空压机节能改造方案
公司部分空压机节能改造方案

公司部分空压机节能改造方案公司部分空压机节能改造方案一、现状公司集中空压站内现有6台空压机全部利旧,其中5台为排气量40.5立方米/分,电机功率250KW,1台为排气量40立方米/分;电机功率225KW的螺杆空压机,额定工作压力0.70~0.75Mpa,全部为工频(F=50Hz)。
空压机的使用时间为:2台复盛生产的空压机为2000年8月1日;1台复盛生产的空压机为2001年12月31日;1台复盛生产的空压机为2005年10月30日;1台阿特拉斯生产的空压机为2002年8月30日;1台寿力生产的空压机为2003年10月18日;动力设备的使用寿命18年。
根据空压机运行情况和历史数据显示(2011.1.1-2012.5.13)分析,每台空压机的平均运行时间为3600h/年,平均加载时间为2500h/年,平均卸载时间1100h/年。
每天工作时间经常5台空压机运行,1台机组备用,偶有因生产量增加和气温升高等原因,6台机组同时运行,没有备用机。
几乎每天凌晨至早8:00时间段,有1台空压机处于经常的加卸载状态运行(主要给锻冶分厂供风)。
二、方案(一)1、在机动分厂动能中心新安装一台空压机,技术参数为:排气压力0.75Mpa ,排气量40立方米/分,变频电机,冷却方式为水冷的变频空压机。
配套需要安装吸风管道、压缩空气管道、冷却循环水管道及电缆。
2、投资造价投资造价概算一览表使用单位项目机动分厂40m3/min,0.75Mpa变频空压机1、设备购置费(万元) 60-702、连接管道及全部安装费(万元) 53、配套电(万元) 74、合计(万元) 72-823、效益回报分析1、一台工频空压机的耗电250*3600*0.80=720000元(按每年运行3600小时,平均0.80元/度电费换算)按70%加载,30%卸载比例分配,且卸载功耗在30% 计算则每台工频机组每年电费为:720000*0.7+720000*0.3*0.3=568800元2、一台GA250VSD(变频机组)的平均节电率为:35%则250千瓦变频机组的电费为:568800X0.65=369720元/年则单台250千瓦变频机组每年会节省电费:568800-369720=199080元注:(变频机组的节电率与实际发生的空气消耗量及压力波动息息相关,如压力波动较大,及空气消耗点较分散,消耗的气量不平均都会影响变频机组的运行。
空压机节能方案

2.时间安排
(1)设备选型与改造:1个月;
(2)系统优化:2个月;
(3)管理措施:3个月;
(4)培训与宣传:贯穿整个项目周期。
3.质量保障
(1)选用符合国家标准的设备和材料;
(2)严格按照设计方案和施工规范进行施工;
(3)加强施工过程中的质量监督,确保项目质量。
4.风险防范
(1)制定应急预案,应对设备故障、安全事故等突发情况;
(2)加强与供应商、施工方的沟通协调,确保项目进度不受影响。
五、预期效果
1.节能效果:预计空压机系统整体节能率达到10%以上;
2.经济效益:降低企业生产成本,提高经济效益;
3.社会效益:符合国家节能政策,减少能源消耗,降低环境污染。
本方案旨在为企业提供一份合法合规的空压机节能优化方案,助力企业实现节能减排、降本增效的目标。在方案实施过程中,需根据实际情况进行调整和优化,确保项目顺利推进。
第2篇
空压机节能方案
一、引言
空气压缩机(以下简称空压机)是工业生产中广泛使用的动力设备,其能源消耗在企业总能耗中占有较大比重。为实现能效提升,降低运营成本,本方案针对空压机系统进行节能优化,确保方案的科学性、实用性和合法性。
二、目标设定
1.显著降低空压机的能源消耗,提升能源使用效率。
2.优化空压机运行状态,延长设备寿命,减少维护成本。
2.系统优化
-采用群控技术,根据用气需求自动调节空压机运行台数,避免无效运行。
-优化空气管路设计,降低系统阻力,减少压力损失。
-定期对空压机进行保养,确保设备高效运行。
3.管理与监控
