2 A. ①②③④B. ②④ C. ①②③ABDD. ①③④BCEAEFADCBC 第Ⅱ卷二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12. 分解因式:x3?4xy2=.13. 有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是. 14.如图,B,C,以OC ,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为. 15.如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于1EF的长为半径画弧,两弧交于点P,2作射线CP 交AB于点D,若BD=3,AC=10,则△ACD的面积是.A AOyD3 CxBPEFCB8 (第14题图) (第15题图) (第16题图) 16.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.在平面直角坐标系内有两点A、B,其坐标为A,B,点M为x轴上的 3 一个动点,若要使MB?MA的值最大,则点M的坐标为.18.如图,在平面直角坐标系中,点A…和B1,…分别在直线y?A2,A3,B2,B3,1,1x?b5 和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果点A1,那么点A2018的纵坐标是.OA1B1A2yA3… B2B3x(第18题图) 三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分7分,第⑴题4分,第⑵题3分) 计算:2?3?(2?1)?3tan30?(?1) 解不等式组:0o20181?()?1;2?x?3>0,并判断-1,2这两个数是否为该不等式组的解. ??3?3x.? 20. 2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类名人传记科普图书小说其他频数175 b 110 65 频率 a c d4 科普图书名人传记126°小说其他(第求该校九年级共捐书多少本;20题图) 统计表中的a=,b=,c=,d=;若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率. 21.(本题满分8分) 小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.22.(本题满分8分)如图,CD是⊙O的切线,点C在直径AB的延长线上.求证:∠CAD=∠BDC;若BD=2AD,AC=3,求CD的长.3 23.(本题满分9分) 关于错误!未找到引用源。
【K12教育学习资料】全国2018年中考数学真题分类汇编 第17讲 全等三角形(无答案)

教育是最好的老师,小学初中高中资料汇集 专注专业学习坚持不懈勇攀高峰1 第17讲 全等三角形
知识点1 全等三角形的概念及性质 知识点2 全等三角形的判定
知识点1 全等三角形的概念及性质 知识点2 全等三角形的判定 (2018·济宁)
(2018·巴中)
(2018·安顺)答案:D 教育是最好的老师,小学初中高中资料汇集
专注专业学习坚持不懈勇攀高峰2 (2018·荆州)
(2018·成都) (2018·黔东南)7.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙 (2018·丽水)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是 CA=CB或CE=CD或AD=BE . 教育是最好的老师,小学初中高中资料汇集
专注专业学习坚持不懈勇攀高峰3 (2018·衢州)
(2018·南京)如图,,且.、是上两点,,.若,,,则的长为( D )
A. B. C. D. (2018·临沂)如图, 90ACB, ACBC, ADCE,BE⊥CE,垂足分别是点D,E,3AD,1BE.则DE的长是( )
A.32 B.2 C.22 D.10 (2018•黑龙江)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为( B )
A.15 B.12.5 C.14.5 D.17 (2018·娄底)答案:6 教育是最好的老师,小学初中高中资料汇集 专注专业学习坚持不懈勇攀高峰4 (2018·青岛)已知正方形ABCD的边长为5,点EF、分别在ADDC、上,2AEDF,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为 342 .
2022年中考数学试题分项版解析汇编(第02期)专题4.2 三角形(含解析)

专题4.2 三角形一、单选题1.【四川省眉山市2018年中考数学试题】将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45° B.60° C.75° D.85°【答案】C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.2.【山东省聊城市2018年中考数学试卷】如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.【答案】A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 3.【台湾省2018年中考数学试卷】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A. 115 B. 120 C. 125 D. 130【答案】C【解析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.4.【湖北省襄阳市2018年中考数学试卷】如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC 的周长为()A. 16cm B. 19cm C. 22cm D. 25cm【答案】B【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.5.【湖北省黄石市2018年中考数学试卷】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°【答案】A点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.6.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙【答案】B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【山东省淄博市2018年中考数学试题】如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4 B. 6 C. D. 8【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.详解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【四川省达州市2018年中考数学试题】如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°【答案】B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.9.【湖北省荆门市2018年中考数学试卷】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 2【答案】C【详解】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,【点睛】本题考查了等腰直角三角形的判定与性质、梯形的中位线、点运动的轨迹,通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹是解题的关键.10.【河北省2018年中考数学试卷】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.11.【山东省东营市2018年中考数学试题】如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④【答案】A点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.12.【浙江省台州市2018年中考数学试题】如图,等边三角形ABC边长是定值,点O是它的外心,过点O 任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】DB、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=S△ABC(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC-S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F 的面积也变化,可作判断.详解:A、连接OA、OC,∵点O是等边三角形ABC的外心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=S△ABC(定值),故选项C正确;点睛:本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键,13.【浙江省台州市2018年中考数学试题】如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. B. 1 C. D.【答案】B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE-AB=1,故选:B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.14.【河北省2018年中考数学试卷】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【答案】B【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.二、填空题15.【吉林省长春市2018年中考数学试卷】如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为_____度.【答案】37【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.16.【山东省东营市2018年中考数学试题】如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是_____.【答案】15【解析】分析:作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.详解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.点睛:本题主要考查作图-基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.17.【黑龙江省哈尔滨市2018年中考数学试题】在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_____.【答案】130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.18.【江苏省徐州巿2018年中考数学试卷】如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_____cm.【答案】7【解析】【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.【详解】在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC==4,由翻折的性质,得CE=AE,△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7,故答案为:7.【点睛】本题考查了翻折的性质、勾股定理等,利用翻折的性质得出CE与AE的关系是解题的关键.19.【湖南省邵阳市2018年中考数学试卷】如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.【答案】【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.20.【湖北省襄阳市2018年中考数学试卷】已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为_____.【答案】或【解析】【分析】分两种情况:△ABC是锐角三角形,△ABC是钝角三角形,分别画出符合条件的图形,然后分别根据勾股定理计算AC和BC即可.【详解】分两种情况:当是锐角三角形,如图1,当是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=;综上所述,BC的长为或,故答案为:或.【点睛】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握,运用分类讨论思想进行解答是关键.21.【2018年湖南省湘潭市中考数学试卷】如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=_________.【答案】30°点睛:考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.22.【广西壮族自治区桂林市2018年中考数学试题】如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【答案】3【解析】分析:由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.23.【江苏省泰州市2018年中考数学试题】已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.【答案】5点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.24.