隧道围岩分级的有关规定(1)

合集下载

高铁隧道(围岩分级、压力)

高铁隧道(围岩分级、压力)

节理较 发育
节理发 育
节理(裂隙)2-3组,呈x型,较规则,以构造型为主,多数 的间距大于0.4m,多为密闭。部分微张开,少有填充物。岩 体被切割成大块状
节理(裂隙)3组以上,不规则,呈x型或米字型,以构造型 或风化型为主,多数间距小于0.4m,大部分微张开,部分张 开,大部分为粘性土填充。岩体被切割成块、碎石状
1
围岩分级
岩石坚硬程度的划分
岩石类别 单轴饱和抗压 极限强度 Rc(MPa) 代 表 性 岩 石
极硬岩 硬质岩 硬 岩
Rc>60
未风化或微风化的花岗岩、片麻岩、闪长岩、石英 岩、硅质灰岩、钙质胶结的砂岩或砾岩等
弱风化的极硬岩;未风化或微风化的熔结凝灰岩、 大理岩、板岩、白云岩、灰岩、钙质胶结的砂岩、 结晶颗粒较粗的岩浆岩等 强风化的极硬岩;弱风化的硬岩;未风化或微风化 的云母片岩、千枚岩、砂质泥岩、钙泥质胶结的粉 砂岩和砾岩、泥灰岩、泥岩、凝灰岩等 强风化的极硬岩;弱风化至强风化的硬岩;弱风化 的较软岩和未风化或微风化的泥质岩类;泥岩、 煤、泥质胶结的砂岩和砾岩等
的预测隧道围岩级别的方法,在一定程度上要等到隧道
开挖后才能确定。
1
围岩分级
(三)与地质勘探手段相联系的分级方法 代表: ●弹性波速分级法~波速是反映岩性与岩体结构的一项综合
指标,波速越高,围岩越好。
波速 Kv 完整性
>0.75 完整
0.75~ 0.55 较完整
0.55~ 0.35 破碎
0.35~ 0.15 较破碎
2

围岩压力 围岩压力分类:
围岩压力按作用力发生的形态,一般可分为如下几 种类型:
1.松动压力
由于开挖而松动或坍塌的岩体以重力形式直接 作用在支护结构上的压力称为松动压力。 松动压力常通过下列三种情况发生:

围岩分级

围岩分级

未风化~微风化的凝质岩,千枚岩,
砂质泥岩,泥灰岩,泥质砂岩,粉
砂岩,页岩等
软岩 锤击声哑,无回弹,有凹痕, 1 强风化的硬质岩;
易击碎;浸水后手可掰开 2 弱风化~强风化的较坚硬岩;
3 弱风化的较软岩;
4 未风化的泥岩等
极软 锤击声哑,无回弹,有较深凹 1 全风化的各种岩石;
岩 痕,手可捏碎;浸水后可捏成 2 各种半成岩

Rc(MPa) 坚硬程度
Rc 与岩石坚硬程度定性划分的关系
>60 坚硬岩
60~30 较坚硬岩
30~15 较软岩
15~5 软岩
<5 极软岩
4.岩体完整程度的划分如下表
岩体完整程度的定性划分
名称
结构面发育程度 主要结构面的 组数 平均间距(m) 结合程度
主要结构 面类型
相应结构类型
完整
1~2
>1.0
岩的详细分级。 二)围岩分级中岩石坚硬程度`岩体完整程度两个基本因素的定性划分和定量 指标及对应关系应符合下列规定: 1 岩石坚硬程度可按下表定性划分。 2 岩体坚硬程度定量指标用岩石单轴饱和抗压强度 Rc 才表达。Rc 一般采用实 测值,若无实测值时,可采用实测的岩石点荷载强度指数 IS(50)的换算值,即 按下式计算。
或修正的围岩质量指标[BQ]值,土体隧道中土体类型、密实状态等定性特征,按表 3.6.5 确
定围岩级别。
表 3.5.6 公路隧道围岩分级
围岩级别
围岩或土体主要定性特征
围岩基本质量指标 BQ 或修
正的围岩基本质量指标[BQ]

坚硬岩,岩体完整,巨整体状 >550
或巨厚层状结构

坚硬岩,岩体较完整,块状或 550~451

围岩等级划分.

