解析几何(文科)

合集下载

专题五 解析几何 文科数学

专题五  解析几何 文科数学

专题五 文科数学 解析几何1.(2011·朝阳期末)已知圆的方程为086222=++-+y x y x ,那么下列直线中经过圆心的直线方程为( B )(A )012=+-y x (B )012=++y x (C )012=--y x (D )012=-+y x2.(2011·朝阳期末)设椭圆的两个焦点分别为1F ,2F ,过2F 作椭圆长轴的垂线与椭圆相交,其中的一个交点为P ,若△12F P F 为等腰直角三角形,则椭圆的离心率是( A )(A )1-(B )12(C ) (D )23.(2011·朝阳期末)经过点(2, 3)-且与直线250x y +-=垂直的直线方程为 280x y -+= .4.(2011·朝阳期末)(本小题满分13分)已知点(4, 0)M ,(1, 0)N ,若动点P 满足6||M N M P P N ⋅=.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设过点N 的直线l 交轨迹C 于A ,B 两点,若181275N A N B -⋅- ≤≤,求直线l 的斜率的取值范围.解:(Ⅰ)设动点(, )P x y ,则(4, )M P x y =- ,(3, 0)M N =- ,(1, )P N x y =--. …………………2分 由已知得22)()1(6)4(3y x x -+-=--,化简得223412x y +=,得22143xy+=.所以点P 的轨迹C 是椭圆,C 的方程为13422=+yx. ………………………6分(Ⅱ)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-,设A ,B 两点的坐标分别为11(, )A x y ,22(, )B x y .由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩消去y 得2222(43)84120k x k x k +-+-=. ………………8分因为N 在椭圆内,所以0∆>.所以212221228,34412.34kx x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩………………………………………………………10分 因为2121212(1)(1)(1)(1)(1)NA NB x x y y k x x ⋅=--+=+--]1)()[1(21212++-+=x x x x k222222243)1(943438124)1(kk k kkkk ++-=+++--+=, …………12分所以22189(1)127345k k-+--+≤≤. 解得213k ≤≤.所以1k -≤或1k ≤≤. …………………………………………13分5.(2011·丰台期末)过点(34)-,且与圆22(1)(1)25x y -+-=相切的直线方程为 43240x y -+= . 6.(2011·丰台期末) (本小题满分14分)已知O 为平面直角坐标系的原点,过点(20)M -,的直线l 与圆221x y +=交于P ,Q 两点.(Ⅰ)若PQ =,求直线l 的方程;(Ⅱ)若12M P M Q =,求直线l 与圆的交点坐标.解:(Ⅰ)依题意,直线l 的斜率存在,因为 直线l 过点(2,0)M -,可设直线l :(2)y k x =+. 因为PQ =,圆的半径为1,P ,Q 两点在圆221x y +=上,所以圆心O到直线l12 =.又因为12 =,所以15k=±,所以直线l的方程为20x-+=或20x++=.………………………7分(Ⅱ)设11(,)P x y,22(,)Q x y,所以22(2,)M Q x y=+,11(2,)M P x y=+.因为2M Q M P=,所以212122(2)2x xy y+=+⎧⎨=⎩即21212(1)2x xy y=+⎧⎨=⎩(*);因为P,Q两点在圆上,所以2211222211x yx y⎧+=⎪⎨+=⎪⎩把(*)代入,得2211221114(1)41x yx y⎧+=⎪⎨++=⎪⎩,所以11788xy⎧=-⎪⎪⎨⎪=±⎪⎩,22144xy⎧=⎪⎪⎨⎪=±⎪⎩,所以P点坐标为7(88-或7(88--,,Q点坐标为1(44,或1(44-,.………………………14分7. (2011·东莞期末)已知双曲线22221x ya b-=的一条渐近线方程为12y x=,则该双曲线的离心率为( A)A.25B.3C.5D.28.(2011·东莞期末)(本小题满分14分)已知椭圆E 的中心在坐标原点O ,两个焦点分别为)0,1(-A 、)0,1(B ,一个顶点为)0,2(H .(1)求椭圆E 的标准方程;(2)对于x 轴上的点)0,(t P ,椭圆E 上存在点M ,使得MH MP ⊥,求t 的取值范围.解:(1)由题意可得,1c =,2a =,∴b =∴所求的椭圆的标准方程为:22143xy+=.(2)设),(00y x M )20±≠x (,则2200143x y +=. ①且),(00y x t MP --=,),2(00y x MH --=, 由MH MP ⊥可得0=⋅MH MP ,即∴0)2)((2000=+--y x x t . ②由①、②消去0y 整理得3241)2(0200-+-=-x x x t .∵20≠x , ∴23411)2(4100-=---=x x t .∵220<<-x ,∴ 12-<<-t .∴t 的取值范围为)1,2(--. 9. (2011·佛山一检)已知双曲线22221(0,0)x y a b ab-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =,则双曲线的离心率为( A )A .2B .C 2D10. (2011·佛山一检)若点P 在直线03:1=++y x l上,过点P 的直线2l 与曲线22:(5)16C x y -+=相切于点M ,则PM 的最小值为( D )AB .2C .D .411. (2011·佛山一检)已知直线22x y +=分别与x 轴、y 轴相交于,A B 两点,若动点(,)P a b 在线段A B 上,则a b 的最大值为____12______.12.(2011·广东四校一月联考)过圆224x y +=外一点(4,2)P 作圆的两条切线,切点分别为,A B ,则ABP ∆的外接圆方程是( D )A .22(4)(2)1x y -+-=B .22(2)4x y +-=C .22(2)(1)5x y +++=D .22(2)(1)5x y -+-=13.(2011·广东四校一月联考)设θ是三角形的一个内角,且1sin cos 5θθ+=,则方程22sin cos 1x y θθ-=表示的曲线是( D ) A .焦点在x 轴上的双曲线 B .焦点在x 轴上的椭圆C .焦点在y 轴上的双曲线D .焦点在y 轴上的椭圆14.(2011·广东四校一月联考)(本小题满分14分)设(1,0)F ,M 点在x 轴的负半轴上,点P 在y 轴上,且,M P PN PM PF=⊥.(1)当点P 在y 轴上运动时,求点N 的轨迹C 的方程;(2)若(4,0)A ,是否存在垂直x 轴的直线l 被以A N 为直径的圆截得的弦长恒为定值?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)(解法一)MP PN =,故P 为M N 的中点. -------1分设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2yM x P x -> -------2分又(1,0)F ,(,),(1,)22y y PM x PF ∴=--=--------4分又PM PF ⊥ ,204yPM PF x ∴⋅=-+= -------6分 所以,点N 的轨迹C 的方程为24(0)y x x => -------7分(解法二)MP PN =,故P为M N 的中点. -------1分设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2yM x P x -> -------2分又由,M P PN PM PF =⊥ ,故FN FM = ,可得22FNFM=-------4分由(1,0)F ,则有222(1)(1)x y x -+=--,化简得:24(0)y x x => -------6分 所以,点N 的轨迹C 的方程为24(0)y x x => -------7分 (2)设A N 的中点为B ,垂直于x 轴的直线方程为x a =, 以A N 为直径的圆交l 于,C D 两点,C D 的中点为H .12CB AN ==412422x B H a x a +=-=-+ -------9分22222211[(4)](24)44CH CB BHx y x a ∴=-=-+--+221[(412)416](3)44a x a a a x a a=--+=--+ -------12分所以,令3a =,则对任意满足条件的x , 都有29123C H=-+=(与x 无关),-------13分即C D = -------14分15.(2011·广州期末)已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l 的方程为( C )A.y = B.y = C.3y x =- D.3y x=16.(2011·广州期末)(本小题满分14分)图4已知椭圆(222:13x yE a a+=>的离心率12e =. 直线x t =(0t >)与曲线E 交于不同的两点,M N ,以线段M N 为直径作圆C ,圆心为C . (1)求椭圆E 的方程; (2)若圆C 与y轴相交于不同的两点,A B ,求A B C ∆的面积的最大值.(本小题主要考查椭圆、圆、直线与圆的位置关系等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识)(1)解:∵椭圆()222:133x yE a a+=>的离心率12e =,x=a∴12a=. …… 2分解得2a =.∴ 椭圆E 的方程为22143xy+=. …… 4分(2)解法1:依题意,圆心为.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=.∴ 圆C的半径为2r =. …… 6分∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴02t <<,即07t <<.∴弦长||A B ===. ……8分∴A B C ∆的面积12S =⋅ …… 9分)1=)2212712t +-≤7=. …… 12分=7t =时,等号成立.∴ A B C ∆的面积的最大值为7. …… 14分解法2:依题意,圆心为.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=.∴ 圆C的半径为2r =. …… 6分 ∴ 圆C 的方程为222123()4tx t y --+=.∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴02t <<,即07t <<.在圆C 的方程222123()4tx t y --+=中,令0x =,得2y =±,∴弦长||AB = 8分∴A B C ∆的面积12S =⋅ …… 9分)=)221272t +-≤7=. ……12分=7t =时,等号成立.∴ A B C ∆的面积的最大值为7. …… 14分17.(2011·哈九中高三期末)抛物线24x y =上一点到直线54-=x y 的距离最短,则该点的坐标是 ( )A .)2,1(B .)0,0(C .)1,21( D .)4,1(【答案】C【分析】根据题意,直线54-=x y 必然与抛物线24y x =相离,抛物线上的点到直线的最短距离就是与直线54-=x y 平行的抛物线的切线的切点。