【江苏省淮安市2018年中考数学试题】如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.【答案】【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题25.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.【解析】【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.26.【湖北省武汉市2018年中考数学试卷】如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【答案】证明见解析.【解析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.27.【广西壮族自治区桂林市2018年中考数学试题】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【答案】(1)证明见解析;(2)37°【解析】分析:(1)先证明AC=DF,再运用SSS证明△ABC≌△DEF;(2)根据三角形内角和定理可求∠ACB=37°,由(1)知∠F=∠ACB,从而可得结论.点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.28.【陕西省2018年中考数学试题】如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 29.【浙江省台州市2018年中考数学试题】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△CFG=.【解析】分析:(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.详解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,三角形的中位线定理,三角形的面积公式,勾股定理,作出辅助线求出△CFG的边CF上的是解本题的关键.30.【湖北省荆门市2018年中考数学试卷】如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.【答案】(1)证明见解析;(2)BH+EH的最小值为3.【解析】【分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.(2)如图,作点E关于直线AC点E',连接BE'交AC于点H,则点H即为符合条件的点,由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°,∴∠EAE'=60°,∴△EAE'为等边三角形,∴E E'=EA=AB,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,BC=,∴AB=2,A E'=AE=,∴B E'= =3,∴BH+EH的最小值为3.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键. 31.【山东省淄博市2018年中考数学试题】(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【答案】(1)MG=NG; MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析详解:(1)连接BE,CD相交于H,如图1,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,(2)连接CD,BE,相交于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC并延长相交于点H,如图3.同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.∴△GMN是等腰直角三角形.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.32.【黑龙江省哈尔滨市2018年中考数学试题】已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【答案】(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF 【解析】分析:即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE 得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE×DE=×2a×a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.。
2018年全国中考数学真题山东烟台中考数学(解析版-精品文档)

2018年烟台市初中学业水平考试数学试题一、选择题(本题共12小题,每小题3分,满分36分)每小题都给出标号为A 、B 、C 、D 四个备选答案,其中并且只有一个是正确的1.(2018山东烟台,1,3分)的倒数是( )A .3B .-3C .D .【答案】B【解析】求一个有理数的倒数,如果是分数,只需把这个数的分子和分母颠倒即可,所以的倒数是-3.【知识点】有理数的倒数.2.(2018山东烟台,2,3分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是( ).【答案】C【解析】根据轴对称图形与中心对称图形的概念求解 A 、是轴对称图形,也是中心对称图形.故错误; B 、是轴对称图形,也是中心对称图形.故错误; C 、不是轴对称图形,是中心对称图形.故正确; D 、是轴对称图形,也是中心对称图形.故错误 故选C .【知识点】中心对称图形;轴对称图形.3.(2018山东烟台,3,3分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿增加到82.7万亿,稳居世界第二.82.7万亿用科学记数法表示为()13-1313-13-DCBAA.B.C.D.【答案】C【解析】科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.表示时关键要正确确定a的值以及n的值.82.7万亿=.故选C.【知识点】用科学记数法表示较大的数.4.(2018山东烟台,4,3分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.18【答案】B【解析】本题可以从整体考虑求露出部分面积.分别从正面、右面,上面可得该几何体的三视图为其中主视图面积为4,右视图面积为3,俯视图面积为4,从而露出的部分涂色面积为:4+3+4=11.故选B.【知识点】简单组合的几何体的三视图画法.5.(2018山东烟台,5,3分)甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:140.82710⨯1282.710⨯138.2710⨯148.2710⨯10na⨯48138.271010108.2710⨯⨯⨯=⨯甲乙丙丁俯视图右视图(类比“左视图”的叫法)主视图(第4题图)哪支仪仗队的身高更为整齐? A .甲B .乙C .丙D .丁 【答案】D【解析】判断一组数据波动程度(或者离散程度)的大小要看方差,不能看平均数,方差越小,数据波动越小,越稳定;方差越大,数据波动越大,越不稳定.本题丁仪仗队队员的方差最小,为0.6,数据波动最小,即身高更为整齐.故选D . 【知识点】方差6.(2018山东烟台,6,3分)下列说法正确的是() A .367人中至少有2人生日相同B .任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C .天气预报说明天的降水概率为90%,则明天一定会下雨D .某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖 【答案】A【解析】因为平年365天,闰年366天,可以先考虑让366人生日各不相同,那么剩下的一人肯定要和这366人中某一个人的生日相同,故至少有两人生日相同,故A 正确;任意掷一枚均匀的骰子,掷出的点数可能是1,2,3,4,5,6六种情况,点数为偶数的有2,4,6三种可能情况,故掷出的点数是偶数的概率是,故B 错误;天气预报说明天的降水概率为90%,说明“明天下雨”是一个不确定事件,而“明天一定下雨”是“确定事件”中的“必然事件”,概率为1,故C 错误;某种彩票中奖的概率是1%,说明“某种彩票中奖”是一个不确定事件,并不能说明买100张彩票一定会中奖,故D 错误.故选A . 【知识点】概率的意义7.(2018山东烟台,7,3分)利用计算器求值时,小明将按键顺序为的显示结果记为a ,133162平均数(cm ) 177 178 178 179方差0.9 1.6 1.1 0.6的显示结果记为b .则a ,b 的大小关系为()A. a<b B .a>b C .a=b D .不能比较 【答案】B【解析】本题考查鲁教版课本中(大雁牌)计算器的使用方法,,,∴a>b ,故选B .【知识点】锐角三角函数;负整数指数幂;计算器的使用;8.(2018山东烟台,8,3分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n 个图形中有120朵玫瑰花,则n 的值为() A .28 B .29 C .30 D .31【答案】C【解析】第1幅图有4×1朵,第2幅图有4×2朵,第3幅图有4×3朵,... ,第n 幅图有4×n 朵,所以由4n =120得n =30. 【知识点】探索规律9.(2018山东烟台,9,3分)对角线长分别为6和8的菱形ABCD 如图所示,点O 为对角线的交点,过点O 折叠菱形,使B ,B ′两点重合,MN 是折痕.若B ′M =1,则CN 的长为() A .7 B .6 C .5 D .4-44411(sin 30)=()1612()2a -=︒==26123b ==【答案】D【解析】(法一,排除法)连接AC,BD,∵菱形ABCD,AC=6,BD=8,∴CO=3,DO=4,CO⊥DO,∴CD=5,而CN<CD,∴CN<5,故排除A,B,C,故选D.(法二,正确推导)可证△BMO≌△DNO,∴DN=BM,∵折叠,∴B′M=BM=1=DN,由法一知,CD=5,∴CN=4.【知识点】菱形的性质;折叠的性质;勾股定理,全等三角形的性质与判定.10.(2018山东烟台,10,3分)如图四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数是()A. 56° B.62° C.68° D.78°【答案】C【解析】∵点I是△ABC的内心,∴AI、CI是△ABC的角平分线,∴∠AIC=90°+∠B=124°,∴∠B=68°.∵四边形ABCD是⊙O的内接四边形,∴∠CDE=∠B=68°,故选C.12【知识点】三角形内心;圆内接四边形的性质;11.(2018山东烟台,11,3分)如图,二次函数的图象与x 轴交于点A (-1,0),B (3,0).下列结论:①②③当时,y <0;④当a =1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线.其中正确的是() A .①③B .②③C .②④D .③④【答案】D【解析】①∵A (-1,0),B (3,0),∴对称轴是直线,∴2a +b =0,又∵a ≠0,b ≠0,∴①错误,可以排除A 选项;②∵x =-1时,y=a -b+c =0,∴a+c=b ,∴(a+c)2=b 2,∴②错误,可以排除B ,C 选项,∴只剩D 选项,故选D .③当时,抛物线在x 轴下方,y <0,∴③正确;④当a =1时,抛物线y=(x+1)(x -3)=x 2-2x -3=(x -1)2-4,将抛物线先向上平移2个单位,再向右平移1个单位,得抛物线y=(x -1-1)2-4+2=(x -2)2-2,∴④正确;故选D . 【知识点】二次函数图象与系数的关系;二次函数与不等式的关系;12.(2018山东烟台,12,3分)如图,矩形ABCD 中,AB=8cm ,BC=6cm ,点P 从点A 出发,以1cm/s 的速度沿A →D →C 方向匀速运动,同时点Q 从点A 出发,以2cm/s 的速度沿A →B →C 方向匀速运动,当一个点到达点C 时,另一个点也随之停止.设运动时间为t (s ),△APQ 的面积为S (cm 2),下列能大致反映S 与t 之间函数关系式的图象是()2y ax bx c =++20;a b -=22();a c b +<13x -<<2(2)2y x =--13122b x a -+=-==13x -<<【答案】A【解析】∵Q从A→B→C走过的路程为8+6=14cm,速度为2cm/s,∴Q从A→B→C用的时间为14÷2=7s;又P从A→D→C走完全程需要的时间为14÷1=14s,又∵当一个点到达C点时,另一个点也随之停止,∴当Q到达C时,P还在DC上,运动停止.当0≤t≤4时,如图①,∵AP=t,AQ=2t,∴,∴可以排除C、D选项;当4<t≤6时,如图②,作QH⊥AD,∵AP=t,HQ=8,∴,可以排除B、D选项;∴此时只能选A;当6<t≤7时,如图③,∵DP=t-6,PC=14-t,CQ=14-2t,∴S=S梯形AQCD-S△ADP-S△PCQ=12(14-2t+6)·8-12×6(t-6)-12(14-t)(14-2t)=-t2+10t,各选项都符合.综上所述,只有A符合,选A.【知识点】动点问题的函数图象;分段函数的表示,关键找分界点.2122s t t t=⋅=1842s t t=⋅=③②①二、填空题(本大题共6个小题,每小题3分,满分18分) 13.(2018山东烟台,13,3分)__________. 【答案】【解析】. 【知识点】0次幂;特殊角的三角函数值.14.(2018山东烟台,14,3a =.【答案】2【解析】a +1=3,∴a =2. 【知识点】同类二次根式的定义;最简二次根式.15.(2018山东烟台,15,3分)如图,反比例函数的图象经过 ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC , ABC D 的面积为6,则k =.【答案】-3【解析】连接OP ,∵C ,D 在坐标轴上,BD ⊥DC ,∴BD ∥y 轴,∴S △OPD =S △APD .∵ ABCD 对角线的交点P , ABC D 的面积为6,∴S △APD =64=32.