正弦定理

合集下载

正弦定理

正弦定理

正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a^2=b^2+c^2-2bc*cosAsin(A+B)=sinCsin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB+sinBcosAsin2A=2sinAcosAcos2A=2(cosA)^2-1=(cosA)^2-(sinA)^2=1-2(sinA)^2tan2A=2tanA/[1-(tanA)^2](sinA)^2+(cosA)^2=1解三角形大概常用的就这些概率似乎没有什么现成的公式可以套立体几何求点面距离常用等积法,构建一个四面体,用另外一对底面和高算出体积再除以所求点面距作为高对应的底面的面积计算二面角常用三垂线定理,或者就是直接构造,原则是要方便计算,不要构造出来的角每条边都要算半天就得不偿失了圆锥曲线似乎没有现成的公式,但有一些常用方法,比如设点消点,或者椭圆的时候还可以用参数方程计算数列就更简单了,一般就是求通项然后证明不等式,不等式就没办法了,我也不能保证每次都证出来,通项常用的方法就是改变下标,比如Sn-S(n-1)=an直接求不出可以尝试着求倒数的通项,很可能很好求数学高考基础知识、常见结论详解二、函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:如:若,;问:到的映射有个,到的映射有个;到的函数有个,若,则到的一一映射有个。

函数的图象与直线交点的个数为个。

二、函数的三要素:,,。

相同函数的判断方法:①;②(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①,则;②则;③,则;④如:,则;⑤含参问题的定义域要分类讨论;如:已知函数的定义域是,求的定义域。

⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

如:已知扇形的周长为20,半径为,扇形面积为,则;定义域为。

三角形的正弦定理

三角形的正弦定理

三角形的正弦定理三角形的正弦定理是数学中用来描述三角形内角和边长之间的关系的一条重要的定理。

它可以帮助我们解决许多与三角形有关的问题。

本文将详细介绍三角形的正弦定理及其应用。

正文:三角形的正弦定理又称作正弦定理或正弦规律,它是解决三角形中角和边关系的一个重要工具。

根据三角形的正弦定理,三角形的三条边和其对应的角的正弦值之间存在着一个特定的关系。

具体来说,设三角形的三条边长度分别为a、b、c,而三个对应的角的正弦值分别为sin A、sin B、sin C,则正弦定理可以表达为以下等式:a/sin A = b/sin B = c/sin C在这个等式中,a、b、c分别表示三角形的三条边的长度,A、B、C表示该三角形的三个对应角的大小,sin A、sin B、sin C表示这三个角的正弦值。

三角形的正弦定理可以用来解决许多与三角形有关的问题。

常见的问题包括已知三角形的一个角和两边的长度,求第三边的长度;已知三角形的两个角和一个边的长度,求其他两边的长度;已知三角形的三边长度,求其中一个角的大小等等。

下面举一个例子来说明三角形的正弦定理的应用。

假设我们已知一个三角形的两边的长度分别为3cm和4cm,夹角为60度。

现在我们想求解第三边的长度。

根据正弦定理,我们可以得到以下等式:3/sin 60 = 4/sin C我们可以通过这个等式来求解sin C的值,进而求得角C的大小。

最后,再利用三角函数的逆函数来计算角C对应的正弦值。

最后,我们根据正弦定理的另一条等式,可以计算出第三边的长度。

三角形的正弦定理不仅可以使用角度制进行计算,也可以使用弧度制。

如果以弧度制表示角的大小,则我们将正弦定理的等式改变为以下形式:a/sin A = b/sin B = c/sin C在计算中,我们可以根据具体问题的需要,选择适合的角度制或弧度制进行计算。

总结起来,三角形的正弦定理是解决三角形内角和边长之间关系的一个重要定理。

通过应用正弦定理,我们可以解决许多与三角形有关的问题,如求解三角形的边长和角度等。

正弦定理

正弦定理
⑴若A为锐角时:
⑵若A为直角或钝角时:
1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍

方法技巧
命题类型:
(1)正弦、余弦定理的应用
(2)三角形形状的判定:判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.
解三角形常见题型及求解方法
(1)已知两角A、B与一边a,由A+B+C=180°及==,可求出角C,再求出b,c.
(2)已知两边b,由正弦定理,求出角B,C.
(3)已知三边a、b、c,由余弦定理可求出角A、B、C.
(4)已知两边a、b及其中一边的对角A,由正弦定理=求出另一边b的对角B,由C=π-(A+B),求出C,再由=,求出c,而通过=求B时,可能出现一解,两解或无解的情况.
正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,
即 = = =2R(R为△ABC外接圆半径)
正弦定理的应用从理论上正弦定理可解决两类问题:
1.两角和任意一边,求其它两边和一角;
2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角 (见图示)已知a, b和A,用正弦定理求B时的各种情况:

正弦定理的概念与余弦定理的概念

正弦定理的概念与余弦定理的概念

正弦定理的概念与余弦定理的概念正弦定理和余弦定理是在三角形中用于计算边长和角度的重要定理。

1. 正弦定理(Sine Rule):正弦定理是用来计算三角形中的边长和角度的关系。

对于一个三角形ABC,正弦定理可以表述为:
a/sinA = b/sinB = c/sinC
其中a、b、c分别表示三角形的边长,A、B、C分别表示对应边的角度。