-制定空压机操作规程,提升操作人员的节能意识和操作技能。
空压机节能改造方案

=9828度/月ห้องสมุดไป่ตู้
(2)70%*14%*75*24*28
=4349.2度/月
(3)9828+4349.2=14767.2度/月
由此可以得出使用我公司提供的节能改造方案每月可节约用电约14767.2度。
备注:电费带入度数就可以算出月节约电费。
3.改造费用核算
1
1
1
75
8
6
24
28
120
60
2.空压机节能核算
电机功率75KW,电压380V,加载电流136A,卸载电流89A,加载时间70%,卸载时间30%,下限压力0.6Mpa,上限压力0.8Mpa,压差损耗14%,每天工作时间24小时,每月工作28天,原来是星三角启动工频运行,用变频恒压控制后,节电率如下:
空
压
机
节
能
方
案
节能技术解决方案
(空压机节能)
结合提供的相关详细数据进行分析统计,现在将可行的相关技术项目方案内容报告分析如下:
1、空压机系统基本情况
1.空压机站工作现状
附表1-1
空压机参数
序号
型号
单位
数量
功率
KW
运行压力
KG
需求压力
KG
日运行时间(小时)
月运行时间(天)
加载时间
(S)
卸载时间
(S)
备注
孚瑞肯变频器 一台
机箱 一个
37平线 多米(自备)
人工 500元/人
350元每个千瓦
合计:350*75=26250元
2、空压机现场改造实用图例
2015年9月1日
空压机节能改造

空压机节能改造
空压机节能改造的目的是降低空压机的能耗,提高能源利用效率。
下面是一些常见的空压机节能改造方法:
1. 设置压力调节器:将压力调节器安装在空压机出口处,可以根据实际用气需求调整压力,避免过高或过低的供气压力,减少能耗。
2. 定期维护保养:定期清洗滤清器和油气分离器,保持空压机的正常运行状态,减少系统堵塞和阻力,提高能效。
3. 更换高效能滤芯:使用高效能滤芯可以有效去除空气中的杂质,保持气路畅通,降低能耗。
4. 安装变频器:将空压机的电机用变频器控制,可以根据用气需求自动调整电机转速,达到节约能源的效果。
5. 优化系统管道设计:合理设计管道布局和减少管道长度,减少空气流动的阻力,提高能源利用效率。
6. 使用高效能压缩机:将老旧的压缩机更换为高效能的压
缩机,可以提高压缩效率,降低能耗。
7. 结合热回收技术:利用空压机排放的热能进行热回收,
用于供暖或生产过程中的其他热能需求,提高能源利用效率。
以上是一些常见的空压机节能改造方法,具体改造方案需
要根据空压机的实际情况和用气需求来设计。
空压机变频节能改造方案

第一部分变频节能改造背景一、基本情况二、变频调速技术第二部分空压机的改造缘由一、空压机介绍二、存在的主要问题三、变频改造的优点第三部分实现方法一、公司简介二、实现方法第四部分投资估算及服务承诺一、投资估算二、服务承诺第一部分变频节能改造背景一、基本情况广西南宁华诺糖厂空压站现有315KW/380V空压机3台,160KW/380V空压机4台每年耗电量约200多万元。
对华诺糖厂来说是一笔很大的开支。
近年来,我国经济飞速发展,对能源的需求尤其是是对电能的需求激增。
去年夏季,珠三角和长三角许多城市不得不拉闸限电,我国不仅在电能开发上需要加快速度,而且还应该在节约电能方面狠下功夫,据统计,我国在电能利用率上仅有34%左右,比发达国家低10多个百分点,电能供给缺口大,电能利用率低,致使电费一涨再涨。
去年8月份,襄樊市电力缺口大,电价上涨0.05元/度,达0.52元/度,使公司的成本开支增大,要降低成本,抓住主要矛盾,首先是降低电耗!二、变频调速技术交流电动机变频调速是近25年内发展起来的新技术,而在我国的普及应用已有10多年,即使在这短短的10多年里,国内变频器技术发展很快,技术相当成熟,并且有些变频器(如英威腾变频)装到成套上出口到美国和澳大利亚。
在国内广泛应用在风机、水泵、压缩机及调速设备上,应用的用户很多,使用后反映都不错。