文科解析几何

文科解析几何

已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222xy +=的位置关系,并证明你的结论.13高考已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点.(I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积. (II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.12高考已知曲线C :22(5)(2)8m x m y -+-=()m ∈R . (Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设4m =,曲线C 与y 轴的交点为A 、B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M 、N ,直线1y =与直线BM 交于点G . 求证:,,A G N 三点共线.11高考已知椭圆22:14x G y +=.过点(m ,0)作圆221x y +=的切线I 交椭圆G 于A ,B 两点.(I )求椭圆G 的焦点坐标和离心率;(II )将AB 表示为m 的函数,并求AB 的最大值.西城2设分别为椭圆E :22221(0)x y a b a b+=>>的左、右焦点,点A 为椭圆E 的左顶点,点B 为椭圆E 的上顶点,且|AB |=2. ⑴ 若椭圆E 的离心率为,求椭圆E 的方程;⑵ 设P 为椭圆E 上一点,且在第一象限内,直线与y 轴相交于点Q ,若以PQ 为直径的圆经过点F 1,证明:丰台2已知椭圆C :22221(0)x y a b a b+=>>的焦距为2,其两个焦点与短轴的一个顶点是正三角形的三个顶点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)动点P 在椭圆C 上,直线l :4x =与x 轴交于点N ,PM l ⊥于点M (M ,N 不重合),试问在x 轴上是否存在定点T ,使得PTN ∠的平分线过PM 中点,如果存在,求定点T 的坐标;如果不存在,说明理由.昌平1已知椭圆C :22221(0)+=>>x y a b a b,右焦点(2,0)F ,点(2,1)D 在椭圆上.(I )求椭圆C 的标准方程;(II) 已知直线kx y l =:与椭圆C 交于,A B 两点,P 为椭圆C 上异于,A B 的动点. (i )若直线,PA PB 的斜率都存在,证明:12PA PB k k ⋅=-; (ii) 若0k =,直线,PA PB 分别与直线3x =相交于点,M N ,直线BM 与椭圆C 相交 于点Q (异于点B ), 求证:A ,Q ,N 三点共线.朝阳1已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(2,0)F ,离心率为63.过焦点F的直线l 与椭圆C 交于,A B 两点,线段AB 中点为D ,O 为坐标原点,过O ,D 的直线 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求四边形AMBN 面积的最大值.东城1在平面直角坐标系中xOy 中,动点E 到定点(1,0)的距离与它到直线1x =-的距离相等.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设动直线:l y kx b =+与曲线C 相切于点P ,与直线1x =-相交于点Q . 证明:以PQ 为直径的圆恒过x 轴上某定点14高考⑴椭圆的标准方程为:22142x y +=,2a =,2b =,则2c =,离心率22c e a ==; ⑵直线AB 与圆222x y +=相切.证明如下: 法一:设点A B ,的坐标分别为()()002x y t ,,,,其中00x ≠. 因为OA OB ⊥,所以0OA OB ⋅=,即0020tx y +=,解得02y t x =-. 当0x t =时,202t y =-,代入椭圆C 的方程,得2t =±,故直线AB 的方程为2x =±.圆心O 到直线AB 的距离2d =. 此时直线AB 与圆222x y +=相切. 当0x t ≠时,直线AB 的方程为()0022y y x t x t--=--, 即()()0000220y x x t y x ty ---+-=. 圆心O 到直线AB 的距离()()00220022x ty d y x t -=-+-.又220024x y +=,02y t x =-,故 22000024222000002202422481642y x x x x d yx x x y xx++===+++++.此时直线AB 与圆222x y +=相切.法二:由题意知,直线OA 的斜率存在,设为k ,则直线OA 的方程为y kx =,OA OB ⊥, ①当0k =时,()20A ±,,易知()02B ,,此时直线AB 的方程为2x y +=或2x y -+=, 原点到直线AB 的距离为2,此时直线AB 与圆222x y +=相切; ②当0k ≠时,直线OB 的方程为1y x k=-,联立2224y kx x y =⎧⎨+=⎩得点A 的坐标22221212k k k ⎛⎫, ⎪++⎝⎭或22221212kk k ⎛⎫-,- ⎪++⎝⎭;联立12y x k y ⎧=-⎪⎨⎪=⎩得点B 的坐标()22k -,,由点A 的坐标的对称性知,无妨取点A 22221212k kk ⎛⎫, ⎪++⎝⎭进行计算, 于是直线AB 的方程为:()()22222212122222112212kk k ky x k x k k kkk--++-=+=+++++,即()()22212112220k k x k k y k -+-++++=,原点到直线AB 的距离()()2222222212112k d k k kk +==-++++,此时直线AB 与圆222x y +=相切。

2020年高考文科数学重难点04 解析几何(学生版)

2020年高考文科数学重难点04  解析几何(学生版)