又∵S △OPD =S △APD =32=2k,∴k =3.又∵反比例函数的图象在第二象限,∴k <0,∴k=-3.过P 点作PH ⊥y 轴于H ,∵ ABC D ,∴BP=DP ,AB//CD0( 3.14)tan 60π-+︒=10( 3.14)tan 601π-+︒=ky x=∵BD ⊥DC ,∴∠PDO=∠DOH=∠OHP=90° ∴四边形PDOH 是矩形.又AB//CD , ∴6ABCDABDO SS ==矩形∵BP=DP∴3PDOH S k ==矩形,又k<0,∴k=-3.【知识点】反比例函数系数k 的几何意义;平行四边形的性质;16.(2018山东烟台,16,3分)如图,方格纸上每个小正方形的边长均为1个单位长度,点O ,A ,B ,C 在格点(两条网格线的交点叫格点)上,以点O 为原点建立直角坐标系,则过A ,B ,C 三点的圆的圆心坐标为.【答案】(-1,-2)【解析】如图,连接AB ,BC ,分别作AB 和BC 的中垂线,交于G 点.由图知,点G 的坐标为(-1,-2).【知识点】垂径定理17.(2018山东烟台,17,3分)已知关于x 的一元二次方程x 2-4x+m -1=0的实数根12x x ,,满足121232x x x x -->,则m 的取值范围是.【答案】3<m ≤5【解析】∵12x x ,是x 2-4x+m -1=0的两根,∴12124,1x x x x m =⋅=-+,又∵121232x x x x -->,∴3(1)42m -->,∴12,m ->∴3m >.又∵△=b 2-4ac=(-4)2-4(m -1)≥0,∴m ≤5,∴3<m ≤5. 【知识点】一元二次方程根与系数的关系(即韦达定理);一元二次方程根的判别式.18.(2018山东烟台,18,3分)如图,点O 为正六边形ABCDEF 的中心,点M 为AF 的中点.以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF .把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为1r ;将扇形DEF 以同样的方法围成圆锥的底面半径记为2r ,则12:r r =.【答案】3:2【解析】连接AO ,OF ,由题意,∠MON=∠DEF=120°,△AOF 为等边三角形.设AF=2a=DE ,∴AM=MF=a ,∴.∵2πr 1=1203180a,2πr 2=1202180a,∴12:r r 2.【知识点】正多边形的计算;圆锥的有关计算公式;弧长公式.三、解答题(本大题共7小题,满分66分) 19.(2018山东烟台,19,6分)(本题满分6分)先化简,再求值:2221(1)244x x x x x +++÷--+,其中x 满足2250x x --=. 【思路分析】原式括号中两项通分,并把通分后的分子利用提取公因式法分解因式,把除式的分子和分母颠倒,化除为乘,进行约分,再将225x x -=整体代入即可.【解题过程】解:2221(1)244x x x x x +++÷--+ 222212(2)x x x x x -+++=÷--2(1)(2)21x x x x x +-=⋅-+ =x(x -2)=x 2-2x . ∵x 2-2x -5=0, ∴x 2-2x=5, ∴原式=5.【知识点】分式的化简求值;整体代入20.(2018山东烟台,20,8分)(本题满分8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为; (2)将条形统计图补充完整,观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【思路分析】(1)∵使用“支付宝”、“现金”、“其他”支付的总人数是45+50+15=110人,使用“支付宝”、“现金”、“其他”支付所占的百分比为1-15%-30%=55%,∴这次活动共调查了110÷55%=200人;表示“支付宝”支付的扇形圆心角的度数为:45200×360°=81°;(2)使用“微信”支付人数为:200×30%=60(人);使用“银行卡”支付人数为:200×15%=30(人),补全条形统计图即可,观察条形统计图和扇形统计图可知,使用微信的最多,即众数为“微信”;(3)先设使用“微信”支付为a,使用“支付宝”支付为b,使用“银行卡”支付为c,根据题意画出树状图或列表,再根据概率公式列式计算即可.【解题过程】(1)200;81°;(2)微信;补全条形统计图如图所示:(3)方法1:设使用“微信”支付为a,使用“支付宝”支付为b,使用“银行卡”支付为c,画树状图如下:共有9种情况,符合条件的有3种,即(a ,a ),(b ,b ),(c ,c ), ∴P(两人恰好选择同一种支付方式)=3193=. 方法2:设使用“微信”支付为a ,使用“支付宝”支付为b ,使用“银行卡”支付为c ,列表如下:共有9种情况,符合条件的有3种,即(a ,a ),(b ,b ),(c ,c ), ∴P(两人恰好选择同一种支付方式)=3193=. 【知识点】列表法与树状图法;扇形统计图;条形统计图;众数.21.(2018山东烟台,21,8分)(本题满分8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l ,其间设有区间测速,所有车辆限速40千米/小时.数学实践活动小组设计了如下活动:在l 上确定A ,B 两点,并在AB 路段进行区间测速.在l 外取一点P ,作PC ⊥l ,垂足为点C ,测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A 到点B 用时6秒,请你用所学的所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,sin35°≈0.57,cos71°≈0.33,tan71°≈2.90)小明 小亮a b c a b ca b ca bc【思路分析】要判断汽车是否超速,只需要求出AB 的长度,用AB 的长度除以汽车从点A 到点B 的时间6秒,就可以求出汽车从点A 到点B 的速度,把速度换算成千米/小时,和40千米/小时比较,如果大于40千米/小时就超速,否则就不超速. 【解题过程】∵∠APC=71°,PC ⊥l ,PC=30米, ∴tan tan 71ACAPC PC=︒=∠≈2.90,∴AC ≈2.90×30=87(米). ∵∠BPC=35°,PC ⊥l ,PC=30米, ∴tan tan 35BCBPC PC=︒=∠≈0.70,∴BC ≈0.70×30=21(米). ∴AB=AC -BC=87-21=66(米), ∴汽车从点A 到点B 的速度是v =66=611米/秒=11×3.6=39.6千米/小时<40千米/小时, ∴该车没有超速.【知识点】解直角三角形的应用22.(2018山东烟台,22,9分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A 、B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A 型车和B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A 、B 两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车和B 型车各多少辆?【思路分析】(1)这一问是考察一元一次方程或二元一次方程组的知识,可设A 型车x 辆,则B型车(100-x)辆,根据A型,B型车的单价,由等量关系“x辆A型车价值+(100-x)辆B型车价值=36800元”可列方程解决第一问;根据题目中“按照试点投放中A、B两车型的数量比进行投放”和第一问得到的结果,可设A型车数量为3m辆,B型车数量为2m辆,再根据“投资总价值不低于184万元”这个条件,可求出A型车和B型车的数量,分别为3000辆和2000辆从而可求出“10万人口平均每100人享有A型车和B型车各多少量”.【解题过程】解:(1)设A型车x辆,则B型车(100-x)辆,由题意得:400x+320(100-x)=36800,∴x=60,∴100-x=40.答:本次试点投放的A型车60辆,B型车40辆.(2)投放A型车和B型车的数量比为60:40=3:2,∴设投放的A型车和B型车各3m辆、2m辆,由题意得:400×3m+320×2m=1840000,∴m=1000.∴A型车:3m=3000辆,B型车:2m=2000辆,∴10万人口平均每100人享有A型车3000÷(100000÷100)=3辆;B型车2000÷(100000÷100)=2辆.答:城区10万人口平均每100人至少享有A型车3辆,B型车2辆.【知识点】一元一次方程的应用(二元一次方程组的应用);23.(2018山东烟台,23,9分)(本题满分9分)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上,F为BD上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若MNMF的值.【思路分析】(1)连接CD 、ED ,利用两次“等腰三角形的底角相等”,以及“三角形的外角等于和它不相邻的两个内角的和”即可求解;(2)根据切线的性质,DE ⊥EF ,则∠2+∠5=90°,而∠2=2α,∠5=α,∴∠ADC=3α=90°得到α值代入(1)结论即可求解;(3)由(2)可推出,∠ABF=45°=∠CAD ,∴AN ∥BF ,∴MN MF =AMBM,然后由AM 和BM 的值代入即可.【解题过程】(1)连接CD 、ED ,∴∠1=∠EBD=α,∴∠2=∠1+∠B=2α. ∵DC=DE ,∴∠2=∠3=2α,∴∠CDA=∠3+∠EBD=3α. ∵DC=DA ,∴∠CAD=18032α︒-. (2)∵EM=BM ,∴∠4=∠EBD=α.∵∠4=∠5,∴∠5=α,若EF 为⊙D 的切线,则∠2+∠5=90°. 由(1)知,∠2=2α,∴α+2α=90°, ∴α=30°,∴∠CAD=180330452︒-⨯︒=︒.(3)在(2)条件下,∠DEF=90°,∴∠DBF=45°=∠CAD , ∴AN ∥BF ,∴MN MF =AMBM.由(2)知,∠ADC=3α=90°,∠CAD=45°,∴.∵∠EBD=α=30°,∠BDC=90°,∴. ∵∠1=30°,∠DEF=90°,∴DM=2EM=2MB ,∴113MB DB ==,DM=2,∴2MN AMMF MB== 【知识点】等腰三角形的性质;切线的性质;圆周角定理的推论;含30°角的直角三角形的性质;平行线分线段成比例定理;24.(2018山东烟台,24,11分)(本题满分11分) 【问题解决】一节数学课上,老师提出了一个这样问题:如图1,点P 是正方形ABCD 内一点,PA=1,PB=2,PC=3,你能求出∠APB 的度数吗?小明他通过观察、分析、思考,形成了如下思路:思路一:将△PBC 绕点B 逆时针旋转90°,得到△BP ′A ,连接PP ′,求出∠APB 的度数; 思路二:将△APB 绕点B 顺时针旋转90°,得到△CP ′B ,连接PP ′,求出∠APB 的度数. 请参考小明的思路,任选一种写出完整的解答过程. 【类比探究】如图2,若点P 是正方形ABCD 外一点,PA=3,PB=1,,求∠APB 的度数.【思路分析】(1)如图(1)将△PBC 绕点B 逆时针旋转90°得到△BP ′A ,连接PP ′,得到等腰直角三角形△BP ′P ,从而得到PP ′,∠BPP ′=45°,又AP ′=CP=3,AP=1,∴222'189'AP P P P A +=+==∴根据勾股定理逆定理得∠APP ′=90°,从而求出∠APB=45°+90°=135°;(2)如图(2)将△PBC 绕点B 逆时针旋转90°,得到△BP ′A ,连接PP ′,方法和(1)类似,求出∠APB=45°.【解题过程】解:(1)如图(1)将△PBC 绕点B 逆时针旋转90°,得到△BP ′A ,连接PP ′, ∵PB=P ′B=2,∠P ′BP=90°,∴PP ′,∠BPP ′=45°. 又AP ′=CP=3,AP=1,∴222'189'AP P P P A +=+==,∴∠APP ′=90°,∴∠APB=45°+90°=135°.(2)如图(2)将△PBC 绕点B 逆时针旋转90°,得到△BP ′A ,连接PP ′, ∵PB=P ′B=1,∠P ′BP=90°,∴PP ′,∠BPP ′=45°.又AP ′,AP=3, ∴222'9211'AP P P P A +=+==,∴∠APP ′=90°,∴∠APB=90°-45°=45°.【知识点】正方形的性质;勾股定理及其逆定理;旋转的性质;分类讨论思想;25.(2018山东烟台,25,14分)(本题满分14分)如图1,抛物线22y ax x c =++与x 轴相交A (-4,0),B(1,0)两点,过点B 的直线23y kx =+分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式;(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点.在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小? 若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【思路分析】(1)∵抛物线22y ax x c =++和x 轴交点A (-4,0),B (1,0),∴设(4)(1)y a x x =+-,展开后让一次项系数等于2,可求出a ,从而求出抛物线的表达式;(2)此题分类讨论,先以BD 为直径画圆和x 轴交于两点;再分别过D 和C 两点作CD 的垂线,分别与x 轴交于两点,都是符合条件的点,共有四个点.每一种情况都可以通过三角函数(或相似)解决;(3)此题D 是定点,M 、N 是动点,这与我们以前遇到的求一动点到两定点的距离之和最小不同,但也有共同之处,就是都需要过定点作对称轴的对称点.此题也不例外,就是作D 关于对称轴的对称点D ’,再根据垂线段最短,过D ’作直线EF 的垂线,垂足为N ,垂线D ’N 与直线EF 交于点M ,此时M 、N 即为所求点,再利用D ′N ⊥EF ,得到:''231,,,32EF D N EF D N k k k k ⋅=-=-∴=而从而求出直线D ′N 的表达式,与直线EF 的表达式联立求出N 的坐标;又M 的横坐标可通过对称轴32x =-确定,将M 的的横坐标32x =-代入直线D ′N 的表达式,可求出M 的坐标.DM+MN 的最小值即为D ′N 的长度,可以通过D ’和N 的坐标,利用两点间距离公式得到. 