围岩等级划分.

3-1-1隧道围岩级别划分与判定隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。

国内外现在的围岩分级方法有定性、定量、定性与定量相结合3种方法,且多以前两种方法为主。

定性分级的做法是,在现场对影响岩体质量的诸因素进行定性描述、鉴别、判断,或对主要因素作出评判、打分,有的还引入分量化指标进行综合分级。

以定性为主的分级方法,如现行的公路、铁路隧道围岩分级等方法经验的成分较大,有一定人为因素和不确定性,在使用中,往往存在不一致,随勘察人员的认识和经验的差别,对同一围岩作出级别不同的判断。

采用定性分级的围岩级别,常常出现与实际差别1~2级的情况。

定量分级的做法是根据对岩体性质进行测试的数据或对各参数打分,经计算获得岩体质量指标,并以该指标值进行分级。

如国外N.Barton 的Q分级,Z.T.Bieniawsks 的地质力学(MRM)分级、Dree的RQD值分级等方法。

但由于岩体性质和赋存条件十分复杂,分级时仅用少数参数和某个数学公式难以全面准确地概括所有情况,而且参数测试数量有限,数据的代表性和抽样的代表性均存在一定的局限,实施时难度较大。

影响围岩稳定的因素多种多样,主要是岩石的物理力学性质、构造发育情况、承受的荷载(工程荷载和初始应力)、应力变形状态、几何边界条件、水的赋存状态等。

这些因素中,岩体的物理力学性质和构造发育情况是独立于各种工作类型的,反映出了岩体的基本特性,在岩体的各项物理力学性质中,对稳定性关系最大的是岩石坚硬程度,岩体的构造发育状态、岩体的不连续性、节理化程度所反映的岩体完整性是地质体的又一基本属性。

国内外多数围岩分级都将岩石坚硬程度和岩体的完整程度作为岩体基本质量分级的两个基本因素。

1 国标《锚杆喷射混凝土支护技术规范》围岩分级1.1围岩分级围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表1.1规定。