重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·四川高三期末(文))已知双曲线()222210,0x y a b a b-=>>,点(4,1)在双曲线上,则该双曲线的方程为A .2214x y -= B .221205x y -= C .221123y x -= D .2218x y -= 2.(2019·天津南开中学高考模拟(文))过抛物线24y x =焦点F 的直线与双曲线221(0)y x m m -=>的一条渐近线平行,并交抛物线于,A B 两点,若|||AF BF >且||3AF =,则m 的值为( )A .8B .CD .43.(2020·宁夏高三月考(文))已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k=( )A .13B .3C .23D .34.(2019·山东高考模拟(文))已知抛物线2:4C y x =的焦点F 和准线l ,过点F 的直线交l 于点A ,与抛物线的一个交点为B ,且3FA FB =-u u u v u u u v ,则||AB =( )A .23B .43C .323D .1635 (2019·天津实验中学高考模拟(文))(10)设O 为坐标原点,1F ,2F 是双曲线2222x y 1a b -=(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠1F P 2F =60°,,则该双曲线的渐近线方程为( )A .BC .=0D ±y=0二、填空题 6.(2020·福建省龙岩第一中学高三期中(文))过双曲线22221(0,0)x y a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴的一个端点,且ABD ∆为钝角三角形,则此双曲线离心率的取值范围为__________.7.(2019·辽宁高三开学考试(文))已知双曲线C :22221(0,0)x y a b a b-=>>,过双曲线C 的右焦点F 作C 的渐近线的垂线,垂足为M ,延长FM 与y 轴交于点P ,且4FM PM =,则双曲线C 的离心率为__________.三、解答题8.(2020·广东高三期末(文))已知动圆C 过定点()F 1,0,且与定直线x 1=-相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点()M 2,0-的任一条直线l 与轨迹E 交于不同的两点P,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得QNM PNM π∠∠+=?若存在,求点N 的坐标;若不存在,说明理由.9.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p . (∠)求抛物线C 的标准方程与其准线l 的方程;(∠)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.10.(2019·广东高考模拟(文))过点()2,0M 的直线l 与抛物线()2:20C y px p =>交于A ,B 两点,O 为坐标原点,OA OB ⊥.(1)求p 的值;(2)若l 与坐标轴不平行,且A 关于x 轴的对称点为D ,求证:直线BD 恒过定点.11.(2020·四川高三期末(文))已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,椭圆的离心率为12,过椭圆1C 的左焦点1F ,且斜率为1的直线l ,与以右焦点2F 2C 相切.(1)求椭圆1C 的标准方程;(2)线段MN 是椭圆1C 过右焦点2F 的弦,且22MF F N λ=u u u u r u u u u r ,求1MF N ∆的面积的最大值以及取最大值时实数λ的值.12.(2019·贵州高考模拟(文))已知椭圆C :22221(0)x y a b a b+=>>的右焦点为F ,上顶点为M ,直线FM 的斜率为FM . (1)求椭圆C 的标准方程;(2)若不经过点F 的直线l :(0,0)y kx m k m =+与椭圆C 交于,A B 两点,且与圆221x y +=相切.试探究ABF ∆的周长是否为定值,若是,求出定值;若不是,请说明理由.13.(2019·河南高考模拟(文))已知O 为坐标原点,过点()1,0M 的直线l 与抛物线C :22(0)y px p =>交于A ,B 两点,且3OA OB u u u r u u u r ⋅=-. (1)求抛物线C 的方程;(2)过点M 作直线'l l ⊥交抛物线C 于P ,Q 两点,记OAB ∆,OPQ ∆的面积分别为1S ,2S ,证明:221211S S +为定值.以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。