2. 余弦定理(Cosine Rule):余弦定理是用来计算三角形中的边长和角度的关系。

对于一个三角形ABC,余弦定理可以表述为:
c^2 = a^2 + b^2 - 2abcosC
其中a、b、c分别表示三角形的边长,C表示对应边的角度。

正弦定理和余弦定理都可以在解决三角形问题时使用,它们提供了计算边长和角度的方法,可以帮助我们求解各种三角形相关的问题。

正弦定理

正弦定理

发展简史
历史上,正弦定理的几何推导方法丰富多彩。根据其思路特征,主要可以分为两种。
第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷 格蒙塔努斯所采用。“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角 函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。纳绥尔丁同时延长两个内角 的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造 半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径 法”。
正弦定理
三角学中的基本定理
01 发展简史
03 验证推导 05 定理推广
目录
02 定理定义 04 定理意义
正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它 所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为 直径)。
在解三角形中,有以下的应用领域:
物理学中,有的物理量可以构成矢量三角形。因此,在求解矢量三角形边角关系的物理问题时,应用正弦定理, 常可使一些本来复杂的运算,获得简捷的解答。
定理推广
推论 △ABC中,若角A,B,C所对的边为a,b,c,三角形外接圆半径为R,直径为D,正弦定理进行变形有 1. 2.,, 3. 4. (等比,不变) 5. (三角形面积公式) 三面角正弦定理 若三面角的三个面角分别为α、β、γ,它们所对的二面角分别为A、B、C,则 多边形的正弦关系
18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角 形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相 当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。

正弦定理的所有公式

正弦定理的所有公式

正弦定理的所有公式正弦定理是三角形中的重要定理之一,它描述了三角形中各边和角之间的关系。

这个定理可以用于求解任意三角形的边长和角度。

下面将介绍正弦定理的几个公式及其应用。

一、正弦定理的基本形式正弦定理的基本形式是:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形的三条边的长度,A、B、C表示对应的三个角的大小。

这个公式表明,在任意三角形中,三条边的长度与对应的角的正弦值之间存在一定的比例关系。

二、利用正弦定理求解三角形的边长1. 已知两边和夹角当已知三角形的两条边a和b及它们之间的夹角C时,可以利用正弦定理求解第三条边c的长度。

根据正弦定理的基本形式,可得:c/sinC = a/sinA由此可得:c = (a*sinC) / sinA同理,还可以通过已知两边和夹角A或B来求解第三条边的长度。

2. 已知一边和两个夹角当已知三角形的一条边c及其对应的两个夹角A和B时,可以利用正弦定理求解另外两条边a和b的长度。

根据正弦定理的基本形式,可得:a/sinA = c/sinC由此可得:a = (c*sinA) / sinC同理,还可以通过已知一边和两个夹角A或B来求解另外两条边的长度。

三、利用正弦定理求解三角形的角度除了可以用正弦定理求解三角形的边长外,还可以利用正弦定理求解三角形的角度。

1. 已知三边当已知三角形的三条边a、b、c的长度时,可以利用正弦定理求解三个角A、B、C的大小。

根据正弦定理的基本形式,可得:sinA = (a*sinC) / c通过这个公式可以求解出角A的正弦值,然后可以通过反正弦函数求解出角A的大小。

同理,可以求解出角B和角C的大小。

2. 已知两边和夹角当已知三角形的两条边a和b及它们之间的夹角C时,可以利用正弦定理求解角A和角B的大小。

根据正弦定理的基本形式,可得:sinA = (a*sinC) / csinB = (b*sinC) / c通过这两个公式可以求解出角A和角B的正弦值,然后可以通过反正弦函数求解出角A和角B的大小。

三角形的正弦定理

三角形的正弦定理三角形的正弦定理是在解决三角形相关问题时非常重要的定理之一。

该定理是通过三角形的边长和角度之间的关系来描述三角形形状的定理。

定理表述:在任意三角形ABC中,三条边的长度分别为a、b、c,对应的角度为A、B、C。

则有以下等式成立:a/sin(A) = b/sin(B) = c/sin(C)证明:三角形的正弦定理可以通过以下步骤来证明。

假设三角形的面积为S,三角形任意一边对应的高为h。

根据面积公式,有S = 1/2 * a * h,而对应的角A的高为h = b * sin(A),则可以得出S = 1/2 * a * b * sin(A)。

同理,可以得到S = 1/2 * b * c * sin(B)和 S = 1/2 * c * a * sin(C)。

将这三个式子等式相等,可以得到以下结果:1/2 * a * b * sin(A) = 1/2 * b * c * sin(B) = 1/2 * c * a * sin(C)整理上述等式,可以得到以下结果:a *b * sin(A) = b *c * sin(B) = c * a * sin(C)通过将上式两侧除以abc,可以得到三角形的正弦定理:a/sin(A) = b/sin(B) = c/sin(C)应用:三角形的正弦定理在解决与三角形相关的问题时非常有用。

通过已知三边的长度或者已知两边长度及其对立角的情况下,可以利用正弦定理计算缺失的边长或角度。

例如,已知一个三角形的两边长度分别为5 cm和8 cm,并且这两边之间的夹角为60度,我们可以利用正弦定理来计算第三条边的长度。

根据正弦定理,我们可以得到以下等式:5/sin(60) = c/sin(C)通过这个等式,我们可以得到c ≈ 8.66 c m,也就是说第三条边的长度约为8.66 cm。

除了计算边长,正弦定理还可以在解决其他与三角形有关的问题时使用。

例如,通过已知三边的长度,可以计算出三角形的面积;通过已知两边长度及其对立角,可以计算三角形的高等等。

正弦定理

【知识梳理】1、正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即A a sin =B b sin =Ccsin =2R (R 为△ABC 外接圆半径) 正弦定理的应用 从理论上正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角。