变频调速技术在国内压缩机上应用的处于高速增长期,我们专业做变频器推广应用的企业已做了许多压缩机节能改造的工程,节电效果相当明显,业绩发展很快。
尤其是2001年国家经贸委下发的《关于加快风机水泵压缩机变频节能改造的意见》给我们襄樊华强照明有限公司节电工作指明了明确的方向。
第二部分空压机的改造缘由一. 空压机介绍:工作原理是由一对相互平行齿合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,实现螺杆式空压机的吸气、压缩和排气的全过程。
空压机节能改造方案

空压机节能改造方案空压机节能改造方案XXX是一家专业从事驱动控制系统研发、设计、生产和销售的高新技术企业。
本公司在工业应用领域具有丰富的经验和雄厚的技术实力,采用高性能无感矢量变频器用于0.75kw 到250kw的电机速度控制,广泛应用于空压机、注塑机、传送带、挤出机械、恒压水泵、化工、中央空调、电子、纺织等领域,为客户提供完整的工业和特殊行业解决方案。
传统空压机的问题:传统的加卸载式空压机存在以下问题:1.电能浪费严重:传统控制方式决定在加压过程中,压力会继续上升10%左右,直到卸载压力,从而导致电能损失。
此外,高压气体在进入气动元件前,需要经过减压阀减压,这一过程同样耗能。
2.工频启动冲击电流大:主电机虽然采用Y-△减压起动,但起动电流仍然很大,对电网冲击大,易造成电网不稳以及威胁其它用电设备的运行安全。
3.压力不稳,自动化程度底:传统空压机自动化程度低,输出压力的调节是靠对加卸载阀、调节阀的控制来实现的,调节速度慢,波动大,精度低,输出压力不稳定。
4.设备维护量大:空压机工频启动电流大,高达5~8倍额定电流,工作方式决定了加卸载阀必然反复动作,部件易老化,工频高速运行,轴承磨损大,设备维护量大。
5.噪音大:持续工频高速运行,超过所需工作压力的额外压力,反复加载、卸载,都直接导致工频运行噪音大。
改造原则:根据空压机原工况并结合生产工艺的要求,对空压机进行变频技术改造后,系统满足以下要求:1.空压机经过改造后,系统通过转换开关切换,具有变频和工频两套控制回路,采用开环和闭环两套控制回路。
一拖二起动时,对两台电机M1,M2,可以通过转换开关选择变频/工频启动。
正常运行时,电机M1处于变频调速状态,电动机M2处于工频状态。
现场压力变送器检测管网出口压力,并与给定值比较,经PID指令运算,得到频率信号,调节转速达到所需压力。
停止时按下停止按钮,PLC控制所有的接触器断开,变频器停止工作。
2)为了确保生产的正常进行,需要在变频出现异常保护时采取措施,以免影响生产。
空压机节能改造方案
空压机节能改造方案》行业概述空气压缩机是一种利用电动机将气体在压缩腔内进行压缩并使压缩的气体具有一定压力的设备。
它的用途广泛,可以用于冶金、机械制造、矿山、电力、纺织、石油化工等各个行业。
空压机占大型工业设备(风机、水泵、锅炉、空压机等)耗电量的15%。
经考察,大部分空压机自身存在着以下几个缺点:1、输出压力大于一定值时,自动打开泄载阀,使异步电机空转,严重浪费能源。
2、异步电动机易频繁启动、停止,影响电机的使用寿命。
3、工作条件恶劣,噪音大。
4、自动化程度低,输出压力调节靠人为调节阀开度来实现,调节速度慢,波动大,不稳定,精度低。
5、空压机工频启动电流大,对电网冲击大,电机轴承磨损大,设备维护量大。
针对以上问题,可使用变频器实现对螺杆式空气压缩机的节能改造,改造后自动化程度高,节能效果显著。
》工作原理和控制方式分析螺杆式空压机的工作原理如下图所示,空气经空气过滤器和吸气调节阀而吸入。
该调节阀主要用于调节气缸、转子及滑片形成的压缩腔,阴、阳转子旋转相对于气缸里偏心方式运转。
滑片安装在转子的槽中,并通过离心力将滑片推至气缸壁,高效的注油系统能够确保压缩机良好的冷却及润滑油的最小舒适耗量,在气缸壁上形成的一层薄薄的油膜可以防止金属部件之间直接接触而造成磨损。