人大附中高三二轮复习文科解析几何

人大附中高三二轮复习文科解析几何

文科解析几何 2014期末1. (本题共14分)丰台已知抛物线C :22y px =(0p >)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(Ⅰ)求抛物线C 的方程;(Ⅱ)若直线OA ,OB 的斜率之积为12-,求证:直线AB 过x 轴上一定点.2.(本小题共14分)海淀 已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,右焦点为F ,右顶点A 在 圆F :222(1)(0)x y r r -+=>上.(Ⅰ)求椭圆C 和圆F 的方程;(Ⅱ)已知过点A 的直线l 与椭圆C 交于另一点B ,与圆F 交于另一点P .请判断是否存在斜率不为0的直线l ,使点P 恰好为线段AB 的中点,若存在,求出直线l 的方程;若不存在,说明理由.3.(本题满分14分)朝阳已知椭圆C 两焦点坐标分别为1(2,0)F -,2(2,0)F ,一个顶点为(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在斜率为(0)k k ≠的直线l ,使直线l 与椭圆C 交于不同的两点,M N ,满足AM AN =. 若存在,求出k 的取值范围;若不存在,说明理由.4.(本小题共13分)东城 已知椭圆22221x y a b +=(0)a b >>的离心率为32,右焦点为(3,0). (Ⅰ)求椭圆方程;(Ⅱ)过椭圆右焦点且斜率为k 的直线与椭圆交于点11(,)A x y ,22(,)B x y , 若1212220x x y y a b+=,求斜率k 的值.5.(本小题满分14分)西城已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为(0)k k >.设抛物线W 的焦点在直线AB 的下方.(Ⅰ)求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D . 判断四边形ABDC 是否为梯形,并说明理由.6.(本小题满分13分)昌平 已知椭圆2222:1(0)x y C a b a b+=>>的焦距为23,过焦点且垂直于长轴的直线被椭圆截得的弦长为1,过点(3,0)M 的直线l 与椭圆C 交于两点,A B .(Ⅰ)求椭圆的方程;(Ⅱ)设P 为椭圆上一点,且满足+=uu r uu u r uu u r OA OB tOP (O 为坐标原点),求实数t 的取值范围.7.(本小题满分14分)石景山 已知椭圆:()过点(20),,且椭圆的离心率为. (Ⅰ)求椭圆的方程;(Ⅱ)若动点在直线上,过作直线交椭圆于两点,且为线段MN 的中点,再过作直线.证明:直线恒过定点,并求出该定点的坐标.答案:1.解:(Ⅰ)因为抛物线22y px =的焦点坐标为(1,0),所以1,22p p ==. 得到抛物线方程为24y x =.----------------------------------4分(Ⅱ)①当直线AB 的斜率不存在时设A 22(,),(,)44t t t B t - 因为直线,OA OB 的斜率之积为12-,所以221244tt t t -=-化简得232t =. 所以(8,),(8,)t B t -,此时直线AB 的方程为8x =.----------------7分②当直线AB 的斜率存在时设直线的方程为,(,),(,)A A B B y kx b A x y B x y =+联立方程24y x y kx b⎧=⎨=+⎩化简得2440ky y b -+=.------------------9分 根据韦达定理得到4A B b y y k=,因为直线,OA OB 的斜率之积为12-, 所以得到12A B A B y y x x =-即20A B A B x x y y +=.--------------------11分 得到222044A B A B y y y y +=, 化简得到0A B y y =(舍)或32A B y y =-.--------------------12分 又因为432,8A B b y y b k k==-=-,所以8,(8)y kx k y k x =-=-. 上所述,直线AB 过定点(8,0).-------------------------14分2. (本小题共14分)解:(Ⅰ)由题意可得1c =, ----------------------------------1分 又由题意可得12c a =,所以2a =, --------------2分 所以2223b a c =-=, ----------------------------------3分所以椭圆C 的方程为22143x y +=. ---------------------------------4分 所以椭圆C 的右顶点(2,0)A , --------------------------------5分 代入圆F 的方程,可得21r =,所以圆F 的方程为22(1)1x y -+=. ------------------------------6分 (Ⅱ)法1:假设存在直线l :(2)y k x =-(0)k ≠满足条件, -----------------------------7分由22(2),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)1616120k x k x k +-+-=----------------------------8分 设11(,)B x y ,则21216243k x k +=+, ---------------------------------9分 可得中点22286(,)4343k k P k k -++, --------------------------------11分 由点P 在圆F 上可得2222286(1)()14343k k k k --+=++ 化简整理得20k = --------------------------------13分 又因为0k ≠,所以不存在满足条件的直线l . --------------------------------14分 (Ⅱ)法2:假设存在直线l 满足题意.由(Ⅰ)可得OA 是圆F 的直径, -----------------------------7分所以OP AB ⊥. ------------------------------8分 由点P 是AB 中点,可得||||2OB OA ==. --------------------------------9分设点11(,)B x y ,则由题意可得2211143x y +=. --------------------------------10分 又因为直线l 的斜率不为0,所以214x <, -------------------------------11分所以22222211111||3(1)3444x x OB x y x =+=+-=+<,-------------------------------13分 这与||||OA OB =矛盾,所以不存在满足条件的直线l . --------------------------14分3..解:(Ⅰ)设椭圆方程为22221(0)x y a b a b+=>>.则依题意 2c =,1b =,所以2223a b c =+= 于是椭圆C 的方程为2213x y += ….4分 (Ⅱ)存在这样的直线l . 依题意,直线l 的斜率存在 设直线l 的方程为y kx m =+,则 由2213x y y kx m ⎧+=⎪⎨⎪=+⎩得222(31)6330k x kmx m +++-=因为2222364(31)(33)0k m k m ∆=-+->得22310k m -+>……………… ①设1122(,),(,)M x y N x y ,线段MN 中点为00(,)P x y ,则12221226313331km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩于是000223,3131km m x y kx m k k =-=+=++ 因为AM AN =,所以AP MN ⊥. 若0m =,则直线l 过原点,(0,0)P ,不合题意.若0m ≠,由0k ≠得,0011y k x +=-,整理得2231m k =+…② 由①②知,21k <, 所以11k -<< 又0k ≠,所以(1,0)(0,1)k ∈- . ….14分4.(共13分)解:(Ⅰ)依题意有3c =,又32c a =,即2a =,221b a c =-=. 故椭圆方程为2214x y +=. …………………………………………………5分 (Ⅱ)因为直线AB 过右焦点(3,0),设直线AB 的方程为 (3)y k x =-. 联立方程组2214(3).x y y k x ⎧+=⎪⎨⎪=-⎩,消去y 并整理得2222(41)831240k x k x k +-+-=. 故21228341k x x k +=+,212212441k x x k -=+.212122(3)(3)41k y y k x k x k -=-⋅-=+. 又1212220x x y y a b +=,即121204x x y y +=.所以22223104141k k k k --+=++, 可得22k =±.…………………………………13分 5.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分 由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分 令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分 因为抛物线W 的焦点在直线AB 的下方,所以 114k ->,解得 34k <. 因为 0k >,所以 304k <<. ………… 5分 (Ⅱ)解:结论:四边形ABDC 不可能为梯形. ……………… 6分 理由如下:假设四边形ABDC 为梯形. ……………… 7分 由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=, 由韦达定理,得11x k +=,所以 11x k =-. ……………… 8分 同理,得211x k=--. ……………… 9分 对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线BD 的斜率为1222x k =-, ……………… 10分抛物线2y x =在点C 处的切线CD 的斜率为2222x k =--. ………………11分 由四边形ABDC 为梯形,得//AB CD 或//AC BD .若//AB CD ,则22k k =--,即2220k k ++=, 因为方程2220k k ++=无解,所以AB 与CD 不平行. ………………12分若//AC BD ,则122k k -=-,即22210k k -+=, 因为方程22210k k -+=无解,所以AC 与BD 不平行. ……………13分所以四边形ABDC 不是梯形,与假设矛盾.因此四边形ABDC 不可能为梯形. ……………14分 6(本小题满分13分)解:(I )因为所求椭圆的方程为22221(0)x y a b a b+=>>,焦距为223c =,所以3c =. 设过焦点且垂直于长轴的直线为x c =.因为过焦点且垂直于长轴的直线l 被椭圆截得的弦长为1, 代入椭圆方程解得:2b y a=±,即212b a =. 由22223,,1,2c a b c b a ⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩解得2,1,3.a b c ⎧=⎪=⎨⎪=⎩所以所求椭圆的方程为: 2214x y +=. ……… 6分 (Ⅱ)设过点(3,0)M 的直线l 的斜率为k ,显然k 存在. (1)当0k =时,0+==uu r uu u r r uu u r OA OB tOP ,所以0t =.(2)当0k ≠时,设直线l 的方程为(3)y k x =-. 由22(3),14=-⎧⎪⎨+=⎪⎩y k x x y 消y 并整理得2222(14)243640k x k x k +-+-=.当2422244(14)(364)0k k k ∆=-+->时,可得2105k <<. 设112200(,),(,),(,)A x y B x y P x y ,则21222414k x x k +=+,212236414k x x k -⋅=+. 因为OA OB tOP +=uu r uu u r uu u r , 所以121200(,)(,)++=x x y y t x y . 所以20122124()(14)k x x x t t k =+=+ , 012122116()[()6](14)k y y y k x x k t t t k -=+=+-=+. 由点P 在椭圆上得222222222(24)1444(14)(14)k k t k t k +=++. 解得222236991414k t k k ==-++. 因为2105k <<,所以24045k <<.所以291145k <+<.所以2511914k <<+. 所以295914k <<+.所以299514k -<-<-+.所以2909414k<-<+. 所以204t <<.所以(2,0)(0,2)t ∈- . 综合(1) (2)可知(2,2)t ∈- ………13分。