正弦定理的变形应用:(1)sin sin sin sin sin sin a b b c a cA B B C A C===或或 (2)sin sin ,sin sin ,sin sin a B b A b C c B a C c A === (3)2sin ,2sin ,2sin a R A b R B c R C ===,常用于边化角。

(4)sin ,sin ,sin 222a b cA B C R R R===,常用于角化边。

(5)::sin :sin :sin a b c A B C =2、余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍即 A bc c b a cos 2222-+=⇔bca cb A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角(3)一边及其邻角【典型例题分析】例1、在△ABC 中,已知sin 2B -sin 2C -sin 2A =3sin A sin C ,求B 的度数解:由定理得sin 2B =sin 2A +sin 2C -2sin A sin C cos B , ∴-2sin A sin C cos B =3sin A sin C∵sin A sin C ≠0 ∴cos Β=-23∴B =150°例2、在△ABC 中,已知2cos B sin C =sin A ,试判定△ABC 的形状解:在原等式两边同乘以sin A 得:2cos B sin A sin C =sin 2A ,由定理得sin 2A +sin 2C -sin 2Β=sin 2A ,∴sin 2C =sin 2B ∴B =C 故△ABC 是等腰三角形变式练习:1、在△ABC 中已知a =2b cos C ,求证:△ABC 为等腰三角形证法一:欲证△ABC 为等腰三角形可证明其中有两角相等,因而在已知条件中化去边元素,使只剩含角的三角函数由正弦定理得a =BAb sin sin ∴2b cos C =BAb sin sin ,即2cos C ·sin B =sin A =sin (B +C )=sin B cos C +cos B sin C ∴sin B cos C -cos B sin C =0即sin (B -C )=0,∴B -C =nπ(n∈Z)∵B 、C 是三角形的内角,∴B =C ,即三角形为等腰三角形证法二:根据射影定理,有a =b cos C +c c os B , 又∵a =2b cos C ∴2b cos C =b cos C +c cos B∴b cos C =c cos B ,即.cos cos CB c b = 又∵.sin sin C B c b =∴,cos cos sin sin CB C B =即tan B =tan C ∵B 、C 在△ABC 中,∴B =C ∴△ABC 为等腰三角形证法三:∵cos C =,2cos 2222b a C ba c b a =-+及∴,22222baab c b a =-+ 化简后得b 2=c2∴b =c ∴△ABC 是等腰三角形2、在任一△ABC 中求证:0)sin (sin )sin (sin )sin (sin =-+-+-B A c A C b C B a证:左边=)sin (sin sin 2)sin (sin sin 2)sin (sin sin 2B A C R A C B R C B A R -+-+- =]sin sin sin sin sin sin sin sin sin sin sin [sin 2B C A C A B C B C A B A R -+-+-=0=右边 例3、在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c解一:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BC b c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解二:设c =x 由余弦定理 B ac c a b cos 2222-+= 将已知条件代入,整理:0162=+-x x 解之:226±=x 当226+=c 时 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A从而A=60︒ ,C=75︒ 当226-=c 时同理可求得:A=120︒ ,C=15︒ 变式练习:在△ABC 中,已知2a =,22b =,15C =,求A .错解: 由余弦定理,得2222cos15c a b ab =+-62482222+=+-⨯⨯843=- ∴62c =.又由正弦定理,得sin 1sin 2a C A c ==,而0180A <<, ∴30A =或150A =.辨析: 由题意b a >,∴B A >.因此150A =是不可能的.错因是没有认真审题,未利用隐含条件.在解题时,要善于应用题中的条件,特别是隐含条件,全面细致地分析问题,避免错误发生.正解: 同上62c =,1sin 2A =,∵b a >, ∴B A >,且0180A <<,∴30A =.例5、如图,在四边形ABCD 中,已知AD ⊥CD, AD=10, AB=14, ∠BDA=60︒, ∠BCD=135︒ 求BC 的长解:在△ABD 中,设BD=x则BDA AD BD AD BD BA ∠⋅⋅-+=cos 2222即60cos 1021014222⋅⋅-+=x x 整理得:096102=--x x解之:161=x 62-=x (舍去) 由余弦定理:BCD BD CDB BC ∠=∠sin sin ∴2830sin 135sin 16=⋅=BC 例6 、△ABC 中,若已知三边为连续正整数,最大角为钝角,1︒求最大角 ;2︒求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积解:1︒设三边1,,1+==-=k c k b k a *∈N k 且1>k∵C 为钝角 ∴0)1(242cos 222<--=-+=k k ac c b a C 解得41<<k ∵*∈N k ∴2=k 或3 但2=k 时不能构成三角形应舍去 当3=k 时 109,41cos ,4,3,2=-====C C c b a 2︒设夹C 角的两边为y x , 4=+y xS )4(415415)4(sin 2x x x x C xy +-⋅=⋅-== 当2=x 时S 最大=15例7、 在△ABC 中,AB =5,AC =3,D 为B C 中点,且AD =4,求B C 边长分析:此题所给题设条件只有边长,应考虑在假设BC 为x后,建立关于x的方程而正弦定理涉及到两个角,故不可用此时应注意余弦定理在建立方程时所发挥的作用因为D 为BC 中点,所以BD 、DC 可表示为2x,然用利用互补角的余弦互为相反数这一性质建立方程解:设BC 边为x,则由D 为BC 中点,可得BD =DC =2x,在△ADB 中,cos ADB =,2425)2(42222222x xBDAD AB BD AD ⨯⨯-+=⋅⋅-+在△ADC 中,cos ADC =.2423)2(42222222x x DCAD AC DC AD ⨯⨯-+=⋅⋅-+又∠ADB +∠ADC =180°∴cos ADB =cos (180°-∠ADC )=-cos ADC∴2423)2(42425)2(4222222x x x x ⨯⨯-+-=⨯⨯-+ 解得,x=2, 所以,BC 边长为2评述:此题要启发学生注意余弦定理建立方程的功能,体会互补角的余弦值互为相反数这一性质的应用,并注意总结这一性质的适用题型另外,对于本节的例2,也可考虑上述性质的应用来求解sin A ,思路如下:由三角形内角平分线性质可得35==DC BD AC AB ,设BD =5k,DC =3k,则由互补角∠ADC 、∠ADB 的余弦值互为相反数建立方程,求出BC 后,再结合余弦定理求出cos A ,再由同角平方关系求出sin A 例8、若,,a b c 是三角形的三边长,证明长为,,a b c 的三条线段能构成锐角三角形.