隧道围岩分级

隧道围岩分级

铁路隧道围岩分级一、铁路隧道围岩分级类型根据《铁路隧道工程施工技术指南》铁路隧道围岩分级判定的内容将不同岩石性质和岩体结构的隧道围岩分为Ⅰ~Ⅵ六个基本级别。

铁路隧道围岩分级表注:表中“围岩级别”和“围岩主要工程地质条件”栏,不包括膨胀性围岩、多年冻土等特殊岩土。

二、围岩级别判定的一般步骤1、收集整理隧道场地的区域地质资料,分析研究设计图纸上详细的地勘报告,明确隧区主要的岩层、岩性、岩体构造、不良地质以及水文地质条件。

特别是要详细研究不良构造体和不良地质作用对隧道区围岩的岩石强度、岩体完整性的影响。

从整体上把握该区域工程地质条件。

2、按照编制的实施性超前地质预报组织进行隧道掌子面前方地质预测预报,并根据真实的预报结论分析判断掌子面前方的围岩情况。

一方面根据预报结论初步判断围岩基本分级的级别,并将其与设计时提供的围岩分级进行比对,另一方面作为围岩级别和支护方案变更的依据之一。

3、实时记录掌子面地质素描表和围岩级别判定卡中的内容,特别是要客观填写掌子面围岩的岩性指标、岩体完整性情况和地下水状况,这些指标均是作为围岩基本分级的理论依据。

如果难以明确围岩的地质条件,可通过实验和理论计算来确定围岩的各项力学性能和构造特点,来加以判断围岩级别。

4、根据得出的围岩岩性特征、构造特征以及其它相关资料并按照隧道围岩分级的标准进行围岩级别的判定。

三、围岩判定主要依据1、岩石的坚硬程度①从定性划分硬质岩包括坚硬岩和较硬岩,软质岩包括较软岩、软岩和及软岩。

坚硬岩:锤击声清脆,有回弹,震手,难击碎,基本无吸水反应。

代表性岩石如未风化~微风化花岗岩、闪长岩、辉绿岩、玄武岩、安山岩、片麻岩、石英岩、石英砂岩、硅质砾岩、硅质石灰岩等。

较硬岩:锤击声较清脆,有轻微回弹,稍震手,较难击碎,有轻微吸水反应。

代表性岩石有1、微风化的坚硬岩石;2、未风化的大理岩、板岩、石灰岩、白云岩、钙质砂岩等。

较软岩:锤击声不清脆,无回弹,轻易击碎,浸水后指甲可刻出印痕。

隧道围岩分级方法

隧道围岩分级方法

隧道围岩分级方法
隧道围岩分级方法可以根据围岩的强度、稳定性和透水性等特征进行划分。

常见的隧道围岩分级方法有以下几种:
1. 国际地铁隧道分类法:按照地质特征将围岩分为Ⅰ至Ⅵ级,1级围岩为最好的围岩,6级围岩为最差的围岩。

2. 日本高速公路隧道工程协会围岩分级法:按照围岩的岩性、颗粒级配、岩石坚度、块度、岩体结构和褶皱、断层等因素进行评价,将围岩划分为4个等级。

3. 美国地质勘探员协会(Rock Mass Rating)围岩分级法:按照地质结构和岩石机械特性等因素,将围岩划分为6个等级,从R0到R6,R0围岩为最差的围岩,R6围岩为最好的围岩。

4. 中国国内常用的围岩分级标准:根据地质特征和工程要求,将围岩分为I至V级,I级围岩为最好的围岩,V级围岩为最差的围岩。

以上只是隧道围岩分级的一些常用方法,在具体工程中可以根据实际情况选取适合的分类方法。

隧道工程第二章隧道工程地质环境及围岩分级

隧道工程第二章隧道工程地质环境及围岩分级
✓ 勘测设计阶段的地质预估预评价是对隧道所处地质背 景的宏观把握,不可能做出微观的把握;
✓ 复杂长隧道的地质变化对施工方法及工期有决定性影 响;
『 2.2 ▎施工地质超前预报
✓ 作用(施工开挖)引起地质的变化只有在施工期才能 显现出来;
✓ 施工期需要对地质定量的评价而非定性; ✓ 积累经验提高隧道施工地质超前预报准确率和水平及
『 2.2 ▎施工地质超前预报
水平声波反射法
它利用孔间地震剖面法(ABSP)的原理及相应软件开发的 一种超前预报方法。
其原理是向岩体中辐射一定频率的高频地震波,当地震 波遇到波阻抗分界面时,将发生折射、反射,频谱特征也将 发生变化,通过探测反射信号(接收频率为声波频段的地震 波),求得其传播特征后,便可了解工作面前方的岩体特征 。
三、与地质勘探手段相联系的分级方法
围岩弹性波速度是判断岩性、岩体结构的综合指标,它既 可以反映岩石软硬,又可以表达岩体结构的破碎程度。因此, 在弹性波速度基础上,综合考虑与隧道开挖及土压有关的因素 (岩性、风化程度、破碎状态、含水及涌水状态等),将围岩分 为7级。
迭加成水平应力
重力应力场:岩体由于自重形成的应力场。它是地心引力和 离心惯性力共同作用的结果。
σv= H σH=μ/(1-μ)· H
λ = μ/(1-μ)为侧压力系数
构造应力场:地壳各处发生的一切构造变形与破裂都是 地应力作用的结果。
较复杂,对岩体稳定影响较大。最大主应力方向为垂直 于构造线方向;水平分量一般大于垂直分量。构造应力 一般为压应力。水平应力具有明显的各向异性,且具有很 强的方向性。
岩体的范围:取决于工程的形状、位置、工程类型、工程规 模等。
岩体与岩石的区别:岩石和岩体过去统称岩石。岩体是 地壳的一部分,有结构体及结构面组成,即由各种岩石 块体组合而成的岩石结构物。