高三文科数学解析几何专题

高三文科数学解析几何专题

高三文科数学第二轮复习资料——《解析几何》专题1.已知动圆过定点()1,0;且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程; (2) 是否存在直线l ;使l 过点(0;1);并与轨迹C 交于,P Q 两点;且满足0OP OQ ⋅=?若存在;求出直线l 的方程;若不存在;说明理由.2.如图,设1F 、2F 分别为椭圆C :22221x y a b+= (0a b >>)的左、右焦点. (Ⅰ)设椭圆C 上的点3(1,)2A 到F 1、F 2两点距离之和等于4;写出椭圆C 的方程和离心率;(Ⅱ)设点K 是(Ⅰ)中所得椭圆上的动点;求线段1F K 的中点的轨迹方程.3.已知圆C: x 2+y 2-2x+4y-4=0,是否存在斜率为1的 直线L,使以L 被圆C 截得弦AB 为直径的圆 经过原点?若存在,写出直线的方程;若不存在;说 明理由4.已知圆C :224x y +=.(1)直线l 过点()1,2P ;且与圆C 交于A 、B两点;若||AB =l 的方程;(2)过圆C 上一动点M 作平行于x 轴的直线m ;设m 与y 轴的交点为N ;若向量OQ OM ON =+;求动点Q 的轨迹方程;并说明此轨迹是什么曲线.5.如图;已知圆A 的半径是2;圆外一定点N 与圆A 上的点的最短距离为6;过动点P 作A 的切线PM (M 为切点);连结PN 使得PM :;试建立适当的坐标系;求动点P 的轨迹6.已知三点P (5;2)、1F (-6;0)、2F (6;0).(Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;(Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ;求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程.7.某运输公司接受了向抗洪抢险地区每天至少运送180吨支援物资的任务;该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B 型卡车;有10名驾驶员;每辆卡车每天往返次数为A 型卡车4次;B 型卡车3次;每辆卡车每天往返的成本费用为A 型卡车320元;B 型卡车504元;请你给该公司调配车辆;使公司所花的成本费用最低.8.曲线03622=+-++y x y x 上两点P 、Q 满足:①关于直线04=+-y kx 对称;②OQ OP ⊥.求直线PQ 的方程.9情况下的两类药片怎样搭配价格最低?参考答案1.解:(1)如图;设M 为动圆圆心; F ()1,0;过点M 作直线1x =-的垂线;垂足为N ;由题意知:MF MN =;即动点M 到定点F 与定直线1x =-的距离相等;由 抛物线的定义知;点M 的轨迹为抛物线;其中()1,0F 为焦点;1x =-为准线;∴ 动点R 的轨迹方程为x y 42=.(2)由题可设直线l 的方程为(1)(0)x k y k =-≠;由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->;11k k <->或.设),(11y x P ;),(22y x Q ;则124y y k +=;124y y k =.由0OP OQ ⋅=;即 ()11,OP x y =;()22,OQ x y =;于是12120x x y y +=; 即()()21212110k y y y y --+=;2221212(1)()0k y y k y y k +-++=;2224(1)40k k k k k +-+=;解得4k =-或0k =(舍去);又41k =-<-; ∴ 直线l 存在;其方程为440x y +-=2.解:(Ⅰ)24a =;221914a b+=. 24a =;23b =.椭圆的方程为22143x y +=; 因为2221c a b =-=. 所以离心率12e =. (Ⅱ)设1KF 的中点为(,)M x y ;则点(21,2)K x y +.又点K 在椭圆上;则1KF 中点的轨迹方程为22(21)(2)143x y ++=.3.解:设直线L 的斜率为1;且L 的方程为y=x+b,则222440y x bx y x y =+⎧⎨+-+-=⎩消元得方程 2x 2+(2b+2)x+b 2+4b-4=0;设此方程两根为x 1;x 2;则x 1+x 2=-(b+1);y 1+y 2= x 1+x 2+2b=b-1; 则AB中点为11,22b b +-⎛⎫-⎪⎝⎭;又弦长为12x -=;由题意可列式x =221122b b +-⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=2⎪⎝⎭解得b=1或b=-9;经检验b=-9不合题意.所以所求直线方程为y=x+1.4.解(Ⅰ)①当直线l 垂直于x 轴时;则此时直线方程为1=x ;l 与圆的两个交点坐标为()3,1和()3,1-;其距离为32;满足题意②若直线l 不垂直于x 轴;设其方程为()12-=-x k y ;即02=+--k y kx 设圆心到此直线的距离为d ;则24232d -=;得1=d ∴1|2|12++-=k k ;34k =; 故所求直线方程为3450x y -+= 综上所述;所求直线为3450x y -+=或1=x (Ⅱ)设点M 的坐标为()00,y x ;Q 点坐标为()y x ,则N 点坐标是()0,0y ∵OQ OM ON =+;∴()()00,,2x y x y = 即x x =0;20yy =又∵42020=+y x ;∴4422=+y x 由已知;直线m //ox 轴;所以;0y ≠;∴Q 点的轨迹方程是221(0)164y x y +=≠;轨迹是焦点坐标为12(0,F F -;长轴为8的椭圆;并去掉(2,0)±两点.5.解:以AN 所在直线为x 轴;AN 的中垂线为y 轴建立平面直角坐标系如图所示; 则A(-4,0),N(4,0),设P (x ;y )由|PM|:;|PM|2=|PA|2 –|MA|2得:4||||222-=PA PN代入坐标得:22222(4)(4)4x y x y ⎡⎤-+=++-⎣⎦整理得:2224200x y x +-+=即22(12)124x y -+= 所以动点P 的轨迹是以点(12,0)为圆心,以.6.解:(I )由题意;可设所求椭圆的标准方程为22a x +122=by )0(>>b a ;其半焦距6=c .||||221PF PF a +=56212112222=+++=; ∴=a 53;93645222=-=-=c a b ;故所求椭圆的标准方程为452x +192=y ; (II )点P (5;2)、1F (-6;0)、2F (6;0)关于直线y =x 的对称点分别为:)5,2(P '、'1F (0;-6)、'2F (0;6)设所求双曲线的标准方程为212a x -1212=b y )0,0(11>>b a ;由题意知半焦距61=c ;|''||''|2211F P F P a -=54212112222=+-+=; ∴=1a 52;162036212121=-=-=a c b ;故所求双曲线的标准方程为202y -1162=x . 点评:本题主要考查椭圆与双曲线的基本概念、标准方程、几何性质等基础知识和基本运算能力7.解:该公司调8辆A 型车;成本最低.8.解:对称,关于直线、圆上两点04=+-y kx Q P,,)(),即有,经过圆心(直线20432132104=∴=+--⋅-=+-∴k k y kx ),,(),,(,方程为设直线221121y x Q y x P t x y PQ +-= 036445036212222=+-+--⎪⎩⎪⎨⎧=+-+++-=t t x t x y y x y x t x y )(得消,,由. ,)(,)(536454422121+-=-=+∴t t x x t x x0121212211=+-=⋅∴⊥y y x x x y x y OQ OP 即, . ,,t x y t x y +-=+-=22112121 021212121=+-+-+∴))((t x t x x x,)()(,)(即054421536445021452222121=+--+-⋅∴=++-t t t t t t x x t x x 化简得45230152282==∴=+-t t t t 或,054203245212321=-+=-++-=+-=∴y x y x x y x y PQ 或即或方程为直线.9.解:设A 类药x 片;B 类药y 片;由题意⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥∈≥≥+≥+≥+,且,且N y y N x x y x y x y x 00,286,7075,122 y x 、∴满足的可行域如图两类药片的最小总数y x z +=由图象可知;最小总数应在B 点附近可行域内的整点处取得.)980,914(,980,914,7075,122B y x y x y x ⇒⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+ 在B 点附近可行域内的整点有C (1;10);D (2;9);E (3;8);F (4;8).∴两类药片的最小总数是11片.设在最小总数情况下的两类药片总价格510yx w +=;)3,2,1(11==+x y x 102251110510x x x y x w -=-+=+=∴;元时有最小值当10193=∴x ; 即用A 类3片B 类8片可使价格最低.。