【解题过程】(1)方法1:∵A (-4,0),B (1,0), ∴设(4)(1)y a x x =+-, ∴234y ax ax a =+-, ∴3a =2,∴23a =,∴228233y x x =+-. 把B (1,0)代入23y kx =+,可得23k =-,∴2233y x =-+.方法2:把A (-4,0),B (1,0)代入22y ax x c =++,得016802a c a c =-+⎧⎨=++⎩,,解得2383a c ⎧=⎪⎪⎨⎪=-⎪⎩,. ∴228233y x x =+-. 把B (1,0)代入23y kx =+,可得23k =-,∴2233y x =-+.(2)∵2233y x =-+,∴C (0,23),∴OC=23.由2223328233y x y x x ⎧=-+⎪⎪⎨⎪=+-⎪⎩得228233x x +-=2233x -+,∴2450x x +-=,解得125,1,x x =-=当x=-5时,102433y =+=,∴D (-5,4). Ⅰ)若∠DPC=90°,如图(1),作DH ⊥x 轴于H ,∴∠1+∠2=90°=∠3+∠2,∴∠1=∠3,∴tan ∠1=tan ∠3,∵P (-t ,0),∴PH=5-t ,OP=t ,∴2534t t -=,∴231580t t -+=,∴x )t P DC =其实这两个点就是以为直径的圆与轴的两个交点.Ⅱ)过D 作DP 1⊥CD ,如图(2),过D 作MN ∥x 轴,过P 作P 1M ⊥MN ,可证∠1=∠2,∴tan ∠1=tan∠2,∴12453,54CN MD t DN MP --=∴=,∴23.3t =Ⅲ)过C 作CP 2⊥CD ,如图(2),可证∠1=∠3,∴tan ∠1=tan ∠3,∴2243,253OP CN tDN OC -==,∴4.9t =15234.639t ±=综合上述:或(3)直线:2233y x =-+向下平移4个单位后得到直线EF :210,33y x =--∵对称轴是直线32x =-,作D (-5,4)关于直线32x =-的对称点D ′,∵''53,2,'(2,4).22D D x x D -+=-∴=∴过D ′作D ′N ⊥EF 于N ,交对称轴32x =-于M ,如图(3),此时DM+MN 最小.∵D ′N ⊥EF ,∴''231,,,32EF D N EF D N k k k k ⋅=-=-∴=而()3D'N ',D'2,4b'1,2y x b =+=设:把代入得33951,-1=-2244y x x y ∴=+=+当=-时,35'(,)24M ∴--.31221033y x y x ⎧=+⎪⎪⎨⎪=--⎪⎩由, 解得x=-2, 代入210,33y x =--得 y=-43-103=-2. ∴N(-2,-2).又D ′(2,4),'D N ∴===,DM MN ∴+最小352224M N ----此时(,),(,).【知识点】二次函数的综合题;分类讨论思想;。
2018年中考数学试题分项版解析汇编(第02期)专题4.2 三角形(含解析)

专题4.2 三角形一、单选题1.【四川省眉山市2018年中考数学试题】将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45° B.60° C.75° D.85°【答案】C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.2.【山东省聊城市2018年中考数学试卷】如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.【答案】A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 3.【台湾省2018年中考数学试卷】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A. 115 B. 120 C. 125 D. 130【答案】C【解析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.4.【湖北省襄阳市2018年中考数学试卷】如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC 的周长为()A. 16cm B. 19cm C. 22cm D. 25cm【答案】B【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.5.【湖北省黄石市2018年中考数学试卷】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°【答案】A点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.6.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙【答案】B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【山东省淄博市2018年中考数学试题】如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4 B. 6 C. D. 8【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.详解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【四川省达州市2018年中考数学试题】如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°【答案】B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.9.【湖北省荆门市2018年中考数学试卷】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 2【答案】C【详解】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,【点睛】本题考查了等腰直角三角形的判定与性质、梯形的中位线、点运动的轨迹,通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹是解题的关键.10.【河北省2018年中考数学试卷】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.11.【山东省东营市2018年中考数学试题】如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④【答案】A点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.12.【浙江省台州市2018年中考数学试题】如图,等边三角形ABC边长是定值,点O是它的外心,过点O 任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】DB、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=S△ABC(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC-S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F 的面积也变化,可作判断.详解:A、连接OA、OC,∵点O是等边三角形ABC的外心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=S△ABC(定值),故选项C正确;点睛:本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键,13.【浙江省台州市2018年中考数学试题】如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. B. 1 C. D.【答案】B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE-AB=1,故选:B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.14.【河北省2018年中考数学试卷】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【答案】B【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.二、填空题15.【吉林省长春市2018年中考数学试卷】如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为_____度.【答案】37【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.16.【山东省东营市2018年中考数学试题】如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是_____.【答案】15【解析】分析:作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.详解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.点睛:本题主要考查作图-基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.17.【黑龙江省哈尔滨市2018年中考数学试题】在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_____.【答案】130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.18.【江苏省徐州巿2018年中考数学试卷】如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_____cm.【答案】7【解析】【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.【详解】在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC==4,由翻折的性质,得CE=AE,△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7,故答案为:7.【点睛】本题考查了翻折的性质、勾股定理等,利用翻折的性质得出CE与AE的关系是解题的关键.19.【湖南省邵阳市2018年中考数学试卷】如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.【答案】【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.20.【湖北省襄阳市2018年中考数学试卷】已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为_____.【答案】或【解析】【分析】分两种情况:△ABC是锐角三角形,△ABC是钝角三角形,分别画出符合条件的图形,然后分别根据勾股定理计算AC和BC即可.【详解】分两种情况:当是锐角三角形,如图1,当是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=;综上所述,BC的长为或,故答案为:或.【点睛】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握,运用分类讨论思想进行解答是关键.21.【2018年湖南省湘潭市中考数学试卷】如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=_________.【答案】30°点睛:考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.22.【广西壮族自治区桂林市2018年中考数学试题】如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【答案】3【解析】分析:由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.23.【江苏省泰州市2018年中考数学试题】已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.【答案】5点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.24.【江苏省淮安市2018年中考数学试题】如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.【答案】【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题25.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.【解析】【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.26.【湖北省武汉市2018年中考数学试卷】如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【答案】证明见解析.【解析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.27.【广西壮族自治区桂林市2018年中考数学试题】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【答案】(1)证明见解析;(2)37°【解析】分析:(1)先证明AC=DF,再运用SSS证明△ABC≌△DEF;(2)根据三角形内角和定理可求∠ACB=37°,由(1)知∠F=∠ACB,从而可得结论.点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.28.【陕西省2018年中考数学试题】如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 29.【浙江省台州市2018年中考数学试题】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△CFG=.