错解: 不妨设0a b c <≤≤,只要考虑最大边的对角θ为锐角即可.()()()222cos 22a b c a b ca babθ+-+-==.由于,,a b c 是三角形的三边长,根据三角形三边关系,有a b c +>, 即cos 0θ>.∴长为,,a b c 的三条线段能构成锐角三角形.辨析: 三条线段构成锐角三角形,要满足两个条件:①三条边满足三角形边长关系;②最长线段的对角是锐角.显然错解只验证了第二个条件,而缺少第一个条件.正解: 由错解可得cos 0θ>.又∵a b c +-=()()a b ca b ca b c+-++++=2()a b c a b c +-++=2a b c aba b c a b c+-+++++>0. 即长为,,a b c 的三条线段能构成锐角三角形. 例9、在△ABC 中,62c =+,30C =,求a b +的最大值.错解: ∵30C =,∴150A B +=,150B A =-. 由正弦定理,得()62sin sin 30sin 150a b A A +==-, ∴()262sin a A =+,()()262sin 150b A =+-.又∵sin 1A ≤,()sin 1501A -≤,∴()()262262a b +≤+++()462=+.故a b +的最大值为()462+.辨析: 错因是未弄清A 与150A -之间的关系.这里A 与150A -是相互制约的,不是相互独立的两个量,sin A 与()sin 150A -不能同时取最大值1,因此所得的结果也是错误的.正解: ∵30C =,∴150A B +=,150B A =-. 由正弦定理,得()62sin sin 30sin 150a b A A +==-. 因此()()262sin sin 150a b A A ⎡⎤+=++-⎣⎦ ()()262sin 75cos 75A =+⋅-()()62462cos 754A +=+- ()()843cos 75843A =+-≤+.∴a b +的最大值为843+.【课堂小练】1在△ABC 中,已知B =30°,b =503,c =150,那么这个三角形是( )A 等边三角形B 直角三角形C 等腰三角形D 等腰三角形或直角三角形 2在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,则此三角形为( )A 直角三角形B 等腰三角形C 等边三角形D 等腰直角三角形 3在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,则sec A =4△ABC 中,BAB A sin sin tan tan =,则三角形为在△ABC 中,角A 、B 均为锐角且cos A >sin B ,则△ABC 是6已知△ABC 中,A bB a c cb ac b a cos cos 2222==-+-+且,试判断△ABC 的形状 7在△ABC 中,(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),判断△ABC 的形状参考答案:1D 2A 3 8 4等腰三角形5钝角三角形6等边三角形 7等腰三角形或直角三角形【课堂总结】进一步熟悉了三角函数公式及三角形的有关性质,综合运用了正、余弦定理求解三角形的有关问题,要求大家注意常见解题方法与解题技巧的总结,不断提高三角形问题的求解能力 解斜三角形基本类型 一般解法一边两角 先由内角和定理求第三角,再由正弦定理求另两边 两边夹角 先用余弦定理求第三边,再由正弦定理与内角和定理求角 三边由余弦定理和内角和定理求角两边和其中一边的对角先由正弦定理求另一边的对角,再由内角和定理与正弦定理求其余的边和角或者由余弦定理和解一元二次方程求边(解的情况可以确定)【课后练习】1、在△ABC 中,已知)sin()sin(sin sin C B B A C A --=,求证:a 2,b 2,c 2成等差数列 证明:由已知得sin (B +C )sin (B -C )=sin (A +B )·sin (A -B )cos2B -cos2C =cos2A -cos2B ⇒2cos2B =cos2A +cos2C22cos 122cos 122cos 12BA B -+-=-⋅∴2sin 2B =sin 2A +sin 2C由正弦定理可得2b 2=a 2+c 2, 即a 2,b 2,c 2成等差数列2、 在△ABC 中,A =30°,cos B =2sin B -3sin C(1)求证:△ABC 为等腰三角形;(提示B =C =75°)(2)设D 为△ABC 外接圆的直径BE 与AC 的交点,且AB =2,求AD ∶DC 的值答案:(1)略 (2)1∶33、在△ABC 中,三边长为连续的自然数,且最大角是最小角的2倍,求此三角形的 三边长分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建立边角关系其中αααcos sin 22sin =利用正弦二倍角展开后出现了cos α,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的解:设三角形的三边长分别为x,x+1,x+2,其中x∈N*,又设最小角为α,则ααααcos sin 222sin 2sin ⋅+=+=x x x ,xx 22cos +=∴α①又由余弦定理可得x2=(x+1)2+(x+2)2-2(x+1)(x+2)cos α将①代入②整理得:x2-3x-4=0 解之得x1=4,x2=-1(舍) 所以此三角形三边长为4,5,6评述: 此题所求为边长,故需利用正、余弦定理向边转化,从而建立关于边长的方程4、已知三角形的一个角为60°,面积为103c m2,周长为20c m,求此三角形的各边长分析:此题所给的题设条件除一个角外,面积、周长都不是构成三角形的基本元素,但是都与三角形的边长有关系,故可以设出边长,利用所给条件建立方程,这样由于边长为三个未知数,所以需寻求三个方程,其一可利用余弦定理由三边表示已知60°角的余弦,其二可用面积公式S△ABC =21ab sin C 表示面积,其三是周长条件应用解:设三角形的三边长分别为a 、b 、c ,B =60°,则依题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=︒⋅-+=︒2031060sin 21260cos 222c b a ac ac b c a ⎪⎩⎪⎨⎧=-+==++∴4020222ac ac c a b c b a 由①式得:b 2=[20-(a +c )]2=400+a 2+c 2+2ac -40(a +c ) ④ 将②代入④得400+3ac -40(a +c )=0 再将③代入得a +c =13由⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==+588540132211c a c a ac c a 或解得 ∴b 1=7,b 2=7所以,此三角形三边长分别为5c m,7c m,8c m评述: (1)在方程建立的过程中,应注意由余弦定理可以建立方程,也要注意含有正弦形式的面积公式的应用(2)由条件得到的是一个三元二次方程组,要注意要求学生体会其求解的方法和思路,以提高自己的解方程及运算能力5、已知△ABC 中,C=3B,求cb的取值范围。