【2020最新】人教版最新高考文科数学解析几何练习题及参考答案

【2020最新】人教版最新高考文科数学解析几何练习题及参考答案

教学资料范本【2020最新】人教版最新高考文科数学解析几何练习题及参考答案编辑:__________________时间:__________________(附参考答案)一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.二.考试要求:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.掌握双曲线的定义、标准方程和双曲线的简单几何性质.掌握抛物线的定义、标准方程和抛物线的简单几何性质.了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题.三.基础知识:椭圆及其标准方程椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.2.椭圆的标准方程:(>>0),(>>0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.4.求椭圆的标准方程的方法:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为(>>0).⑴范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里. ⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.2.椭圆的第二定义⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆.⑵准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程椭圆(>>0)的参数方程为(θ为参数).说明⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:;⑵椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆的参数方程是.5.椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6. 椭圆的切线方程椭圆上一点处的切线方程是.(2)过椭圆外一点所引两条切线的切点弦方程是.(3)椭圆与直线相切的条件是双曲线及其标准方程双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a>||,则无轨迹.若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.双曲线的简单几何性质双曲线的实轴长为2a,虚轴长为2b,离心率>1,离心率e越大,双曲线的开口越大.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中k是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是和.双曲线的焦半径公式,.双曲线的内外部点在双曲线的内部.点在双曲线的外部.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.若渐近线方程为双曲线可设为.若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).双曲线的切线方程双曲线上一点处的切线方程是.(2)过双曲线外一点所引两条切线的切点弦方程是.(3)双曲线与直线相切的条件是.抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。