经压缩后的空气温度较高,其中混有一定的油气,经过油气分离器进行分离之后,油气经过油冷却器冷却再经过油过滤器流回储油罐,空气经过气冷却器(空气冷却装置)进行冷却而进入储气罐。
控制方式分析空压机变频改造后系统应满足以下要求:■电机变频运行状态保持储气罐出口压力稳定,压力波动范围不超±0.05Mpa。
■系统具有变频和工频两套控制回路。
■系统具有开环和闭环两套控制回路。
■一台变频器能控制两台空压机组,可用转换开关切换。
■根据空压机的工况要求,系统应保障电动机具有恒转矩运行特性。
■为防止谐波干扰空压机控制器,变频器输入端应有抑制电磁干扰的措施。
■在用电气量小的情况下,应保障电机绕组温度和电机噪音不超过允许范围。
空压机节能改造方法
空压机节能改造方法
空压机是一种常见的工业设备,其主要功能是将空气压缩成高压气体,用于供应给各种设备和工艺过程中。
空压机在工业生产中耗能较大,因此进行节能改造非常重要。
以下是一些空压机节能改造的方法:
1. 优化空压机组合:通过调整和优化多台空压机的组合方式,可以实现空压机的协同工作,提高整体能效。
合理选择和搭配空压机的机型和压力等级,可以提高系统的能效,减少能源消耗。
2. 减少空气泄漏:空气泄漏是造成空压机能效低下的主要原因之一。
定期检查和维护管道和接头的密封性,修复漏气点,减少空气泄漏,可以大幅度节能。
3. 优化送风系统:送风系统的设计和运行状态对能耗有重要影响。
要选择合适的送风管道直径和长度,减小送风系统的阻力,提高送风效率。
定期清理送风系统的滤网,保持良好的送风通畅。
4. 安装变频器:通过安装变频器来调节空压机的转速,可以根据实际需要和负载情况来控制空压机的运行,降低无负载或低负载时的能耗。
5. 定期维护和保养:定期对空压机进行维护和保养,清洁滤芯、更换润滑油、检查电气系统等,保持设备的正常运行状态,减少能耗和故障率。
6. 应用余热回收技术:利用空压机排放的余热,进行废热回收和再利用,可以提高能源利用效率。
7. 优化空压机运行策略:根据实际需求和负载情况,合理安排和调整空压机的运行时间和运行模式,减少不必要的能耗。
以上是一些常见的空压机节能改造方法,通过综合运用这些方法,可以有效地提高空压机的能效,降低能源消耗。
空压机节能改造方案
空压机节能改造方案概述空压机在工业生产中有着广泛地应用。
在名种行业中,它担负着为工厂所有气动元件,包括各种气动阀门,提供气源的职责。
因此它运行的好坏直接影响工厂生产工艺。
空压机的种类有很多,但其供气控制方式几乎都是采用加、卸载控制方式。
例如:美国寿力、瑞典阿特拉斯·科普柯(Atlaccopco).台湾復盛(SA)、上海斯可络螺杆式空压机中和尚爱高压活塞式空压机都采用了这种控制方式。
该供气方式虽然原理简单、操作方便,但存在耗电量高、进气阀易损坏、供气压力不稳定等问题。
传统空压机供气系统电能浪费分析1、传统空压机的工作状态主要有两种:一种是加载状态,另一种是空载状态。
(1) 加载时的电能消耗加载状态是,在压力达到最小值后,原控制方式决定其压力会继续上升直到最大压力值。
在加压过程中,一定要向外界释放更多的热量,从而导致电能损失。
另一方面,高于压力最大值的气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样是一个耗能过程。
(2) 卸载时电能的消耗空载状态时,当压力达到压力最大值时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。
这种调节方法要造成很大的能量浪费。
据我们测算,空压机卸载时的能耗约占空压机满载运行时的10%~25%,这还是在卸载时间所占比例不大的情况下。
换而言之,该空压机20%左右的时间处于空载状态,在作无用功。
很明显在加卸载供气控制方式下,空压机电机存在很大的节能空间。
2、传统空压机压力控制是上下限控制,首先根据生产设备的最低压力要求,设定空压机输出压力的下限,也就是空压机开始加载的压力;再在最低压力上加1帕左右,作为空压机输出压力的上限,即开始卸载的压力。