【解析】分析:(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.详解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,三角形的中位线定理,三角形的面积公式,勾股定理,作出辅助线求出△CFG的边CF上的是解本题的关键.30.【湖北省荆门市2018年中考数学试卷】如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.【答案】(1)证明见解析;(2)BH+EH的最小值为3.【解析】【分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.(2)如图,作点E关于直线AC点E',连接BE'交AC于点H,则点H即为符合条件的点,由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°,∴∠EAE'=60°,∴△EAE'为等边三角形,∴E E'=EA=AB,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,BC=,∴AB=2,A E'=AE=,∴B E'= =3,∴BH+EH的最小值为3.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键. 31.【山东省淄博市2018年中考数学试题】(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【答案】(1)MG=NG; MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析详解:(1)连接BE,CD相交于H,如图1,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,(2)连接CD,BE,相交于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC并延长相交于点H,如图3.同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.∴△GMN是等腰直角三角形.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.32.【黑龙江省哈尔滨市2018年中考数学试题】已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【答案】(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF 【解析】分析:即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE 得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE×DE=×2a×a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.。
2018年全国中考数学真题山东潍坊中考数学(解析版-精品文档)
2018年山东省潍坊市初中毕业、升学考试数 学(满分120分,考试时间90分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018山东潍坊,1,3分)|21|-=( ) A .12- B .21- C .1+2 D .12--【答案】B【解析】∵21> ,∴12-<0,∴|12|=21--,故选择B. 【知识点】绝对值的意义,二次根式大小比较2.(2018山东潍坊,2,3分)生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是( ) A .3.6×10-5B .0.36×10-5C .3.6×10-6D .0.36×10-6【答案】C【解析】用科学记数法的表示较小的数时,其形式为a ×10-n 的形式,其中1≤|a |<10,n 表示第一个不为0的数前面0的个数,0.0000036中,3的前面共有6个0,所以0.0000036=3.6×10-6,故选择C.【知识点】科学记数法——表示较小的数3.(2018山东潍坊,3,3分)如图所示几何体的左视图是( )【答案】D【解析】左视图表示从左边看到的图形,要注意看不见得线用虚线画出,故选择D. 【知识点】几何体的三视图4.(2018山东潍坊,4,3分)下列计算正确的是()A.236a a a⋅=B.33a a a÷=C.()2a b a a b--=-D.331126a a-=-()【答案】C【解析】∵235a a a⋅=,∴A选项错误;∵32a a a÷=,∴B选项错误;∵()2a b a a b a a b--=-+=-,∴C选项正确;∵331128a a-=-(),∴D选项错误;故选择C.【知识点】整式的运算,同底数幂的乘除法,整式的加减,积的乘方5.(2018山东潍坊,5,3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°【答案】C【解析】如图所示,过点C作CF∥AB,∴∠ACF=∠A=45°,∵AB∥DE,∴CF∥DE.∴∠FCD=∠D=30°.∴∠1=∠ACF+∠DCF=45°+30°=75°.故选择C.【知识点】平行线的性质6.(2018山东潍坊,6,3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:A BCD EF(1)作线段AB ,分别以A ,B 为圆心,以AB 长为半径作弧,两弧的交点为C ; (2)以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D ; (3)连接BD ,BC .下列说法不正确的是( ) A .∠CBD =30° B .S △BDC =234AB C .点C 是△ABD 的外心 D .sin 2A +cos 2D =1【答案】D【解析】由(1)可知,AB =AC =BC ,∴△ABC 为等边三角形, ∴∠A =∠ACB =∠ABC =60°,S △ABC =234AB又由(2)可知CD =AC =BC =AB , ∴∠CBD =∠D =12∠ACB =30°,S △BDC = S △ABC =23AB ,点C 是△ABD 的外心. 故选项A 、B 、C 正确,故选择D.【知识点】尺规作图,等边三角形,等腰三角形,直角三角形7.(2018山东潍坊,7,3分)某篮球队10名队员的年龄结构如右表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( )A .22,3B .22,4C .21,3D .21,4【答案】D【解析】根据中位数为21.5可知从小到大排序后,第5名队员年龄为21岁,第6名队员年龄为22岁,所以x =3,y =2. 因为21出现3次,次数最多,故众数为21.又∵19+20+213+222+242+26=2210x ⨯⨯⨯=,∴2222222(1922)+(2022)+(2122)3+(2222)2+(2422)2+(2622)S =410---⨯-⨯-⨯-=. 故选择D【知识点】平均数、中位数、众数、方差、加权平均数8.(2018山东潍坊,8,3分)在平面直角坐标系中,点P (m ,n )是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2m ,2n )B .(2m ,2n )或(-2m ,-2n )C .(12m ,12n )D .(12m ,12n )或(12m -,12n -)【答案】B【解析】当放大后的△A ′OB ′与△AOB 在原点O 同侧时,点P 对应点坐标为(2m ,2n ),当放大后的△A ′OB ′与△AOB 在原点O 两侧时,点P 对应点坐标为(-2m ,-2n ),故选择B. 【知识点】图形的位似9.(2018山东潍坊,9,3分)已知二次函数2()y x h =--(h 为常数),当自变量x 的值满足2≤x ≤5时,与其对应的函数值y 的最大值为-1,则h 的值为( ) A .3或6 B .1或6C .1或3D .4或6【答案】B【解析】二次函数2()y x h =--,当x =h 时,有最大值0,而当自变量x 的值满足2≤x ≤5时,与其对应的函数值y 的最大值为-1,故h <2或h >5. 当h <2时,2≤x ≤5时,y 随x 的增大而减小,故当x =2时,y 有最大值,此时2(2)1h --=-,解得:h 1=1,h 2=3(舍去),此时h =1;当h >5时,2≤x ≤5时,y 随x 的增大而增大,故当x =5时,y 有最大值,此时2(5)1h --=-,解得:h 1=6,h 2=4(舍去),此时h =6;综上可知h =1或6故选择B. 【知识点】二次函数的图象和性质10.(2018山东潍坊,10,3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O 为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径. 点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,-120°)C.Q(3,600°)D.Q(3,-500°)【答案】D【思路分析】作出点P关于点O成中心对称的点Q,分别求出顺时针和逆时针旋转的角度即可表示Q点坐标.【解题过程】延长PO到点Q,使OQ=OP,则Q点即为所求,此时OQ=OP=3,顺时针旋转角度为60°+180°=240°,从而逆时针方向旋转角度为360°-240°=120°,从而选项A、B正确,再顺时针旋转一周为240°+360°=600°,故选项C正确,逆时针旋转一周为120°+360°=480°,故Q(3,-480)而不可能为(3,-500°),故选择D.【知识点】图形与坐标,极坐标,初高中衔接11.(2018山东潍坊,11,3分)已知关于x的一元二次方程2(2)04mmx m x-++=有两个不相等的实数根x1,x2.若12114,mx x+=则m的值是()A.2 B.-1 C.2或-1 D.不存在【答案】A【思路分析】根据方程有两个不相等的实数根可知△>0,从而求出m的取值范围,结合一元二次方程根与系数的关系代入12114,mx x+=求出m的值,再根据取值范围进行取舍即可.【解题过程】解:由题意得:2[(2)]44404mm m m∆=-+-⋅⋅=+>,解得:m>-1.121212211414mx x mmx x x x+++===.解得:m1=2,m2=-1(舍去)所以m 的值为2,故选择A.【知识点】一元二次方程根的判别式,根与系数的关系12.(2018山东潍坊,12,3分)如图,菱形ABCD 的边长是4厘米,∠B =60°,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止. 若点P 、Q 同时出发运动了t 秒,记△BPQ 的面积为S 厘米²,下面图象中能表示S 与t 之间的函数关系的是( )【答案】D【思路分析】分为点Q 在BC 段和CD 段上分别讨论函数的图象结合运动规律即可判断出函数关系的图象.【解题过程】解:当0≤t ≤2时,点Q 在BC 上,此时BP =4-t ,BQ =2t ,213(4)2sin 602322S t t t t =-⋅︒=-+ 是一段开口向下的抛物线的一部分,可排除答案A 和C ,当2≤t ≤4时,△BPQ 的高不变,始终为4sin 60°=3,此时1(4)233432S t t =-⋅=-+面积随底边的减小而减小,最终变为0,故选择D. 【知识点】函数的图象,分段函数,菱形的性质二、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上.13.(2018山东潍坊,13,3分)因式分解:(x +2)x -x -2= . 【答案】(x +2)(x -1)【解析】(x +2)x -x -2=(x +2)x -(x +2)=(x +2)(x -1). 【知识点】提公因式法分解因式14.(2018山东潍坊,14,3分)当m = 时,解分式方程533x mx x-=--会出现增根. 【答案】2【解析】方程两边同乘以(x -3),得:x -5=-m x =5-m若方程会产生增根,则增根为x =3, 所以5-m =3. 解得m =2.【知识点】分式方程15.(2018山东潍坊,15,3分)用教材中的计算器进行计算,开机后依次按下,把显示结果输入右侧的程序中,则输出的结果是 .【答案】7 【解析】32=9,93232÷-=->1,故输出(3232-+)()=7 .【知识点】计算器的使用,二次根式的计算16.(2018山东潍坊,16,3分)如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D 在x 轴的负半轴上,将正方形ABCD 绕点A 逆时针旋转30°至正方形AB ′C ′D ′的位置,B ′C ′与CD 相交于点M ,则点M 的坐标为 .【答案】(-1,3) ÷【思路分析】连接AM ,证明Rt △AB ′M ≌Rt △ADM ,求出∠ADM =30°,解直角三角形求得DM 的长,注意M 在第二象限,即可求出点M 的坐标. 【解题过程】连接AM ,在Rt △AB ′M 和Rt △ADM 中,AB ′=AD ,AM =AM , ∴Rt △AB ′M ≌Rt △ADM ∴∠DAM =∠B ′AM =9030302︒-︒=︒ 在Rt △ADM 中,tan 30°=DMAD∴DM =ADtan 30°=1×33=33. ∴M (-1,33). 【知识点】图形与坐标,正方形,全等三角形的判定和性质,解直角三角形17.(2018山东潍坊,17,3分)如图,点A 1的坐标为(2,0),过点A 1作x 轴的垂线交直线l :3y x=于点B 1,以原点O 为圆心,OB 1的长为半径画弧交x 轴正半轴于点A 2;再过点A 2作x 轴的垂线交直线l 于点B 2,以原点O 为圆心,以OB 2的长为半径画弧交x 轴正半轴于点A 3;….按此作法进行下去,则20192018A B 的长是 .【答案】201923π【思路分析】根据直线l 的解析式先求出圆心角的度数,结合OA1,OA2,OA3的长度得出OA2019的长度,即扇形的半径,利用弧长公式进行计算即可.【解题过程】把x=2代入3y x=可得23y=,1123tan32A OB∠==,∴∠A1OB1=60°.由OA1=2,得OB1=2OA1=4,故OA2=4,同理可得OA3=8,以此类推,可得OA2019=22019∴20192018A B的长=2019201960221803ππ⋅=【知识点】弧长计算,规律探索,一次函数18.