DB12T246-2012电动自行车用锂离子蓄电池组和充电器通用技术条件.pdf

DB12T246-2012电动自行车用锂离子蓄电池组和充电器通用技术条件.pdf
DB12T246-2012电动自行车用锂离子蓄电池组和充电器通用技术条件.pdf

矿用锂离子蓄电池安全技术要求(试行)

附件1 矿用锂离子蓄电池安全技术要求 (试行) 1 范围 本要求规定了矿用锂离子蓄电池的安全要求、试验方法、检验规则等内容。 本要求适用于单体电池容量大于20Ah的矿用锂离子蓄电池的安全标志管理。 2 引用标准 MT/T 1051-2007 矿灯用锂离子蓄电池 MT/T 1078-2008 矿用本质安全输出直流电源 QC/T 743-2006 电动汽车用锂离子蓄电池 3 术语与定义 3.1 单体电池 构成蓄电池最小电气单元的电极和电解质的组合。 3.2 锂离子蓄电池 通过锂的氧化和还原产生电能的单体电池。 3.3 锂离子蓄电池模块 由5个或以上锂离子蓄电池串联组成的模块。 3.4 矿用锂离子蓄电池 在煤矿井下瓦斯气体环境使用的锂离子蓄电池。 4 名称与型号 4.1 产品名称 矿用锂离子蓄电池 4.2 产品型号 宜按下面方式编制型号

第一特征,F-磷酸铁锂□□□ 产品系列号,用1、2等表示 □第二特征,S-塑壳,G-钢壳,L-铝壳,R-软包额定容量,Ah □ 产品类型,L-锂电池 5 技术参数 至少应包括以下技术参数: a )额定电压,V ; b )额定容量,Ah ; c )内阻,Ω。 6 技术要求 6.1 锂离子蓄电池基本要求 6.1.1 应为安全性能较高的锂离子蓄电池,如磷酸铁锂蓄电池等。禁止采用钴酸锂蓄电池、三元系锂蓄电池、锰酸锂蓄电池。 6.1.2 安全性能应满足QC/T743-2006中5.1.11的要求,其中:过充性能应满足MT/T 1051-2007中4.4.3的规定,过放电性能应满足MT/T 1051-2007中4.4.4的规定,加热性能应满足QC/T743-2006和MT/T 1051-2007中严酷的规定(即试验时间2h 、试验温度150℃)。此外,还应满足MT/T 1051-2007中4.4.7重物冲击性能的要求。 6.1.3 当锂离子蓄电池具有泄压装置时,应设定泄压装置的开启压力,并在产品企业标准予以明确。 6.1.4 锂离子蓄电池20℃放电容量应不低于产品企业标准中规定的额定容量,同时不应高于额定容量的110%。 6.2 锂离子蓄电池模块基本要求 6.2.1 锂离子蓄电池模块的安全性能应满足QC/T743-2006中5.2.7的要求,其中:过充性能应满足MT/T 1051-2007中 4.4.3的规定,过放电性能应满足MT/T 1051-2007中4.4.4的规定,加热性能应满足QC/T743-2006和MT/T 1051-2007中严酷的规定(即试验时间2h 、试验温度150℃)。此外,还应满足MT/T 1051-2007中4.4.7条重物冲击性能的要求。 6.2.2 锂离子蓄电池模块20℃放电容量应不低于产品企业标准中规定的额定容量,

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力电池包和系统测试规程 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 术语和定义 1.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 1.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。 1.3 1 / 20

谈谈电动自行车充电器的充电模式和参数设置(精)