正弦定理的公式是什么

正弦定理的公式是什么正弦定理的公式是什么sin^2(α/2)=(1-cosα)/2。

在直角三角形中,∠A(非直角)的对边与斜边的比叫做∠A的正弦,故记作sinA,即sinA=∠A的对边/∠A的斜边古代说法,正弦是股与弦的比例。

古代说的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜边。

股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正方的直角三角形,应是大腿站直。

正弦是∠α(非直角)的对边与斜边的比值,余弦是∠A(非直角)的邻边与斜边的比值。

勾股弦放到圆里。

弦是圆周上两点连线。

最大的弦是直径。

把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。

按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。

余弦定理是什么余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

高中数学正弦定理公式数学正弦定理公式:a/sinA=b/sinB=c/sinC=2R;余弦定理公式:cosA=(b?+c?-a?)/2bc。

正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

一、正弦定理推论公式1、a=2RsinA;b=2RsinB;c=2RsinC。

2、a:b=sinA:sinB;a:c=sinA:sinC;b:c=sinB:sinC;a:b:c=sinA:sinB:sinC。

二、余弦定理推论公式1、cosA=(b^2+c^2-a^2)/2bc;2、cosB=(a^2+c^2-b^2)/2ac;3、cosC=(a^2+b^2-c^2)/2ab。