(2018山东潍坊,18,3分)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A 处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)【答案】18635+【思路分析】过点P作PQ⊥AB,垂足为Q,过点M作MN⊥AB,垂足为M. 设PQ=MN=x,解Rt△APQ 和Rt△BPQ求得x的值,再解Rt△BMN求出BM的长度,利用路程÷速度=时间解答即可.【解题过程】过点P作PQ⊥AB,垂足为Q,过点M作MN⊥AB,垂足为M.AB=60×1.5=90海里设PQ=MN=x,由点P在点A的东北方向可知,∠PAQ=45°,∴AQ=PQ=x,BQ=x-90在Rt△PBQ中,∠PBQ=90°-30°=60°Q Ntan 60390xx ︒==- 解得:135453x =+.在Rt △BMN 中,∠MBN =90°-60°=30°∴BM =2MN =2x =2135453270903⨯+=+() ∴航行时间为:2709031863755++=小时.【知识点】解直角三角形的应用三、解答题(本大题共7小题,满分66分,解答应写出文字说明、证明过程或演算步骤) 19.(2018山东潍坊,19,7分)如图,直线y =3x -5与反比例函数1k y x-=的图象相交于A (2,m ),B (n ,-6)两点,连接OA ,OB . (1)求k 和n 的值; (2)求△AOB 的面积.【思路分析】(1)把B 点坐标代入直线解析式可求出n 的值,求出A 或B 点坐标代入反比例函数解析式可求出n 的值.(2)△AOB 被y 轴分成两部分,分别计算两部分的面积求和即可. 【解题过程】(1)把A (2,m )和B (n ,-6)代入y =3x -5,得:m =3×2-5=1,-6=3n -5,解得:13n =-.所以A (2,1),B (13-,-6).将A (2,1)代入1k y x -=,得112k -=,所以k =3.即k 的值为3,n 的值为13-.(2)设直线AB与y轴交于点C,则C(0,-5). S△AOB=S△AOC+S△BOC=11135 5252236⨯⨯+⨯⨯=【知识点】一次函数与反比例函数20.(2018山东潍坊,20,8分)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【思路分析】(1)利用“AAS”证明△ADE≌△ABF即可;(2)设EF=x,S四边形ABED=S△BEF+S△ABF+S△ADE,分别表示出底和高,利用面积求出x的值,即可求出∠EBF的正弦值.【解题过程】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°.∴∠BAE+∠EAD=90°.∵BF⊥AM,DE⊥AM,∴∠DEA=∠AFB=90°,∴∠EAD+∠EDA=90°.∴∠BAE=∠EDA.∴△ABE≌ADE.∴AE=BF.(2)设EF=x,则AE=x+2∴BF=AE=x+2,∵△ABE≌ADE,∴S四边形ABED=S△BEF+S△ABF+S△ADE=S△BEF+2S△ABF=24即11(2)2(2)224 22x x x++⨯+⨯=.解得:x1=4,x2=-10(舍去)∴EF=4,BF=6∴BE=2246213+=.∴213sin13213EFEBFBE∠===.【知识点】正方形,全等三角形的判定和性质,锐角三角比21.(2018山东潍坊,21,8分)为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动.小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图.(1)求n并补全条形统计图;(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为5 m3和9 m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5 m3和9m3恰好各有一户家庭的概率.【思路分析】(1)根据用水9m3和10m3的用户数与所占比求出n的值,根据用水6 m3和8 m3的用户百分比求出用水8 m3的用户数,进一步求出用水5 m3的用户数,补全统计图.(2)利用加权平均数公式求平均数,然后求出20户中低于平均数的用户所占比即可估算出420户家庭中月用水量低于月平均用水量的家庭户数.(3)设用水5m3的两户分别为A1,A2,用水9m3的3户分别为B1,B2,B3,画出树状图或列表即可求出概率.【解题过程】(1)由条形统计图可得,用水9m3和10m3的用户共有3+2=5户.n=5÷25%=20(户),20×55%=11(户),11-7=4(户),20-(2+7+4+3+2)=2,故用水量8m3的有4户,用水量5m3的有2户,n的值为20.补全条形统计图如下:(2)42526784931026.9520x⨯+⨯+⨯+⨯+⨯+⨯==(m3)低于6.95的有2+2+7=11户,1142023120⨯=(户)∴这n户家庭的月平均用水量为6.95m3;小莹所住小区家庭中月用水量低于月平均用水量的家庭户数为231户.(3)设用水5m3的两户分别为A1,A2,用水9m3的3户分别为B1,B2,B3,画树状图:或列表:A1A2B1B2B3A1A1A2A1B1A1B2A1B3A2A2A1A2B1A2B2A2B3B1B1A1B1A2B1B2B1B3B2B2A1B2A2B2B1B2B3B3B3A1B3A2B3B1B3B2共有20种调查方式,其中用水量为5 m3和9m3恰好各有一户家庭的共有12种情况,∴选出的两户中月用水量为5 m3和9m3恰好各有一户家庭的概率:P=123205=.【知识点】统计与概率综合,条形统计图,扇形统计图,加权平均数,用样本估计总体,概率计A1A2B1B2B3A2A1B1B2B3B1A1A2B2B3B2A1A2B1B3B3A1A2B1B2算22.(2018山东潍坊,22,8分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=27,AC=22,求AD的长.【思路分析】(1)连接OA,利用同弧所对的圆周角相等,半径相等,结合已知条件证明∠OAD=∠BAE,利用直径所对圆周角是直角可证明∠OAE=90°;(2)过点A作AF⊥BC,垂足为F.先证明△ABC 为等腰三角形,再证明△AFC∽△BAD即可求出AD的长.【解题过程】(1)连接OA交BC于点F∵OD=OA,∴∠D=∠OAD.∵∠C=∠D,∠C=∠BAE,∴∠OAD=∠BAE.∵BD为⊙O直径,∴∠BAD=90°.即∠OAD+∠OAB=90°.∴∠BAE+∠OAB=90°.即∠OAE=90°.∴AE与⊙O相切于点A.(2)标准答案:∵AE∥BC,AE⊥OA,∴OA ⊥BC , ∴AB AC =,12FB BC = , ∴AB =AC ,∵BC =27,AC =22, ∴BF =7,AB =22,在Rt △ABF 中,AF =871-= , 在Rt △OFB 中,OB 2=BF 2+(OB -AF )2, ∴OB =4, ∴BD =8,∴在Rt △ABD 中,AD =2264856214BD AB -=-== .方法2:过点A 作AF ⊥BC ,垂足为F .∵BC ∥AE , ∴∠ABC =∠BAE . ∵∠BAE =∠C , ∴∠C =∠ABC . ∴AB =AC =22. ∴CF =12BC =12772⨯=.∴AF =2222(22)(7)1AC CF -=-= ∵∠AFC =∠BAD =90°,∠C =∠D , ∴△AFC ∽△BAD . ∴AF CF AB AD= . F∴AB CF AD AF ⋅=== . 【知识点】切线的判定,相似三角形的判定和性质23.(2018山东潍坊,23,11分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务. 该工程队有A ,B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米. 每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.(1)分别求每台A 型,B 型挖掘机一小时挖土多少立方米? (2)若不同数量....的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元. 问施工时有哪几种调配方案,并指出那种调配方案的施工费用最低,最低费用是多少元?【思路分析】(1)根据两种挖掘机挖土的数量列二元一次方程组求解即可;(2)设A 型挖掘机有x 台,则B 型挖掘机有(12-x )台,根据挖土量和施工费用分别列不等式组取整数解,即可求出调配方案,设施工费用为y 元,可列出施工费用y 与x 的函数关系式,利用函数的增减性求最低费用. 【解题过程】解:(1)设每台A 型挖掘机一小时挖土a 立方米,每台B 型挖掘机一小时挖土b 立方米,根据题意,得:3516547225a b a b +=⎧⎨+=⎩ 解得:3015a b =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖掘机一小时挖土15立方米. (2)设A 型挖掘机有x 台,则B 型挖掘机有(12-x )台.304154(12)108030041804(12)12960x x x x ⨯+⨯-≥⎧⎨⨯+⨯-≤⎩解得:6≤x ≤9∵挖掘机数量不同,∴x ≠12-x ∴x ≠6所以,x 取整数为7,8,9共三种方案,分别是①A 型7台,B 型5台;②A 型8台,B 型4台;③A型9台,B型3台.设施工总费用为y元,则y=300×4x+180×4(12-x)=480x+8640∵480>0,∴y随x的增大而增大,当x=7时,施工费用最少,此时y=480×7+8640=12000.∴方案①A型7台,B型5台施工费用最低,最低费用为12000元.【知识点】二元一次方程组的应用,一元一次不等式组的应用,一次函数应用24.(2018山东潍坊,24,12分)如图1,在□ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF∶FA=1∶5.(1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG´M´,连接M′B.①求四边形BHMM'的面积;②直线EF上有一动点N,求△DNM周长的最小值.(2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K'恰好落在直线AB上,求线段CP的长.【思路分析】(1)①由题意可知四边形BHMM'为梯形,上底BH,下底MM′易求,故只需求出高MH即可,计算MH可通过同角的余角相等证明∠FMH=∠A,而∠A的正切值易求,故高MH可得(求高也可利用△FHM∽△DHA来计算),从而求出面积;②由EF垂直平分CD可得点D和点C关于直线EF对称,故只需连接CM,CM与EF的交点即为满足条件的点N,分别求出CM和DM即可求出周长的最小值;(2)先通过∠A的正切值不变求出FQ的长度,从而求出PK,由折叠可得PK′=PK,QK′=QK,利用勾股定理先求出GK′的长度,设PE=x,在Rt△QFK′中把FK′和QK′用x表示出来,利用勾股定理求出x的值,从而求出CP的长度.【解题过程】解:(1)①∵BF∶FA=1∶5,AB=6,∴BF=1,AF=5.∵四边形ABCD为平行四边形,∴CD=AB=6,∵EF垂直平分CD,∴DE =CE =3.∴FH =3,HA =AF -FH =5-3=2. 在Rt △ADH 中4tan 22DH A AH === ∵∠A +∠AFM =90°,∠AFM +∠FMH =90°, ∴∠FMH =∠A ∴tan FMH tan 2FHA MH∠===. ∵FH =3,∴MH =32由平移可知MM ′=CD =6,BH =1+3=4∴S 四边形BHMM ′=131546222⨯+⨯=().②由点C 与点D 关于直线EF 对称可知,连接CM 交EF 于点N ,连接DN ,此时△DMN 周长最小.DM =DH -MH =35422-=. 在Rt △CDM 中,22225136()22CM CD DM =+=+=,即DN +MN = 132.∴△DNM 周长的最小值为135922+=. (2)标准答案: ∵BF ∥CE , ∴143QF BF QF CE ==+,∴QF =2, ∴PK =PK ′=6过点K ′作E ′F ′∥EF ,分别交CD 于点E ′,交QK 于点F ′,N当点P在线段CE上时,在Rt△PK′E′中,PE′2=PK′2-E′K′2,∴PE′=25 ,∵Rt△PE′K′∽Rt△K′F′Q,∴''''''PE E KK F QF= ,∴2542'QF= .∴QF′=45,∴PE=PE′-EE′=456525-= .∴CP=15655-.同理可得,当点P在线段ED上时,CP′=15655+.综上可得,CP 1565-1565+方法2:当点P在线段CE上时,如图所示,设直线AB与PK交于点G.在Rt △BFQ 中,∠ABQ =∠A ∴tan ∠ABQ =2BFFQ= , ∵BF =1,∴FQ =2. ∴EQ =EF +FQ =4+2=6 ∴PK =EQ =6.由折叠可得:PK ′=PK =6,QK ′=QK 在Rt △PGK ′中,PG =DH =4GK ′=2222'6425PK PG -=-=设PE =x ,则GF =KQ =x ,QK ′=x ,FK ′=GK ′-GF =25x - 在Rt △QFK ′中,222(25)2x x -+=解得:655x =. ∴CP =CE -PE =6355- .同理可得,当点P 在线段ED 上时,CP ′=6535+. 综上可得,CP 的长为6355-或6535+.【知识点】平行四边形,图形的平移,图形的轴对称,勾股定理,梯形,几何最值问题,分类讨论思想25.(2018山东潍坊,25,12分)如图1,抛物线2112y ax x c =-+与x 轴交于点A 和点B (1,0),于y 轴交于点C (0,34),抛物线y 1的顶点为G ,GM ⊥x 轴于点M . 将抛物线y 1平移后得到顶点为GB且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R. 若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.【思路分析】(1)将B、C两点坐标代入抛物线y1求出a的值,根据平移后函数的顶点坐标求出y2的解析式;(2)设T(1,t),分别用勾股定理表示出AC2、AT2、CT2,根据等腰三角形两边相等,分三种情况进行讨论求解即可;(3)若两三角形全等,则两组直角边对应相等,利用Q和R关于直线l对称的条件分类讨论解答.