谈谈电动自行车充电器的充电模式和参数设置 摘要:分析了铅酸蓄电池用三段式充电模式及其充电器忽略了电池的负温度特性的缺陷,从充电器充电的波形和频率出发,提出应采用兼有常规性充电功能和修补性充电功能的多功能充电器,并给出了常规性充电阶段和补充性充电阶段的技术参数。 电动自行车(以下简称“EB”)产业的兴起,对充电器提出了高要求。目前EB所配置的充电器,多属于传统的三段式充电器,三段式充电器的充电模式是将充电过程分为恒流、恒压、浮充三个充电阶段,以我国EB采用较多的36V12Ah铅酸蓄电池组为例,第一阶段以1.8A的恒定电流将电池充到约44.4V;第二阶段将充电电流减小至约0.3A,再次将电池电压充到44.4V;第三阶段将电压降至约41.4V,电流减至约50MA 对电池进行浮充。 从几年来的使用情况看,三段式充电器暴露了一些问题。以下仍以36V12Ah铅酸蓄电池组为例,谈谈三段式充电器的缺陷和解决方案。 1、三段式充电器忽略了电池的负温度特性 三段式充电器充电参数的设定除受所配电池单体极板面积大小、电极特性、电解液密度等因素影响外,还受蓄电池的环境温度的影响,以36V蓄电池组为例,具体充电电压与温度的关系见表1。 温度/(℃)恒压充电电压N浮充充电电压N 046.2042.48 10 45.36 41.58 20 44.40 40.86 25 44.25 40.50 30 43.74 40.14 35 43.20 39.78 虽然一直以来,人们都明白电化学的温度效应是不能回避的,但却在充电器问题上忽略了。原因可以有很多,但特别应在此指出的是:过去人们对蓄电池容量、寿命与温度之间关系的感触和认识从来没有象今天这样直接和具体,须知,这是千万个EB用户参与了“实验”的结果。 在我国几乎所有的地区,使用无温度补偿的充电器,都会对电池造成损害。夏季过充,冬季欠充,过充和欠充容易造成电池失水和硫酸盐化,电池失水后,硫酸浓度提高,加剧了板极腐蚀,就更容易产生硫酸盐化,硫酸盐化的电池表现为更容易失水。这是一种连锁反应。铅酸电池硫酸盐化是影响EB续驶里程和电池寿命的重要因素。 无温度补尝的充电器究竟对电池的损害有多大,目前还缺少实验数据,对蓄电池进行定量分析要比定性分析复杂困难得多,但以下的数据可以参考:EB标准规定,铅酸蓄电池的循环次数不得不少于350次,但实际上有相当多的电池使用时间不到8个月,即循还次数不足240次。

矿用隔爆(兼本安)型锂离子蓄电池电源安全技术要求(试行)

附件4 矿用隔爆(兼本安)型锂离子蓄电池电源 安全技术要求 (试行) 随着煤炭工业发展和矿山装备技术进步,监测通信系统、紧急避险设施、井下运输车辆等对防爆电源的容量要求越来越高,同时GB3836.2-2010《爆炸性环境第2部分:由隔爆外壳“d”保护的设备》中明确禁止“在正常使用时可能释放电解气体的电池”在隔爆外壳内使用。为满足目前煤矿装备的迫切需要,在充分研究、反复征求各方面专家意见以及进行相关试验研究的基础上,制定本安全技术要求。 1 范围 本技术要求规定了矿用隔爆(兼本安)型锂离子蓄电池电源产品分类、型号命名、安全技术要求、检验规则等内容。 本技术要求适用于在矿井下使用的矿用隔爆(兼本安)型锂离子蓄电池电源的安全标志管理,其中锂离子蓄电池的容量在20~100Ah范围内。 2 规范性引用文件 GB 3836.1-2010 爆炸性环境第1部分:设备通用要求 GB 3836.2-2010 爆炸性环境第2部分:由隔爆外壳“d”保护的设备 GB 3836.3-2010 爆炸性环境第3部分:由增安型“e”保护的设备 GB 3836.4-2010 爆炸性环境第4部分:由本质安全型“i”保护的设备 GB 14048.1-2006 低压开关设备和控制设备第1部分总则 MT 209-1990 煤矿通信、检测、控制用电工电子产品通用技术要求 MT/T 408-1995 煤矿用直流稳压电源 MT/T 1078-2008 矿用本质安全输出直流电源 3 术语和定义 3.1 电池管理系统

通过检测单体电池与热、电相关数据,对单体电池或电池组进行充放电管理、保护与控制的装置。 3.2 矿用隔爆(兼本安)型锂离子蓄电池电源 能量存储、转换装置,由隔爆外壳、锂离子蓄电池或锂离子蓄电池组、电池管理系统等组成。有时还可包括充电系统、放电系统、显示系统、电源输入系统、电源输出系统等。 4 产品分类 4.1 按用途分 a)监测通信系统用后备电源,包括安全监控、人员管理、通信等系统后备电源; b)紧急避险设施用后备电源,包括避难硐室、可移动式救生舱等后备电源; c)运输车辆用电源,包括防爆蓄电池电机车、防爆无轨胶轮车、单轨吊等用动力电源; d)防爆柴油机起动机用电源; e)其它。 4.2 按使用类型分 a)后备电源; b)动力电源。 5 产品名称与型号 5.1 产品名称 矿用隔爆(兼本安)型锂离子蓄电池电源(以下简称为电源)。 5.2 防爆标志 ExdI 或Exd[ib]I。 5.3 产品型号