空压机的输出工作压力将在上下限之间波动。
空压机的功率消耗和输出压力成正比。
输出的压力越高消耗的功率也越大,从输出压力的下限到上限的1帕的压差将多消耗总功率的7-10%。
空压机变频节能改造方案
空压机变频节能改造方案2016年6月15日一、西电某车间空压机工况简述该车间2002年起使用美国寿力牌空压机,其主电机是三星异步交流电机,功率为75KW。
启动方式是星三角减压起动。
公司实际用气压力为7bar,工频机组设定“工作压力上限”和“工作压力下线”分别为8bar和6bar。
工作压力就在6bar和8bar之间上下浮动,而电磁阀在低于6bar时加载,高于8bar时卸载,电机在加载时满负荷运行,在卸载时空载运行。
白天两台空压机满负荷使用可满足整个车间供气使用,晚上则一台空压机根据实际情况使用。
二、系统工况存在的问题1.主电机虽然星三角减压起动,但起动时的电流仍然很大,会影响整个电网的稳定及其它用电设备的运行安全。
2.主电机时常空载运行,属非经济运行,电能浪费严重。
3.主电机工频运行致使空压机运行时噪音很大。
4.主电机工频起动设备的冲击大,电机轴承的磨损大,导致维护量大。
5.自动化程度不高,无法定时运行,不能实现无人职守。
6.在未来物联网或工业4.0环境下无法跟进全厂智能制造执行系统升级。
三、变频改造方案原理由人机界面,可编程控制器,变频器,压力变送器、电机、螺旋转子组成压力闭环控制系统根据供气情况自动调节电机转速,使储气罐内空气压力稳定在设定值范围内,进行恒压控制。
当供气压力高于恒压控制的压力值时,变频器会降低频率,电机速度下降,等到供气压力低于或者等于恒压控制的压力值时,则变频器满频运行,电机立马满载工作。
反馈压力与设定压力进行比较运算,实时控制变频器的输出频率,从而调节电机转速,使储气罐内空气压力稳定在设定压力值上。
四、空压机变频改造的具体功能1.变频与工频的切换无论空压机处在变频模式下还是工频模式下,其中任何一个模式有故障,则不影响另外一个模式启动运行,真正实现检修及工作同时进行,不影响车间生产。
如果整个系统出现大问题,则关断整个系统电源,闭合原有空压机电源,可以正常使用原有工频启动。
2.变频恒压控制对压力进行检测与控制保护,集成PID运算与控制于一体,根据供气压力,控制变频器运行频率,实现恒压供气,高度集成,高可靠性,高性价比,宽电压适应范围;3.成熟的空压机控制工艺使用空压机专用可编程逻辑控制器,控制技术更加成熟稳定:使用特制的电流互感器组件,可以检测电机电流情况,从而瞬间保护电机;无论空压机自身报警还是整个主电路主元器件有故障,都可以立马停机报警,保护电路及电器元件;利用可编程逻辑控制器,未来可以和总厂进行远程通讯,在总厂监控系统中实现远程监控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空压机节能改造方案
一,前言
佛山今博自动化设备有限公司是一家专业于驱动控制系统研发、设计、生产与销售的高新技术企业。
本公司在工业应用领域拥有丰富的经验和雄厚的技术实力采用高性能无感矢量变频器用于0.75kw到250kw的电机速度控制,广泛应用于空压机、注朔机、传送带、挤出机械、恒压水泵、化工、中央空调、电子、纺织等诸多领域,为客户提供了完整的工业和特殊行业的节解决方案。
二,传统空压机的问题
1、电能浪费严重
传统的加卸载式空压机,能量主要浪费在:
1)加载时的电能消耗
在压力达到所需工作压力后,传统控制方式决定其压力会继续上升10%左右,直到卸载压力。
在加压过程中,一定会产生更多的热量和噪音,从而导致电能损失。
另一方面,高压气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样耗能。
2)卸载时电能的消耗
当达到卸载压力时,空压机自动打开卸载阀,使电机空转,造成严重的能量浪费。
空压机卸载时的功耗约占满载时的30%~50%,可见传统空压机有明显的节能空间。