正弦定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R[理解定理] 1公式的变形:2.正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形. 3.利用正弦定理解三角形使,经常用到:①π=++C B A ②C B A C B A sin )cos(,sin )sin(=+=+③C ab S abc sin 21=∆ 例题讲解:例1 已知在B b a C A c ABC 和求中,,,30,45,1000===∆.分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两角一边 解:0030,45,10===C A c ∴00105)(180=+-=C A B由C cA a sin sin =得 21030sin 45sin 10sin sin 00=⨯==C A c a 由C c B b sin sin =得 256575sin 2030sin 105sin 10sin sin 00+==⨯==C B c b 评述:此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理.例2 C B b a A c ABC ,,2,45,60和求中,===∆解:23245sin 6sin sin ,sin sin 0=⨯==∴=aAc C C c A a0012060,1800或=∴︒<<︒C C1360sin 75sin 6sin sin ,75600+=====∴C B c b B C 时,当,C R c B R b A R a sin 2,sin 2,sin 2)1(===C B A c b a sin :sin :sin ::)3(=,2sin ,2sin ,2sin )2(Rc C R b B R a A ===Bb Cc C c A a B b A a sin sin ,sin sin ,sin sin )4(===1360sin 15sin 6sin sin ,151200-=====∴C B c b B C 时,当 或0060,75,13==+=∴C B b 00120,15,13==-=C B b例3在C A a c B b ABC ,,1,60,30和求中,===∆解:∵21360sin 1sin sin ,sin sin 0=⨯==∴=b B c C C c B b00090,30,,60,==∴<∴=>B C C B C B c b 为锐角,∴222=+=c b a例4.根据下列条件,判断解三角形的情况(1) a =20,b =28,A =120°.无解 (2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解例5.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状. 解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B CA B C ==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角?(2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例6.根据下列条件,判断解三角形的情况 (1) a =20,b =28,A =120°.无解 (2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解例7.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.课堂练习1 02,135,3,ABC a A b B ∆===中,求2 在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦定理、余弦定理(一)教学过程Ⅰ.课题导入在初中,我们已经会解直角三角形.就是说,已会根据直角三角形中已知的边与角求出未知的边与角,而在直角三角形中,有如下的边角关系在Rt △ABC 中,已知BC =a ,AC =b ,AB =c ,则有c =A a sin ,c =B b sin ,c =C c sin ,∴ A a sin =B b sin =C csin那么,在任意三角形中,这一关系式是否成立呢?这也是我们这一节课将要研究的问题.[师]对于A a sin =B b sin =C csin 这一关系的证明,我们一起来看下面的证法.如图,在△ABC 中,已知BC =a ,AC =b ,AB =c ,作△ABC 的外接圆,O 为圆心,连接BO 并延长交圆于B ′,设BB ′=2R .则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到:∠BAB ′=90°,∠C =∠B ′ ∴ sin C =sin B ′=R c2∴ C c sin =2R 同理可得A a sin =2R ,B bsin =2R∴ A a sin =B b sin =C csin =2R这就是说,对于任意的三角形,上述关系式均成立.因此,我们得到下面的定理. 正弦定理 在一个三角形中,各边和它所对的正弦的比相等,即Aa s i n =Bb sin =C csin 说明:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫.我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一处知识点体现边角关系呢? a ·b =|a ||b |cos θ,其中θ为两向量的夹角.sin θ=cos(90°-θ)进行转化.这一转化产生了新角90°-θ,这就为辅助向量j 的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j ,而j 垂直于三角形一边,且与一边夹角出现了 90°-θ这一形式,这是作辅助向量j 垂直于三角形一边的原因.在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得AC +CB =AB .而添加垂直于的单位向量j 是关键,为了产生j 与、、的数量积,而在上面向量等式的两边同取与向量j 的数量积运算,也就在情理之中了.下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点.说明:(1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用. (2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用.向量法证明过程:(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB 的夹角为90°-C . 由向量的加法原则可得 AC +CB =AB为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到j ·(AC +CB )=j ·AB由分配律可得j ·AC +j ·CB =j ·AB∴ |j ||AC |cos90°+|j ||CB |co s(90°-C )=|j ||AB |cos(90°-A ) ∴ a sin C =c sin A∴ A a sin =C csin另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得C c sin =B bsin .(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角为90°-C ,j 与AB的夹角为90°-B ) ∴ A a sin =B b sin =C csin .(2)△ABC 为钝角三角形,不妨设A >90°过点A 作与垂直的单位向量j ,则j 与AB 的夹角为A -90°,j 与的夹角为90°-C .由AC +CB =AB 得 j ·AC +j ·CB =j ·AB即a ·cos(90°-C )=c ·cos(A -90°) ∴ a sin C =c sin A ∴ A a sin =C csin另外,过点C 作与垂直的单位向量j ,则j 与夹角为90°+C ,j 与夹角为90°+B ,同理可得B b sin =C c sin ∴ A a sin =B b sin =C csin综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立.在证明了正弦定理之后,我们来进一步学习正弦定理的应用.