围岩等级划分

3—1—1隧道围岩级别划分与判定隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工.国内外现在的围岩分级方法有定性、定量、定性与定量相结合3种方法,且多以前两种方法为主。

定性分级的做法是,在现场对影响岩体质量的诸因素进行定性描述、鉴别、判断,或对主要因素作出评判、打分,有的还引入分量化指标进行综合分级。

以定性为主的分级方法,如现行的公路、铁路隧道围岩分级等方法经验的成分较大,有一定人为因素和不确定性,在使用中,往往存在不一致,随勘察人员的认识和经验的差别,对同一围岩作出级别不同的判断.采用定性分级的围岩级别,常常出现与实际差别1~2级的情况.定量分级的做法是根据对岩体性质进行测试的数据或对各参数打分,经计算获得岩体质量指标,并以该指标值进行分级。

如国外N.Barton 的Q分级,Z。

T.Bieniawsks 的地质力学(MRM)分级、Dree的RQD值分级等方法。

但由于岩体性质和赋存条件十分复杂,分级时仅用少数参数和某个数学公式难以全面准确地概括所有情况,而且参数测试数量有限,数据的代表性和抽样的代表性均存在一定的局限,实施时难度较大。

影响围岩稳定的因素多种多样,主要是岩石的物理力学性质、构造发育情况、承受的荷载(工程荷载和初始应力)、应力变形状态、几何边界条件、水的赋存状态等。

这些因素中,岩体的物理力学性质和构造发育情况是独立于各种工作类型的,反映出了岩体的基本特性,在岩体的各项物理力学性质中,对稳定性关系最大的是岩石坚硬程度,岩体的构造发育状态、岩体的不连续性、节理化程度所反映的岩体完整性是地质体的又一基本属性。

国内外多数围岩分级都将岩石坚硬程度和岩体的完整程度作为岩体基本质量分级的两个基本因素。

1 国标《锚杆喷射混凝土支护技术规范》围岩分级1.1围岩分级围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表1。

隧道工程第二章 隧道工程地质环境及围岩分级

第二章 隧道工程地质环境及围岩分级
褶皱
断层
节理
所有方法的基础 直观,但成本高,施工影响大 适用基本认定不良地质区段,对 施工干扰大
围岩自重应力场的变化规律
应力是随深度成线性增加 水平应力总是小于垂直应力,最多也只能与其相等
更为常用
第四节 围岩分级
1.0~2.0
<1.0(饱和状态 的土<1.5)
㈡ 围岩分级的影响因素及分级的修正
1、地下水 在隧道围岩分级中水的影响是不容忽视的,在同级围 岩中,遇水后则适当降低围岩级别。降低的幅度主要视: ①围岩的岩性及结构面的状态;②地下水的性质、大小、 流通条件及对围岩浸润状况和危害程度而定。本围岩分级 中关于地下水影响的修正参照表2-4-4和表2-4-5。
级法最早考虑了埋深对围岩级别的影响。其缺点是分类指标
还缺乏定量描述,没有提供可靠的预测隧道围岩级别的方法, 在一定程度上要等到隧道开挖后才能确定。
三、与地质勘探手段相联系的分级方法
围岩弹性波速度是判断岩性、岩体结构的综合指标,它既 可以反映岩石软硬,又可以表达岩体结构的破碎程度。因此,
在弹性波速度基础上,综合考虑与隧道开挖及土压有关的因素
完 整
结构面1~2组,以构造型节理或层面 为主,密闭型
结构面2~3组,以构造型节理、层面 为主,裂隙多呈密闭型,部分为微张 型,少有充填物 结构面一般为3组,以节理及风化裂 隙为主,在断层附近受构造影响较大, 裂隙以微张型和张开型为主,多有充 填物 结构面大于3组,多以风化型裂隙为 主,在断层附近受构造作用影响大, 裂隙以张开型为主,多有充填物 结构面杂乱无序,在断层附近受断层 作用影响大,宽张裂隙全为泥质或泥 夹岩屑充填,充填物厚度大
2、初始应力场 围岩的初始应力状态对岩体的构造一力学特征是有一定