高考全国卷Ⅰ文科数学解析几何汇编

新课标全国卷Ⅰ文科数学汇编解 析 几 何一、选择题【2020, 5】已知F 是双曲线22:13y C x -=的右焦点, P 是C 上一点, 且PF 与x 轴垂直, 点A 的坐标是(1,3), 则APF ∆的面积为( )A .13 B .12 C .23 D .32【解法】选D .由2224c a b =+=得2c =, 所以(2,0)F , 将2x =代入2213y x -=, 得3y =±, 所以3PF =, 又A 的坐标是(1,3), 故APF 的面积为133(21)22⨯⨯-=, 选D . 【2020, 12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点, 若C 上存在点M 满足∠AMB =120°, 则m 的取值范围是( ) A .(0,1][9,)+∞U B .(0,3][9,)+∞U C .(0,1][4,)+∞U D .(0,3][4,)+∞U【解法】选A .图 1图 2解法一:设E F 、是椭圆C 短轴的两个端点, 易知当点M 是椭圆C 短轴的端点时AMB ∠最大, 依题意只需使0120AEB ∠≥.1.当03m <<时, 如图1, 03tantan 6032AEB a b m∠==≥= 解得1m ≤, 故01m <≤; 2. 当3m >时, 如图2, 0tantan 60323AEB a m b ∠==≥ 解得9m ≥. 综上可知, m 的取值范围是(0,1][9,)+∞U , 故选A .解法二:设E F 、是椭圆C 短轴的两个端点, 易知当点M 是椭圆C 短轴的端点时AMB ∠最大, 依题意只需使0120AEB ∠≥.1.当03m <<时, 如图1, 01cos ,cos1202EA EB ≤=-u u u r u u u r , 即12EA EB EA EB⋅≤-u u u r u u u ru u u r u u u r ,带入向量坐标, 解得1m ≤, 故01m <≤;2. 当3m >时, 如图2, 01cos ,cos1202EA EB ≤=-u u u r u u u r , 即12EA EB EA EB⋅≤-u u u r u u u ru u u r u u u r ,带入向量坐标, 解得9m ≥.综上可知, m 的取值范围是(0,1][9,)+∞U , 故选A .【2016, 5】直线l 经过椭圆的一个顶点和一个焦点, 若椭圆中心到l 的距离为其短轴长的14, 则该椭圆的离心率为( )A .13B .12 C .23D .34解析:选B . 由等面积法可得1112224bc a b ⨯=⨯⨯⨯, 故12c a =, 从而12c e a ==.故选B . 【2015, 5】已知椭圆E 的中心为坐标原点, 离心率为12, E 的右焦点与抛物线C : y 2=8x , 的焦点重合, A ,B 是C 的准线与E 的两个交点, 则|AB |=( ) A .3 B .6 C .9 D .12解:选B .抛物线的焦点为(2,0), 准线为x =-2, 所以c=2, 从而a=4, 所以b 2=12, 所以椭圆方程为2211612x y +=, 将x =-2代入解得y=±3, 所以|AB |=6, 故选B 【2014, 10】10.已知抛物线C :y 2=x 的焦点为F , A (x 0,y 0)是C 上一点, |AF |=054x , 则x 0=( )A A .1 B .2 C .4 D .8 解:根据抛物线的定义可知|AF |=001544x x +=, 解之得x 0=1. 故选A 【2014, 4】4.已知双曲线)0(13222>=-a y a x 的离心率为2, 则a=( ) D A .2 B .26 C .25 D .1 解:2222232c a b a e a a a ++====, 解得a=1, 故选D【2013, 4】已知双曲线C :2222=1x y a b-(a >0, b >0)5则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x解析:选C .∵52e =, ∴52c a =, 即2254c a =.∵c 2=a 2+b 2, ∴2214b a =.∴12b a =.∵双曲线的渐近线方程为b y x a =±, ∴渐近线方程为12y x =±.故选C .【2013, 8】O 为坐标原点, F 为抛物线C :y 2=42x 的焦点, P 为C 上一点, 若|PF |=42, 则△POF的面积为( ).A .2B .22C .23D .4 答案:C解析:利用|PF |=242P x +=, 可得x P =32, ∴y P =26±.∴S △POF =12|OF |·|y P |=23. 故选C .【2012, 4】4.设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点, P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形, 则E 的离心率为( )A .12 B .23C .34D .45【解析】如图所示, 21F PF ∆是等腰三角形,212130F F P F PF ∠=∠=︒, 212||||2F P F F c ==, 260PF Q ∠=︒, 230F PQ ∠=︒, 2||F Q c =,又23||2a F Q c =-, 所以32a c c -=, 解得34c a =, 因此34c e a ==, 故选择C . 【2012, 10】10.等轴双曲线C 的中心在原点, 焦点在x 轴上,C 与抛物线216y x =的准线交于A , B 两点,||43AB =, 则C 的实轴长为( )A .2B .22C .4D .8【解析】设等轴双曲线C 的方程为22221x y a a-=, 即222x y a -=(0a >),抛物线216y x =的准线方程为4x =-, 联立方程2224x y a x ⎧-=⎨=-⎩, 解得2216y a =-,因为||43AB =, 所以222||(2||)448AB y y ===, 从而212y =, 所以21612a -=, 24a =,2a =, 因此C 的实轴长为24a =, 故选择C .【2011, 4】椭圆221168x y +=的离心率为( )A .13 B .12C 3D 2【解析】选D .因为221168x y +=中, 2216,8a b ==, 所以2228c a b =-=, 所以22242c e a ===.【2011, 9】已知直线l 过抛物线的焦点, 且与C 的对称轴垂直, l 与C 交于A , B 两点, 12AB =,P 为C 的准线上一点, 则ABP △的面积为( ).A .18B .24C .36D .48【解析】不妨设抛物线的标准方程为()220y px p =>, 由于l 垂直于对称轴且过焦点, 故直线l 的方程为2p x =.代入22y px =得y p =±, 即2AB p =, 又12AB =, 故6p =, 所以抛物线的准线方程为3x =-, 故1612362ABP S =⨯⨯=△.故选C .二、填空题【2016, 15】设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点, 若23AB = 则圆C 的面积为 .解析:4π.由题意直线即为20x y a -+=, 圆的标准方程为()2222x y a a +-=+, 所以圆心到直线的距离2ad =, 所以()22222a AB a ⎛⎫=+- ⎪⎝⎭222232a =+=, 故2224a r +==, 所以24S r =π=π.故填4π.【2015, 16】已知F 是双曲线C :2218y x -=的右焦点, P 是C 左支上一点, (0,66)A , 当ΔAPF 周长最小时, 该三角形的面积为 .解:126 a =1, b 2=8, ⇒ c =3, ∴F (3,0).设双曲线的的左焦点为F 1, 由双曲线定义知|PF |=2+|PF 1|,∴ΔAPF 的周长为|P A |+|PF |+|AF |=|P A |+|AF |+|PF 1|+2, 由于|AF |是定值, 只要|P A |+|PF 1|最小, 即A ,P ,F 1共线, ∵(0,66)A , F 1 (-3,0), ∴直线AF 1的方程为1366x +=-, 联立8x 2-y 2=8消去x 整理得y 2+66y -96=0, 解得y =26y =86-舍去), 此时S ΔAPF =S ΔAFF 1-S ΔPFF 13(666)6=⨯=三、解答题【2020, 20】设A , B 为曲线C :42x y =上两点, A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点, C 在M 处的切线与直线AB 平行, 且BM AM ⊥, 求直线AB 的方程. 解析:第一问:【解法1】设 1122(,),(,)A x y B x y ,AB 直线的斜率为k , 又因为A,B 都在曲线C 上, 所以 4/211x y = ①4/222x y = ②②-①得2221122121()()44x x x x x x y y -+--==由已知条件124x x += 所以, 21211y yx x -=-即直线AB 的斜率k=1.【解法2】设 ),(),,(2211y x B y x A ,AB 直线的方程为y=kx+b,所以⎩⎨⎧=+=4/2x y b kx y整理得:,4,044212k x x b kx x =+∴=--且421=+x x 所以k=1第二问:设 00(,)M x y 所以200/4y x =① 又12y x =所以00011,2,12k x x y ==∴== 所以M (2,1), 11(2,1)MA x y =--, 22(2,1)MB x y =--, 且AM BM ⊥, 0AM BM =g 即05)()(221212121=++-++-y y y y x x x x ②, 设AB 直线的方程为y x b =+,,4/2⎩⎨⎧=+=x y bx y化简得0442=--b x x , 所以2212121,24,4b y y b y y b x x =+=+-=由②得0772=--b b 所以b=7或者b=-1(舍去) 所以AB 直线的方程为y=x+7【2016,20】在直角坐标系xOy 中, 直线:(0)l y t t =≠交y 轴于点M,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N , 连结ON 并延长交C 于点H .(1)求OH ON;(2)除H 以外, 直线MH 与C 是否有其他公共点?请说明理由.解析 (1)如图, 由题意不妨设0t >, 可知点,,M P N 的坐标分别为()0,M t , 2,2t P t p ⎛⎫⎪⎝⎭, 2,N t t p ⎛⎫⎪⎝⎭,HNPM Oyx从而可得直线ON 的方程为y x p t =, 联立方程22p x ty px y ⎧==⎪⎨⎪⎩, 解得22x t p =, 2y t =. 即点H 的坐标为22,2t t p ⎛⎫ ⎪⎝⎭, 从而由三角形相似可知22H N OH y tON y t ===.(2)由于()0,M t , 22,2t H t p ⎛⎫⎪⎝⎭, 可得直线MH 的方程为22ty t x t p-=, 整理得2220ty px t --=, 联立方程222202ty y px t px--==⎧⎪⎨⎪⎩, 整理得22440ty y t -+=,则2216160t t ∆=-=, 从而可知MH 和C 只有一个公共点H .【2015, 20】已知过点A (0, 1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (Ⅰ)求k 的取值范围; (Ⅱ)u u u u r u u u rOM ON ⋅=12, 其中O 为坐标原点, 求|MN |. 解:(Ⅰ)依题可设直线l 的方程为y=kx +1, 则圆心C (2,3)到的l 距离211d k=<+. 解得474733k -<<.所以k 的取值范围是4747(33-. (Ⅱ)将y=kx +1代入圆C 的方程整理得 (k 2+1)x 2-4(k +1)x +7=0.设M (x 1, y 1),N (x 2, y 2), 则1212224(1)7,.11k x x x x k k ++==++所以u u u u r u u u rOM ON ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+1)(kx 2+1)=(1+k 2)x 1x 2+k (x 1+x 2)+124(+1)8+1k k k =+=12, 解得k =1=1k , 所以l 的方程为y=x +1. 故圆心在直线l 上, 所以|MN |=2.【2013, 21】已知圆M :(x +1)2+y 2=1, 圆N :(x -1)2+y 2=9, 动圆P 与圆M 外切并且与圆N 内切, 圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P , 圆M 都相切的一条直线, l 与曲线C 交于A , B 两点, 当圆P 的半径最长时, 求|AB |.解:由已知得圆M 的圆心为M (-1,0), 半径r 1=1;圆N 的圆心为N (1,0), 半径r 2=3.设圆P 的圆心为P (x , y ), 半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知, 曲线C 是以M , N 为左、右焦点, 长半轴长为2, 3(左顶点除外), 其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x , y ), 由于|PM |-|PN |=2R -2≤2, 所以R ≤2, 当且仅当圆P 的圆心为(2,0)时, R =2. 所以当圆P 的半径最长时, 其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°, 则l 与y 轴重合, 可得|AB |=23若l 的倾斜角不为90°, 由r 1≠R 知l 不平行于x 轴, 设l 与x 轴的交点为Q , 则1||||QP RQM r =, 可求得Q (-4,0), 所以可设l :y =k (x +4).由l 与圆M 21k +=1, 解得k =2±当k 2时, 将22y x =+22=143x y +, 并整理得7x 2+8x -8=0, 解得x 1,2462-±, 所以|AB |21k +x 2-x 1|=187.当k =2 由图形的对称性可知|AB |=187.综上, |AB |=23|AB |=187.【2011, 20】在平面直角坐标系xOy 中, 曲线261y x x =-+与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线0x y a -+=交于A , B 两点, 且OA OB ⊥, 求a 的值. 【解析】(1)曲线261y x x =-+与y 轴的交点为(0,1), 与x 轴的交点为()322,0,+()322,0-.故可设C 的圆心为()3,t , 则有()(22223122t t +-=+,解得1t =.则圆C ()22313t +-=, 所以圆C 的方程为()()22319x y -+-=.(2)设()11,A x y , ()22,B x y , 其坐标满足方程组()()220,319.x y a x y -+=⎧⎪⎨-+-=⎪⎩ 消去y , 得方程()22228210x a x a a +-+-+=.由已知可得, 判别式2561640a a ∆=-->, 因此()21,282561644a a a x ---=,从而124x x a +=-, 212212a a x x -+=.由于OA OB ⊥, 可得12120x x y y +=. 又11y x a =+, 22y x a =+所以212122()0x x a x x a +++=. ②由①②得1a =-, 满足0∆>, 故1a =-.【2012, 20】设抛物线C :py x 22=(0>p )的焦点为F , 准线为l , A 为C 上一点, 已知以F 为圆心, FA 为半径的圆F 交l 于B , D 两点。