2、工频启动冲击电流大
主电机虽然采用Y-△减压起动,但起动电流仍然很大,对电网冲击大,易造成电网不稳以及威胁其它用电设备的运行安全。
对于自发电工厂,数倍的额定电流冲击,可能导致其他设备异常。
3、压力不稳,自动化程度底
传统空压机自动化程度低,输出压力的调节是靠对加卸载阀、调节阀的控制来实现的,调节速度慢,波动大,精度低,输出压力不稳定。
4、设备维护量大
空压机工频启动电流大,高达5~8倍额定电流,工作方式决定了加卸载阀必然反复动作,部件易老化,工频高速运行,轴承磨损大,设备维护量大。
5、噪音大
持续工频高速运行,超过所需工作压力的额外压力,反复加载、卸载,都直接导致工频运行噪音大。
三,改造原则
根据空压机原工况并结合生产工艺的要求,对空压机进行变频技术改造后,系统满足以下要求。
1)空压机经过改造后,系统通过转换开关切换,具有变频和工频两套控制回路,采用开环和闭环两套控制回路。
一拖二起动时,对两台电机M1,M2,可以通过转换开关选择变频/工频启动。
正常运行时,电机M1 处于变频调速状态,电动机M2处于工频状态。
现场压力变送器检测管网出口压力,并与给定值比较,经PID 指令运算,得到频率信号,调节转速达到所需压力。
停止时按下停止按钮,PLC控制所有的接触器断开,变频器停止工作。
2)确保变频出现异常保护时,不至于影响生产的正常进行。
为了防止非正弦波干扰空压机控制器,变频器输入端有抑制电磁干扰的有效措施。
控制线、信号线采用屏蔽线缆,布线时和动力电缆分开,防止引入干扰。
3)电机变频运行状态时保持储气罐出口压力稳定,压力波动范围不能超过依0.02 MPa。
4)空压机不允许长时间在低频下运行,空压机转速过低,一方面使空压机稳定性变差,另一方面也
使缸体润滑度变差,会加快磨损,所以工作下限不低于30 Hz。
5)设置高压保护、高温保护、等设置报警及故障自诊断。
(1)高压保护当系统压力超过设定值时,自动切断主机电源,使压缩机紧急停机。
(2)高温保护当压缩机排气温度超过调定值时,由接在主机排气孔口处的温度传感探头控制温度电触点动作,自动切断电动机电源,使压缩机紧急停机。
(3)电气保护系统采用软启动方式,具有相序保护(防止压缩机反转)、缺相保护、电机热过载保护等功能。
四,空压机变频改造后的优点
1,节能:总体节能达20%以上
1)加载时的节能:空压机进行变频改造后,压力始终保持在所需的设定工作压力,比改造前可降低10%的压力,根据功耗公式可知改造后此项可节能10%
2)卸载时的节能,电机卸载运行时消耗的能量是加卸时的40%左右,按平均四分之一左右的卸载时间算,此项可节能10%左右
2、启动电流小,对电网无冲击
变频器可使电机起动、加载时的电流平缓上升,没有任何冲击;可使电机实现软停,避免反生电流造成的危害,有利于延长设备的使用寿命;
3、输出压力稳定
采用变频控制系统后,可以实时监测供气管路中气体的压力,使供气管路中的气体的压力保持恒定,提高生产效率和产品质量;
4、设备维护量小
空压机变频启动电流小,小于2倍额定电流,加卸载阀无须反复动作,变频空压机根据用气量自动调节电机转速,运行频率低,转速慢,轴承磨损小,设备使用寿命延长,维护工作量变小。
5、噪音低
变频根据用气需要提供能量,没有太多的能量损耗,电机运转频率低,机械转动噪音因此变小,由于变频以调节电机转速的方式,不用反复加载、卸载,频繁加卸载的噪音也没有了,持续加压,气压不稳产生的噪音也消失了。
总之,采用变频恒压控制系统后,不但可节约一笔数目可观的电力费用,延长压缩机的使用寿命,还可实现恒压供气的目的,提高生产效率和产品质量。
我公司专业对空压机变频节能控制系统改造的可配套的空压机品牌有:阿特拉斯、英格索兰、复盛、凯撒、寿力、昆西、博格、博莱特、优耐特斯、康普艾等。
可配套空压机电机功率有:15KW、22KW、30KW、37KW、45KW、55KW、75KW、90KW、110KW、132KW、160KW、185KW、250KW。