利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P 130的例1就属于此类问题.(2)已知两边和其中一边的对角,求另一边的对角.[例1]在△ABC 中,已知c =10,A =45°,C =30°,求b (保留两个有效数字).评述:(1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理. (2)对于解三角形中的复杂运算可使用计算器,但应注意如下约定:当计算器所示结果为准确数时,或者为不少于四个有效数字的近似数而需要保留四个有效数字时,一律使用等号;保留的有效数字不少于四个时,使用约等号.[例2]在△ABC 中,已知a =20,b =28,A =40°,求B (精确到1°)和c (保留两个有效数字).评述:通过此例题可使学生明确,利用正弦定理所求角有两种可能,但是不都符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会.[例3]在△ABC 中,已知a =60,b =50,A =38°,求B (精确到1°)和c (保留两个有效数字).分析:结合幻灯片§5.9.1 C ,此例题属于a ≥b 这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B 为钝角的情形.解:已知b <a ,所以B <A ,因此B 也是锐角.∵ sin B =6038sin 50sin ︒=a A b =0.5131, ∴ B =31°∴ C =180°-(A +B )=180°-(38°+31°)=111° ∴ c =︒︒=38sin 111sin 60sin sin A C a ≈91. 评述:同样是已知两边和一边对角,但可能出现不同的结果,应强调学生注意解题的灵活性.对于例3,如果没有考虑到角B 所受限制而求出角B 的两个解,进而求出边c 两解,也可利用三角形内两边之和大于第三边,两边之差小于第三边这一性质进而验证而达到排除不符题意的解.小结:在△ABC 中,已知a 、b 和A 时解三角形的各种情况(1)A 为锐角(2)A 为直角或钝角Ⅲ.课堂练习1.在△ABC 中(结果保留两个有效数字). (1)已知c =3,A =45°,B =60°,求b ;(2)已知b =12,A =30°,B =120°,求a .2.根据下列条件解三角形(角度精确到1°,边长精确到1):(1)b =11,a =20,B =30° (2)c =54,b =39,C =115°评述:此练习目的是使学生进一步熟悉正弦定理,同时加强解斜三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍.Ⅳ.课时小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角一边;已知两边和其中一边的对角.●资料1.判断三角形解的方法“已知两边和其中一边的对角”解三角形,这类问题分为一解、二解和无解三种情况.一方面,我们可以利用课本上的几何图形加以理解,另一方面,也可以利用正弦函数的有界性进行分析.设已知a 、b 、A ,则利用正弦定理sin B =a Ab sin 如果sin B >1,则问题无解; 如果sin B =1,则问题有一解;如果求出的sin B <1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”等三角形有关性质进行判断.2.利用正弦定理进行边角互换对于三角形中的三角函数,在进行恒等变形时,常常将正弦定理写成a =2R sin A ,b =2R sin B ,c =2R sin C或sin A =R c C R b B Ra 2sin ,2sin ,2==. 正弦定理、余弦定理(二)课题导入1.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.形式一:a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .形式二:cos A =bc a c b 2222-+ cos B =ca b a c 2222-+ cos C =ab c b a 2222-+在余弦定理中,令C =90°,这时,cos C =0,所以c 2=a 2+b 2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用.2.向量法证明余弦定理(1)证明思路分析向量数量积的定义式:a ·b =|a ||b |cos θ,其中θ为a 、b 的夹角.在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别,首先因为无须进行正、余弦形式的转换,也就省去添加辅助向量的麻烦.当然,在各边所在向量的联系上依然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C ,则构造·这一数量积以使出现cos C .同样在证明过程中应注意两向量夹角是以同起点为前提.(2)向量法证明余弦定理过程:如图,在△ABC 中,设AB 、BC 、CA 的长分别是c 、a 、b .由向量加法的三角形法则可得AC =+BC ,∴ AC ·AC =(+BC )·(+BC )=2+2·+2=||2+2||||cos(180°-B )+||2=c 2-2ac cos B +a 2 即b 2=c 2+a 2-2ac cos B 由向量减法的三角形法则可得: =-∴ ·=(-)·(-)=2-2·+2=||2-2||||cos A +||2=b 2-2bc cos A +c 2即a 2=b 2+c 2-2bc cos A 由向量加法的三角形法则可得 AB =+=-∴ ·=(-)·(-)=2-2·+2=||2-2||||cos C +||2=b 2-2ba cos C +a 2. 即c 2=a 2+b 2-2ab cos C .评述:(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则. (2)在证明过程中应强调学生注意的是两向量夹角的确定,与AB 属于同起点向量,则夹角为A ;AB 与是首尾相接,则夹角为角B 的补角180°-B ;与是同终点,则夹角仍是角C .在证明了余弦定理之后,我们来进一步学习余弦定理的应用通过余弦定理的两种表示形式我们可以得到,利用余弦定理,我们可以解决以下两类有关三角形的问题:(1)已知三边,求三个角.这类问题由于三边确定,故三角也确定,解唯一,课本P 132例4属这类情况;(2)已知两边和它们的夹角,求第三边和其他两个角.这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题.接下来,我们通过例题评析来进一步体会与总结.3.例题评析[例1]在△ABC 中,已知a =7,b =10,c =6,求A 、B 和C .(精确到1°)评述:(1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出. (2)对于较复杂运算,可以利用计算器运算.[例2]在△ABC 中,已知a =2.730,b =3.696,C =82°28′,解这个三角形(边长保留四个有效数字,角度精确到1′).分析:此题属于已知两边夹角解三角形的类型,可通过余弦定理形式一先求出第三边.在第三边求出后其余边角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角结合正弦定理求解,但根据斜三角形求解经验,若用正弦定理需对两种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好.评述:通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理均可选用,那么求边两个定理均可,求角则余弦定理可免去判断取舍的麻烦.[例3]已知△ABC 中,a =8,b =7,B =60°,求c 及S △ABC .分析:根据已知条件可以先由正弦定理求出角A ,再结合三角形内角和定理求出角C ,再利用正弦定理求出边c ,而三角形面积由公式S △ABC =21ac sin B 可以求出.若用余弦定理求c ,表面上缺少C ,但可利用余弦定理b 2=c 2+a 2-2ca cos B 建立关于c 的方程,亦能达到求c 的目的.下面给出两种解法.解法一:由正弦定理得︒=60sin 7sin 8A∴ A 1=81.8°,A 2=98.2° ∴ C 1=38.2°,C 2=21.8°,由C c sin 60sin 7=︒,得c 1=3,c 2=5 ∴S △ABC =21ac 1sin B =63,或S △ABC =21ac 2sin B =103.