高中文科数学解析几何部分整理例题详解

高中文科数学解析几何部分整理考点:平面直角坐标系,直线方程与圆的方程,两点间距离公式与点到直线的距离公式 一、 知识点 1.直线的方程1)倾斜角:范围0≤α<180,0l x l x α=︒ 若轴或与轴重合时,。

90l x α⊥=︒若轴时,。

2)tan k α=斜率: ()()2111122221,,,y y P x y P x y k x x -=⇒=-已知平面上两点1290,x x k α==︒当时,不存在,0;0k k αα><为锐角时,为钝角时, 3)直线方程的几种形式斜截式:y=kx+b 不含y 轴和平行于y 轴的直线点斜式:()11y y k x x -=- 不含y 轴和平行于y 轴的直线两点式:121121x x x x y y y y --=--不含坐标轴,平行于坐标轴的直线截距式:1=+by ax 不含坐标轴、平行于坐标轴和过原点的直线一般式:Ax+By+C=0 A 、B 不同时为0几种特殊位置的直线:①x 轴:y=0②y 轴:x=0③平行于x 轴:y=b ④平行于y 轴:x=a 原点:y=kx 或x=04)直线系:(待定系数法的应用)(1)共点直线系方程:p0(x0,y0)为定值,k 为参数y-y0=k (x-x0) 特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴) 注意:运用斜率法时注意斜率不存在的情形。

(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。

②Ax+By+入=0表示与Ax+By+C=0 平行的直线系 Bx-Ay+入=0表示与Ax+By+C 垂直的直线系2.两直线的位置关系L1:y=k1x+b1 L2:y=k2x+b2L1:A1X+B1Y+C1=0 L2:A2X+B2Y+C2=0L1与L2组成的方程组平行⇔k1=k2且b1≠b2212121C C B B A A ≠=无解重合⇔k1=k2且b1=b2212121C C B B A A == 有无数多解相交⇔k1≠k22121B B A A ≠有唯一解垂直⇔ k1·k2=-1 A1A2+B1B2=0有唯一解3.几个距离公式:1)点到直线距离:2200B A cBy Ax d +++=(已知点(p0(x0,y0),L :Ax+By+C=0)注:若直线为00()y y k x x -=-,即000kx y y kx -+-=2)点(),a b 到直线的距离为0021ka b y kx d k -+-=+(这是斜率法经常用到的)3)两行平线间距离:L1=Ax+By+C1=0 L2:Ax+By+C2=0⇒2221B A c c d +-=4)点间的距离公式()()22121212PP x x y y =-+-4.圆 1)圆的方程一般式:22x y a y 0x b c ++++=配方得:22224(x+)(y+)224aba b c+-+=圆心为:(2a,2b),半径为2242a b c+- 标准式:22200(x-x )(y )y r +-=, 圆心为(x ,y ),r 为该圆半径。

解析几何(文科)

解析几何(文科)1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )(A )13 (B )12 (C )23 (D )342.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) (A )12 (B )1 (C )32(D )2 3.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13 (B )12(C )23 (D )34 4.【2016高考四川文科】抛物线24y x =的焦点坐标是( )(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)5.【2016高考山东文数】已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是( ) (A )内切(B )相交(C )外切(D )相离6.【2016高考北京文数】圆22(1)2x y ++=的圆心到直线3y x =+的距离为( )A.1B.2C.2D.227、【2016高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________. 8.【2016高考北京文数】已知双曲线22221x y a b-= (0a >,0b >)的一条渐近线为20x y +=,一个焦点为(5,0),则a =_______;b =_____________.9.【2016高考四川文科】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y x P x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: ①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A.②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是 .10.[2016高考新课标Ⅲ文数]已知直线l :360x y -+=与圆2212x y +=交于,A B 两点,过,A B 分别 作l 的垂线与x 轴交于,C D 两点,则||CD =_____________. 11.【2016高考浙江文数】设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.12.【2016高考浙江文数】已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.13.【2016高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点(0,5)M 在圆C 上,且圆心到直线20x y -= 的距离为455,则圆C 的方程为__________. 14.【2016高考山东文数】已知双曲线E :22x a –22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.15. 【2016高考新课标1文数】设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C的面积为 . 16.【2016高考天津文数】已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为( )(A )1422=-y x (B )1422=-y x (C )15320322=-y x (D )12035322=-y x17.【2016高考新课标2文数】圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =( )(A )−43 (B )−34(C )3 (D )218.【2016高考新课标1文数】(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OH ON; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.19.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =时,证明:32k <<.20.[2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.21.【2016高考北京文数】(本小题14分)已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.22.【2016高考山东文数】(本小题满分14分)已知椭圆C :22221x y a b+=(a >b >0)的长轴长为4,焦距为2.(I )求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明为定值.(ii)求直线AB 的斜率的最小值.23.【2016高考天津文数】(设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA e OA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.24.【2016高考浙江文数】(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.25.【2016高考上海文科】(本题满分14分)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。

2023年高考文科数学解析分类汇编解析几何(逐题详解)

2023年高考文科数学解析分类汇编解析
几何(逐题详解)
本文档的主要内容包括以下几个方面:
1. 知识点梳理:对解析几何的相关知识点进行梳理和总结,确保学生对所需知识有全面的了解。

2. 题目分类:将解析几何的高考题目进行分类,包括直线与圆的性质、三角形与四边形的性质等,便于学生有针对性地进行研究和练。

3. 逐题详解:对每个题目进行详细解析,包括题目的分析、解题思路、解题方法和解答过程,帮助学生理解和掌握相应的解题技巧。

4. 错题讲解:针对学生在解析几何中常犯的错误进行讲解和纠正,帮助学生避免类似错误的发生。

5. 题练:提供一定数量的题,供学生进行练和巩固所学知识。

本文档的编写采用简洁明了的语言,力求清晰易懂,注重解题过程的逻辑性和规范性。

所有内容均经过合法权威渠道确认,确保内容的正确性和准确性。

希望本文档能为考生提供有价值的研究资料,并对2023年高考文科数学解析几何有所帮助。

注:本文档的内容仅供参考和学习使用,不得用于非法用途。

所有权利和解释权归原作者所有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档