隧道围岩分级及围岩压力

岩石强度和地下水等工程地质条件和弹性波纵波速度 因素,把围岩分为 6级,依其稳定性由好到差为Ⅰ、Ⅱ、 Ⅲ、Ⅳ、Ⅴ、Ⅵ。
1. 围岩的结构特征和完整状态
围岩体通常是被各种结构面切割成大小不等、形
态各异、种类不同的岩石单元体(即结构体),围岩 结构特征是指结构面和结构体的特征。
第二十四页,编辑于星期三:十二点 十五分。
地坑院出入口
下一张
第十六页,编辑于星期三:十二点 十五分。
地坑院出入口
下一张
第十七页,编辑于星期三:十二点 十五分。
地坑院室内
返回
第十八页,编辑于星期三:十二点 十五分。
2.以岩石物理性质为指标的分级法:前苏联的
普氏分级法(也称 f 值分级法),“ f ”值是一个
综合的物性指标,它代表岩石的相对坚固性。如:
下一张
第三十三页,编辑于星期三:十二点 十五分。
五道岭隧道内衬砌
返回
第三十四页,编辑于星期三:十二点 十五分。
二、坑道开挖前后围岩应力状态 (一)坑道开挖前围岩应力状态(初始应力状态)
坑道开挖前,地层是处于相对静止的状态。因为
地层中任何一处的土石都受到上、下、左、右、前、 后土石的挤压,保持着相对的平衡,称为原始应力状
式中: ? —泊松比,视地层性质不同 ? 值在
0.14~0.5 之间变化。 (二)坑道开挖后围岩应力状态(二次应力状态)
围岩应力重分布:坑道开挖之后,由于其周边 岩体的卸荷作用破坏了原有的平衡状态,使围岩的应 力状态发生了变化,同时产生了位移,促使应力重新 调整以达到新的平衡。
第三十八页,编辑于星期三:十二点 十五分。
第二十九页,编辑于星期三:十二点 十五分。
返回 第二节 围岩压力及成拱作用