解法二:由余弦定理得b 2=c 2+a 2-2ca cos B ∴ 72=c 2+82-2×8×c cos60°整理得:c 2-8c +15=0 解之得:c 1=3,c 2=5, ∴ S △ABC =21ac 1sin B =63, 或S △ABC =21ac 2sin B =103.评述:在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决.故解法二应引起学生的注意.综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围:已知三边求任意角或已知两边夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法.课时小结通过本节学习,我们一起研究了余弦定理的证明方法,同时又进一步了解了向量的工具性作用,并且明确了利用余弦定理所能解决的两类有关三角形问题:已知三边求任意角;已知两边及夹角解三角形.正弦定理、余弦定理(三)讲授新课[例1]已知△ABC ,BD 为B 的平分线,求证:AB ∶BC =AD ∶DC[例1]分析:前面大家所接触的解三角形问题是在一个三角形内研究问题,而B 的平分线BD 将△ABC 分成了两个三角形:△ABD 与△CBD ,故要证结论成立,可证明它的等价形式:AB ∶AD =BC ∶DC ,从而把问题转化到两个三角形内,而在三角形内边的比等于所对角的正弦值的比,故可利用正弦定理将所证继续转化为DBC DC BDC BC ABD AD ADB AB sin sin ,sin sin ==,再根据相等角正弦值相等,互补角正弦值也相等即可证明结论.证明:在△ABD 内,利用正弦定理得:ABD AD ADB AB sin sin =,即ABD ADB AD AB sin sin =在△BCD 内,利用正弦定理得:DBC DC BDC BC sin sin =,即DBC BDC DC BC sin sin =. ∵ BD 是B 的平分线. ∴ ∠ABD =∠DBC , ∴ sin ABD =sin DBC .∵ ∠ADB +∠BDC =180° ∴ sin ADB =sin(180°-∠BDC )=sin BDC∴ CD BC DBC BDC ABD ADB AD AB ===sin sin sin sin ∴DC AD BC AB =. 评述:此题可以启发学生利用正弦定理将边的关系转化为角的关系,并且注意互补角的正弦值相等这一特殊关系式的应用.[例2]在△ABC 中,求证:a 2sin2B +b 2sin2A =2ab sin C分析:此题所证结论包含关于△ABC 的边角关系,证明时可以考虑两种途径:一是把角的关系通过正弦定理转化为边的关系,若是余弦形式则通过余弦定理;二是把边的关系转化为角的关系,一般是通过正弦定理.另外,此题要求学生熟悉相关的三角函数的有关公式,如sin2B =2sin B ·cos B 等,以便在化为角的关系时进行三角函数式的恒等变形.证明一:(化为三角函数)a 2sin2B +b 2sin2A=(2R sin A )2·2sin B ·cos B +(2R sin B )2·2sin A ·cos A=8R 2sin A ·sin B (sin A cos B +cos A sin B )=8R 2sin A sin B sin C =2·2R sin A ·2R sin B ·sin C=2ab sin C 所以原式得证.证明二:(化为边的式子)左边=a 2·2sin B cos B +b 2·2sin A ·cos A=a 2·R b 22·ac b c a 2222-++b 2·R a 22·bc a c b 2222-+=Rc ab 2(a 2+c 2-b 2+b 2+c 2-a 2)=Rc ab2·2c 2=2ab ·R c 2=2ab sin C评述:由边向角转化,通常利用正弦定理的变形式:a =2R sin A ,b =2R sin B ,c =2R sin C ,在转化为角的关系式后,要注意三角函数公式的运用,在此题用到了正弦二倍角公式sin2A =2sin A ·cos A ,正弦两角和公式sin(A +B )=sin A ·cos B +cos A ·sin B ;由角向边转化,要结合正弦定理变形式以及余弦定理形式二.三角形的有关证明问题,主要围绕三角形的边和角的三角函数展开,从某种意义上来看,这类问题就是有了目标的含边和角的式子的化简问题.[例3]已知A 、B 、C 是△ABC 的三个内角,且满足(sin A +sin B )2-sin 2C =3sin A sin B 求证:A +B =120°分析:三角形形状的判断,可以根据角的关系,也可根据边的关系,所以在已知条件的运用上,可以考虑两种途径:将边转化为角,将角转化为边.下面,我们从这两个角度进行分析.解法一:利用余弦定理将角化为边.∵ b cos A =a cos B ∴ b ·bc a c b 2222-+=a ·ac b c a 2222-+∴ b 2+c 2-a 2=a 2+c 2-b 2 ∴ a 2=b 2∴ a =b 故此三角形是等腰三角形.解法二:利用正弦定理将边转化为角.∵ b cos A =a cos B 又b =2R sin B ,a =2R sin A∴ 2R sin B cos A =2R sin A cos B ∴ sin A cos B -cos A sin B =0∴ sin(A -B )=0 ∵ 0<A ,B < ,∴ - <A -B <∴ A -B =0,即A =B 故此三角形是等腰三角形.评述:(1)在判定三角形形状时,一般考虑两个方向进行变形,一个方向是边,走代数变形之路,通常是正、余弦定理结合使用;另一个方向是角,走三角变形之路,通常是运用正弦定理.要求学生要注重边角转化的桥梁——正、余弦定理;(2)解法二中用到了三角函数中两角差的正弦公式,但应注意在根据三角函数值求角时,一定要先确定角的范围.另外,也可运用同角三角函数的商数关系,在等式sin B ·cos A =sin A cos B 两端同除以sin A sin B 得cot A =cot B ,再由0<A ,B < ,而得A =B .Ⅲ.课堂练习1.在△ABC 中,证明下列各式:(1)(a 2-b 2-c 2)tan A +(a 2-b 2+c 2)tan B =0 (2)2222112cos 2cos b a b B aA -=-. 证明:(1)左边=(a 2-b 2-c 2)A A cos sin +(a 2-b 2+c 2)B Bcos sin=(a 2-b 2-c 2)·R a 2·2222a c b bc -++(a 2-b 2+c 2)·R b 2·2222b c a ac-+=])([22222222222222b c a b c a a c b a c b Rabc -+-++-+-+-R abc =(-1+1)=0=右边 故原命题得证. (2)左边=B R B A R A b a b B a A 222222222222sin )2(sin 2sin )2(sin 2)11(sin 21sin 21+--=---22222211)2(2)2(211b a R R b a -=+--==右边 故原命题得证.评述:(1)在(1)题证明时应注意两点:一是切化弦的思路,二是结合正、余弦定理将角的关系转化为边的关系; (2)题证明过程中用到了余弦二倍角的公式,而此公式有三种形式cos2A =cos 2A -sin 2A =2cos 2A -1=1-2sin 2A ,由于考虑到等式右端为边的关系,故选用第三种形式,在转化为边的关系时较为简便. 2.在△ABC 中,已知sin B ·sin C =cos 22A,试判断此三角形的类型.解:∵ sin B ·sin C =cos 22A∴ sin B ·sin C =2cos 1A +∴ 2sin B ·sin C =1+cos [180°-(B +C )]将cos(B +C )=cos B cos C -sin B sin C 代入上式得cos B cos C +sin B sin C =1∴ cos(B -C )=1 又0<B ,C < ,∴ - <B -C < ∴ B -C =0,∴ B =C 故此三角形是等腰三角形.评述:(1)此题在证明过程中,要用到余弦二倍角公式cos A =2cos 22A-1的逆用,要求学生注意; (2)由于已知条件就是三角函数关系式,故无需向边的关系转化,而是进行三角函数式的恒等变形.课时小结:通过本节学习,我们熟悉了正、余弦定理在进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断.其中,要求大家重点体会正、余弦定理的边角转换功能.。

相关文档
最新文档