【解题过程】(1)将B(1,0)和C(0,34)代入抛物线2112y ax x c=-+,得:1234a cc⎧-+=⎪⎪⎨⎪=⎪⎩,解得:1=434ac⎧-⎪⎪⎨⎪=⎪⎩所以抛物线21113424y x x=--+由题意可知平移后抛物线y2顶点为B(1,0),故抛物线y2的解析式为221(1)4y x=--.即21111424y x x=-+-(2)令y1=0,得x1=-3,x2=1由题意B(1,0),故A(-3,0),设T(1,t),又C(0,34)所以22231533416AC=+=(),22221316AT t t=++=+()222233251)4216CT t t t =+-=-+( ①若AC =AT ,则21531616t += ,方程无解,故此时不存在; ②若AC =CT ,则232515321616t t -+= ,解得31374t ±= ,此时T 点坐标为(1,31374+)或(1,3137-);③若AT =CT ,则2232516216t t t -+=+,解得778t =-,此时T 点坐标为(1,778-) 故存在T 点坐标为(1,3137+)或(1,3137-)或(1,778-).(3)标准答案:设P (m ,2113424m m --+),则Q (m ,2111424m m -+-),∵Q ,R 关于x =1对称,所以R (2-m ,2111424m m -+-),情况一:当点P 在直线l 的左侧时,PQ =2113424m m --+2111()1424m m m --+-=-,QR =2-2m ,又因为以P ,Q ,R 构成的三角形与△AMG 全等,当PQ =GM 且QR =AM 时,m =0,可求得P (0,34),即点P 与点C 重合.所以R (2,14-) ,设PR 的解析式为y =kx +b ,则有3,4124b k b ⎧=⎪⎪⎨⎪+=-⎪⎩ ,解得:12k =- .即PR 的解析式为1324y x =-+,当PQ =AM 且QR =GM 时,无解.情况二:当点P 在直线l 右侧时,P ′Q ′=2111424m m -+--2113()1424m m m --+=-,Q ′R ′=2m -2,同理可得P ′(2,54-),R ′(0,14-), P ′R ′的解析式为1124y x =--. 综上所述,PR 的解析式为1324y x =-+或1124y x =--.方法2:由题意G (-1,-1),故AM =2,CM =1,若△PQR 与△AMG 全等,则PQ =1,QR =2或PQ =2,QR =1(1)若QR =2,由对称轴为x =1,得Q 点横坐标为0或2,①当x =0时,134y =,214y =- ,此时PQ =31144--=(),满足题意,此时P (0,34),R (2,14-),直线PR 解析式为1324y x =-+ . ②当x =2时,154y =- ,214y =- ,此时PQ =15144---=(),满足题意,此时P (2,54-),R (0,14-),直线PR 解析式为1124y x =-- . (2)若QR =1,由对称轴为x =1,得Q 点横坐标为12或32, ①当x =12时,1716y = ,2116y =- ,此时PQ =711216162--=≠(),故此时不满足题意; ②当x =32时,1916y =- ,2116y =- ,此时PQ =191216162---=≠(),故此时也不满足题意. 综上所述,满足题意的直线PR 的解析式为1324y x =-+或1124y x =--. 【知识点】二次函数综合,二次函数的解析式,二次函数的平移,一次函数,全等三角形的判定和性质,分类讨论思想。
【2018中考数学真题+分类汇编】一期26图形的相似与位似试题含解析377【2018数学中考真题分项汇编系列】
图形的相似与位似一、选择题1..(2018•山东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.2.(2018•山东滨州•3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A.(5,1)B.(4,3)C.(3,4)D.(1,5)【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.3 (2018•江苏扬州•3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt △ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①② D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.4 (2018·山东临沂·3分)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.5(2018·山东潍坊·3分)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)【分析】根据位似变换的性质计算即可.【解答】解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(﹣2),n×(﹣2)),即(2m,2n)或(﹣2m,﹣2n),故选:B.【点评】本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.6.(2018•湖南省永州市•4分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.【点评】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.7 (2018·四川宜宾·3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C.D.【考点】Q2:平移的性质.【分析】由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知()2=,据此求解可得.【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.8(2018·四川自贡·4分)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.9(2018·台湾·分)小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,铆钉6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键.10 (2018·台湾·分)如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH 的面积比为何?()A.2:1 B.3:2 C.5:2 D.9:4【分析】只要证明△ADE∽△FGH,可得=()2,由此即可解决问题;【解答】解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,∵DE∥BC,FG∥AB,FH∥AC,∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,∴△ADE∽△FGH,∴=()2=()2=.故选:D.【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.11.(2018•湖北荆门•3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴=()2=,故选:C.【点评】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(2018•湖北恩施•3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.13. (2018·浙江临安·3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【考点】相似三角形的判定,【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.【点评】本题考查的是相似三角形的判定,掌握两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键.14(2018·浙江临安·3分)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.【考点】相似三角形的判定和相似三角形的性质【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故选:A.【点评】本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错.15(2018·重庆(A)·4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为A. 3cmB. 4cmC. 4.5cmD. 5cm【考点】相似三角形的性质【解析】利用相似三角形三边对应成比例解出即可。
最新-2018年全国各地中考数学试题分13:全等三角形 精品
DECBA2018年中考数学试题分类汇编 全等三角形1. (2018年河南)如图,四边形ABCD 是平行四边形,△AB’C和△ABC关于AC 所在的直线对称,AD 和B’C相交于点O .连结BB’.(1)请直接写出图中所有的等腰三角形(不添加字母); (2)求证:△A B’O≌△CDO.2、(2018年福建省德化县)(本题满分10分)已知: 如图, 菱形ABCD 中, E 、F 分别是CB 、CD 上的点,BE=DF. (1)求证:AE=AF.(2)若AE 垂直平分BC ,AF 垂直平分CD , 求证: △AEF 为等边三角形.3、(2018年燕山)已知:如图,四点B 、E 、C 、F 顺次在同一条直线上,A 、D 两点在直线BC 的同侧,BE =CF ,AB∥DE, ∠ACB=∠DFE. 求证:AC =DF .4.(2018年北京顺义)已知:如图,AB=AC ,点D 是BC 的中点,AB 平分DAE ∠,AE BE ⊥,垂足为E .求证:AD=AE .5(2018年浙江省东阳县)如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .(1)请你判断AD 是△ABC 的中线还是角平分线?请证明你的结论. (2)连接BF 、CE ,若四边形BFCE 是菱形,则△ABC 中应 添加一个条件 6.(2018日照市)一次函数y =34x +4分别交x 轴、y 轴于A 、B 两点,在x 轴上取一点,使△ABC 为等腰三角形,则这样的的点C 最多..有 个.7、(2018重庆潼南县)19.(6分)画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:用尺规作图,保留作图痕迹,写出已知,求作,不写作法和证明).已知:求作:答案:已知:线段a、h求作:一个等腰△ABC使底边BC=a,底边BC上的高为h画图(保留作图痕迹图略)8、(2018重庆市潼南县)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG,点E、F分别在AG上,连接BE、DF,∠1=∠2 ,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.10、(2018年浙江省绍兴市) (1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.第23题图1ACBDEFG 14238题图(3) 已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF ,GH 交于点O , ∠FOH =90°,EF =4. 直接写出下列两题的答案:①如图3,矩形ABCD 由2个全等的正方形组成,求GH 的长;②如图4,矩形ABCD 由n 个全等的正方形组成,求GH 的长(用n 的代数式表示).【答案】(1) 证明:如图1,∵ 四边形ABCD 为正方形,∴ AB =BC ,∠ABC =∠BCD =90°, ∴ ∠EAB +∠AEB =90°. ∵ ∠EOB =∠AOF =90°,∴ ∠FBC +∠AEB =90°,∴ ∠EAB =∠FBC , ∴ △ABE ≌△BCF , ∴ BE =CF . (2) 解:如图2,过点A 作AM //GH 交BC 于M , 过点B 作BN //EF 交CD 于N ,AM 与BN 交于点O /, 则四边形AMHG 和四边形BNFE 均为平行四边形, ∴ EF=BN ,GH=AM ,第23题图2第23题图3第23题图第23题图1N∵ ∠FOH =90°, AM //GH ,EF//BN , ∴ ∠NO /A =90°, 故由(1)得, △ABM ≌△BCN , ∴ AM =BN , ∴ GH =EF =4. (3) ① 8.② 4n .11、(2018年宁德市)(本题满分8分)如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:_______________,并给予证明.【答案】解法一:添加条件:AE =AF , 证明:在△AED 与△AFD 中,∵AE=AF ,∠EAD=∠FAD,AD =AD , ∴△AED≌△AFD(SAS ). 解法二:添加条件:∠EDA=∠FDA,证明:在△AED 与△AFD 中,∵∠EAD=∠FAD,AD =AD ,∠EDA=∠FDA, ∴△AED≌△AFD(ASA ).12、(2018年宁德市)(本题满分13分)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM.⑴ 求证:△AMB≌△ENB;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.【答案】解:⑴∵△ABE 是等边三角形, ∴BA=BE ,∠ABE=60°.∵∠MBN=60°,B D CAEFEA DB CNM∴∠MBN-∠ABN=∠ABE-∠ABN. 即∠BMA=∠NBE. 又∵MB=NB ,∴△AMB≌△ENB(SAS ).⑵①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小. ………………9分 理由如下:连接MN.由⑴知,△AMB≌△ENB, ∴AM=EN.∵∠MBN=60°,MB =NB , ∴△BMN 是等边三角形. ∴BM=MN.∴AM+BM +CM =EN +MN +CM.根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长. ⑶过E 点作EF⊥BC 交CB 的延长线于F , ∴∠EBF=90°-60°=30°. 设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt△EFC 中, ∵EF 2+FC 2=EC 2, ∴(2x )2+(23x +x )2=()213+.解得,x =2(舍去负值). ∴正方形的边长为2.F EA DB CNM。