隧道工程第二章隧道工程地质环境及围岩分级

TSP超前地质预报技术 预报原理:TSP(Tunnel Seismic Prediction)超前预报 系统是利用地震波在不均匀地质体中产生的反射波特性来 预报隧洞掌子面前方及周围临近区域的地质情况。该法属 多波多分量探测技术,可以检测出掌子面前方岩性的变化, 如不规则体、不连续面、断层和破碎带等。
『 2.2 ▎施工地质超前预报
超前导坑预报法:包括平行导坑法、正洞导坑法。 利用已有隧道地质资料进行与已有隧道平行的施工隧道的 地质预报,根据超前施工的平行隧道或导坑所遇地质情况推测 隧道将遇到怎样的地质情况则是隧道施工期地质预报的一种重 要方法,特别是当两平行隧道间距较小时预报效果更佳。 超前钻探预报法:包括深孔水平钻探、5~8m加深炮孔探测 及孔内摄影。 超前水平钻孔法是最直接的方法。通过钻孔钻进速度测试和钻 孔岩芯的观察及相关试验获取掌子面前方岩石(体)的强度指 标、可钻性指标、地层岩性资料、岩体完整程度指标及地下水 状况等直接资料 。国内主要在水工隧道(洞)工程中,国外 已较为普遍。不仅可以确定隧道掌子面前方地质情况,而且可 以起到探水的作用。
岩体的初始应力场(地应力):岩体在天然状态下具有的内在 应力。 自重应力 初始应力的来源: 最主要 构造应力 温度应力 结晶作用 变质作用 沉积作用 地 震 力 水 压 力 引起的应力
固结作用
脱水作用
岩体处于一定天然应力作用下
各处岩体中初始应力大小、分布及变化情况有很大差别。
岩体中初始应力状态与地下工程的受力状态及稳定性 有密切关系。
4)不稳定的
二、围岩的分级方法
(一)以岩石强度或岩石的物性指标为代表的分级方法
在这种分级方法中,具有代表性的是前苏联普落托奇雅 柯诺夫(M.Jipoctonbn Monos)教授提出的“岩石坚固系数”分 级法(或称“ f ”值分级法,或普氏分级法)。这种分级方法在
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公路隧道围岩分级的有关规定
1、根据岩石的坚硬程度和岩体完整程度两个基本因素的定性特征
和定量的岩体基本质量指标BQ,综合进行初步分级;
2、修正岩体基本质量指标;
3、按照修正后的岩体基本质量指标[BQ],结合定性特征,综合评
判确定围岩的详细分级;
4、岩石的坚硬程度定性划分为:
硬质岩:包括坚硬岩和较坚硬岩(或者坚石、次坚石);
软质岩:包括较软岩、软岩和极软岩;
5、岩石坚硬程度的定量指标是岩石的单轴饱和抗压强度R c;
R c与岩石坚硬程度定性划分的关系:
坚硬岩:R c超过60MPa;较坚硬岩:R c在60~30MPa之间;
较软岩:R c在30~15MPa之间;软岩:R c在15~5MPa之间;
极软岩:R c小于5MPa;
6、岩体完整程度与结构面(节理、裂隙、层面)的发育程度(组数
及间距)、结合程度及相应的结构类型有关;定性分为:
完整:整体状或巨厚层结构;
较完整:块状或厚层结构;
较破碎:裂隙块状、中厚层结构、镶嵌破碎结构、中~薄层状结构;
破碎:裂隙块状结构、破碎状结构;
极破碎:散体状结构;
7、岩体完整程度的定量指标用岩体完整性系数Kv表示;Kv一般
用弹性波探测值计算,也可根据岩体体积节理数Jv的数量查用(条/m3单位体积内的节理数量);
由公式Kv=(v pm/v pr)2计算所得的Kv值最为准确可靠;其中v pm为岩体的弹性纵坡速度,v pr为在测定岩体区取样的岩石(岩芯)的弹性纵坡测试速度;由于岩体内有节理等不利因素,所以v pm应比v pr要小,因此Kv值是个小于1的数值;如果岩体非常完整,Kv的最大值为1;
不管是测定弹性速度还是目测岩面的节理条数,准确的数据只能是在隧道掘进后测量的数据,设计阶段无法进行准确定量;因此,开挖后对围岩分级进行调整是不可避免的,也是非常正常的现象。

8、围岩的基本质量指标计算:
BQ=90+3Rc+250Kv
其中Rc取值单位为MPa,只取值不带单位;
计算要求:当
(1)、Rc>90Kv+30时,应以Rc=90Kv+30和实际测量的Kv值代入公式计算(这种情况是针对强度很高的坚硬岩石但
较破碎时应注意的事项);
(2)、当Kv>0.04Rc+0.4时,应以Kv=0.04Rc+0.4和实际测量的Rc值代入公式计算(这种情况是针对完整性较好的软
岩进行计算时应注意的事项);
9、当隧道内存在地下水、围岩稳定性受软弱结构面影响、存在高
初始应力等情况时,要对围岩基本质量指标进行修正,修正公式如下:
[BQ]=BQ-100(K1+K2+K3);
式中的BQ为围岩基本质量指标;
[BQ]为围岩基本质量指标修正值;
K1为地下水影响修正系数;
K2为主要软弱面结构层状影响修正系数;
K3为初始应力状态影响修正系数;
均可查表采用;当没有以上三种情况(或者任意一项)的影响时,该项的修正值取值为0。

公路隧道围岩分级表
注意:膨胀性围岩和多年冻土不能采用该表;
10、各级围岩的自稳能力判断
所谓小塌方,是指塌方高度小于3m,或塌方体积小于30m3;中塌方:塌方高度3~6m,或塌方体积30~100 m3;
大塌方:塌方高度大于6m,或或塌方体积超过100 m3。

相关文档
最新文档