2018年全国各地中考数学试题专题汇编1平行线与三角形解析版1-52题
2018年全国各地中考数学试题专题汇编1(1-52题)平行线与三角形选择题解析版1.2018年新疆5.(5分)如图,AB ∥CD ,点E 在线段BC 上,CD=CE .若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°【分析】先由AB ∥CD ,得∠C=∠ABC=30°,CD=CE ,得∠D=∠CED ,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D .【解答】解:∵AB ∥CD ,∴∠C=∠ABC=30°,又∵CD=CE ,∴∠D=∠CED ,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B .【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C ,再由CD=CE 得出∠D=∠CED ,由三角形内角和定理求出∠D .2.2018山西8. 如 图 ,在 Rt △ A BC 中 ,∠ A CB=90°,∠ A =60°,AC=6,将 △ A BC 绕 点 C 按 逆 时 针方 向 旋 转 得 到A B C ''∆,此 时 点 A ' 恰好在 AB 边 上 , 则 点 B ' 与点 B 之 间 的 距 离 是 ( )A. 12B. 6C.D.【答案】 D【考点】 旋 转 , 等 边 三 角 形 性 质【解析 】连接 BB ' ,由 旋 转 可 知AC A C '=,BC B C '=,∵ ∠ A =60°,∴ACA '∆为 等 边 三 角 形 ,∴60ACA '∠=︒, ∴60BCB '∠=︒.∴BCB '∆为 等 边 三 角 形 ,∴BB BC '== . 3.2018•海南7.(3.00分)将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A .10°B .15°C .20°D .25°【考点】JA:平行线的性质.【专题】1 :常规题型;551:线段、角、相交线与平行线.【分析】由DE∥AF得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.4.2018包头8.(3.00分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5° C.12°D.10°【分析】由AB=AC知∠B=∠C,据此得2∠C+∠BAC=180°,结合∠C+∠BAC=145°可知∠C=35°,根据∠DAE=90°、AD=AE知∠AED=45°,利用∠EDC=∠AED﹣∠C可得答案.【解答】解:∵AB=AC,∴∠B=∠C,∴∠B+∠C+∠BAC=2∠C+∠BAC=180°,又∵∠C+∠BAC=145°,∴∠C=35°,∵∠DAE=90°,AD=AE,∴∠AED=45°,∴∠EDC=∠AED﹣∠C=10°,故选:D.【点评】本题主要考查等腰直角三角形,解题的关键是掌握等腰直角三角形和等腰三角形的性质及三角形的内角和定理、外角的性质.5.2018天津10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. AD=BDB. AE=ACC. ED+EB=DBD.AE+CB=AB【解析】分析:由折叠的性质知,BC=BE.易得AE+CB=AB.详解:由折叠的性质知,BC=BE.∴AE+CB=AB..故选:D.6.2018重庆A卷6.下列命题正确的是A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分【答案】D【解析】A.错误.平行四边形的对角线互相平分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国各地中考数学真题汇编(山东专版) 三角形 参考答案与试题解析
一.选择题(共10小题) 1.(2018•潍坊)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,
两条斜边平行,则∠1的度数是( )
A.45° B.60° C.75° D.82.5° 解:作直线l平行于直角三角板的斜边, 可得:∠2=∠3=45°,∠3=∠4=30°, 故∠1的度数是:45°+30°=75°. 故选:C.
2.(2018•淄博)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用
科学计算器求坡角α的度数时,具体按键顺序是( )
A. B. C. D. 解:sinA===0.15, 所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为
故选:A. 3.(2018•淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于
点N,且MN平分∠AMC,若AN=1,则BC的长为( )
A.4 B.6 C. D.8 解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC, ∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC, ∴∠ACB=2∠B,NM=NC, ∴∠B=30°, ∵AN=1, ∴MN=2, ∴AC=AN+NC=3, ∴BC=6, 故选:B.
4.(2018•东营)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于
点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是( )
A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF 解:正确选项是D. 理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE, ∴△CDE≌△BFE,CD∥AF, ∴CD=BF, ∵BF=AB, ∴CD=AB, ∴四边形ABCD是平行四边形. 故选:D. 5.(2018•临沂)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得
AB=1.6m.BC=12.4m.则建筑物CD的高是( )
A.9.3m B.10.5m C.12.4m D.14m 解:∵EB∥CD, ∴△ABE∽△ACD, ∴=,即=, ∴CD=10.5(米). 故选:B.
6.(2018•潍坊)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是: (1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C; (2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D; (3)连接BD,BC. 下列说法不正确的是( )
A.∠CBD=30° B.S△BDC=AB2 C.点C是△ABD的外心 D.sin2A+cos2D=1 解:由作图可知:AC=AB=BC, ∴△ABC是等边三角形, 由作图可知:CB=CA=CD, ∴点C是△ABD的外心,∠ABD=90°, BD=AB, ∴S△ABD=AB2, ∵AC=CD, ∴S△BDC=AB2, 故A、B、C正确, 故选:D.
7.(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是( )
A.图① B.图② C.图③ D.图④ 解:图①,∠α+∠β=180°﹣90°,互余; 图②,根据同角的余角相等,∠α=∠β; 图③,根据等角的补角相等∠α=∠β; 图④,∠α+∠β=180°,互补. 故选:A.
8.(2018•聊城)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为
DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是( )
A.γ=2α+β B.γ=α+2β C.γ=α+β D.γ=180°﹣α﹣β 解:由折叠得:∠A=∠A', ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA', ∵∠A=α,∠CEA′=β,∠BDA'=γ, ∴∠BDA'=γ=α+α+β=2α+β, 故选:A. 9.(2018•枣庄)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,
如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是( )
A.2个 B.3个 C.4个 D.5个 解:如图所示,使△ABP为等腰直角三角形的点P的个数是3, 故选:B.
10.(2018•临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,
则DE的长是( )
A. B.2 C.2 D. 解:∵BE⊥CE,AD⊥CE, ∴∠E=∠ADC=90°, ∴∠EBC+∠BCE=90°. ∵∠BCE+∠ACD=90°, ∴∠EBC=∠DCA. 在△CEB和△ADC中,
, ∴△CEB≌△ADC(AAS), ∴BE=DC=1,CE=AD=3. ∴DE=EC﹣CD=3﹣1=2 故选:B.
二.填空题(共9小题) 11.(2018•淄博)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,
点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于 10 .
解:∵四边形ABCD是平行四边形 ∴AD∥BC,CD=AB=2 由折叠,∠DAC=∠EAC ∵∠DAC=∠ACB ∴∠ACB=∠EAC ∴OA=OC ∵AE过BC的中点O ∴AO=BC ∴∠BAC=90° ∴∠ACE=90° 由折叠,∠ACD=90° ∴E、C、D共线,则DE=4 ∴△ADE的周长为:3+3+2+2=10 故答案为:10
12.(2018•枣庄)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两
层之间的高度为 6.2 米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】
解:在Rt△ABC中, ∵∠ACB=90°, ∴BC=AB•sin∠BAC=12×0.515≈6.2(米), 答:大厅两层之间的距离BC的长约为6.2米. 故答案为:6.2.
13.(2018•德州)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离
为 3 .
解:过C作CF⊥AO, ∵OC为∠AOB的平分线,CM⊥OB, ∴CM=CF, ∵OC=5,OM=4, ∴CM=3, ∴CF=3, 故答案为:3.
14.(2018•东营)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交
AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是 15 .
解:如图,过点D作DQ⊥AC于点Q, 由作图知CP是∠ACB的平分线, ∵∠B=90°,BD=3, ∴DB=DQ=3, ∵AC=10, ∴S△ACD=•AC•DQ=×10×3=15, 故答案为:15.
15.(2018•潍坊)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在
东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行 小时即可到达.(结果保留根号) 解:如图,过点P作PQ⊥AB交AB延长线于点Q,过点M作MN⊥AB交AB延长线于点N, 在直角△AQP中,∠PAQ=45°,则AQ=PQ=60×1.5+BQ=90+BQ(海里), 所以 BQ=PQ﹣90. 在直角△BPQ中,∠BPQ=30°,则BQ=PQ•tan30°=PQ(海里), 所以 PQ﹣90=PQ, 所以 PQ=45(3+)(海里) 所以 MN=PQ=45(3+)(海里) 在直角△BMN中,∠MBN=30°, 所以 BM=2MN=90(3+)(海里) 所以 =(小时) 故答案是:.
16.(2018•济宁)在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,
EF,请你添加一个条件 D是BC的中点 ,使△BED与△FDE全等.
解:当D是BC的中点时,△BED≌△FDE, ∵E,F分别是边AB,AC的中点, ∴EF∥BC, 当E,D分别是边AB,BC的中点时,ED∥AC, ∴四边形BEFD是平行四边形, ∴△BED≌△FDE, 故答案为:D是BC的中点.
17.(2018•济宁)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东
方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是 km.
解:过点C作CD⊥AB于点D, 根据题意得:∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°, ∴∠ACB=∠CBD﹣∠CAD=30°, ∴∠CAB=∠ACB, ∴BC=AB=2km, 在Rt△CBD中,CD=BC•sin60°=2×=(km). 故答案为:.
18.(2018•德州)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都
在格点上,则∠BAC的正弦值是 .