矿用防爆锂离子蓄电池无轨胶轮车安全技术要求(正式)

编订:__________________ 单位:__________________ 时间:__________________ 矿用防爆锂离子蓄电池无轨胶轮车安全技术要求 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8342-30 矿用防爆锂离子蓄电池无轨胶轮车 安全技术要求(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 范围 本要求规定了矿用防爆锂离子蓄电池无轨胶轮车(以下简称为防爆无轨胶轮车)的安全要求、试验方法、检验规则等内容。 本要求适用于防爆无轨胶轮车的安全标志审核发放。 2 引用标准 GB 1589-2004 道路车辆外廓尺寸、轴荷及质量限值 GB 3836.1-2010 爆炸性环境第1部分:设备通用要求 GB 3836.2-2010 爆炸性环境第2部分:由隔爆外壳“d”保护的设备

GB 3836.3-2010 爆炸性环境第3部分:由增安型“e”保护的设备 GB 3836.4-2010 爆炸性环境第4部分:由本质安全型“i”保护的设备 GB 3836.9-2006 爆炸性气体环境用电气设备第9部分:浇封型“m” GB 7258-2012 机动车运行安全技术要求 GB/T 12538-2003 两轴道路车辆重心位置的测定 GB/T 12539-1990 汽车爬陡坡试验方法 GB/T 12540-2009 汽车最小转弯直径、最小转弯通道圆直径和外摆值测量方法 GB/T 12544-2012 汽车最高车速试验方法 GB/T 12674-1990 汽车质量(重量)参数测定方法 GB 12676-1999 汽车制动系统结构、性能和试验方法 GB 19854-2005 爆炸性环境用工业车辆防爆技术

电动自行车锂电池管理系统方案

文献综述 题目:电动自行车锂电池管理系统 前言:作为电动汽车以及混合动力汽车飞速发展的基础,电池管理系统的研究备受国内外的重视。锂电池组由于其优良的性能,在近年来得到广泛的应用。锂电池管理系统的出现,使安全高效地管理和使用锂电池组变得更加容易。本文概括地介绍了国内外锂电池管理系统领域的研究现状,并对其进行简要分析。 锂电池管理系统实现的功能包括:数据监测、荷电状态(SOC)估计、热管理、均衡管理、数据通信、数据显示与报警。其中SOC测量方法有传统的开路电压法、内阻法和安时积分法,以及新兴的模糊逻辑算法、自适应神经模糊推断算法、卡尔曼滤波估计算法、线性模型法和阻抗光谱法等。均衡管理可分为能量耗散型和能量非耗散型两大类[。 正题:美国Villanova大学和US Nanocorp公司已合作多年,对各种类型的电池SOC进行基于模糊逻辑的预测。美国约翰逊控制技术公司利用可变阻抗元

件来确定单元的温度是否超过预定门限值,时刻监控电池组温度。美国托莱多大学提出BMS基本结框图(图1)。把BMS简化成1个电子控制单元ECU和1个电荷均衡器。ECU功能有数据采集、处理、传送、控制,还控制均衡器、车载充电器等。 德国研究员认为电气控制需要实现控制制充电过程:包括均衡充电;根据SOC、电池健康状态SOH和温度来限定放电电流。电气控制中需要结合所使用的电池技术和电池类型来设定一个控制充电和放电的算法逻辑,以此作为充放电控制的标准。CAN总线是德国BOSCH公司在20世纪80年代初为解决汽车中众多的控制与测试仪器之间的数据交换而开发的一种通信协议。现已广泛用于电池管理系统。德国Kaiserse Lautern大学采用主辅模块的分布式管理结构,辅模块相当于独立式均衡器,主模块完成管理系统的功能,具有较强的均衡能力。 我国的BMS研究从开始至今,虽然相比美国、日本还差距很大,成果却也比较显著。在国家863计划2005年第一批立项研究课题中,就分别有北京理工大学承担的混合动力轿车(EQ7200HEV)用镍氢动力电池组及管理模块、苏州星恒电源有限公司承担的燃料电池轿车用高功率型锂离子动力电池组及其管理系统、北京有色金属总院承担的解放牌混合动力城市客车用锂离子电池及管理模块等课题。 近年来BMS技术发展得十分迅速,国内外的研究也是如火如荼。短短十几年时间,我国的BMS开发已初具规模。许多高校、企业都投入大量时间在BMS 的研究上,有很多方面已进入实用阶段。现在借着国家推广电动汽车的契机,更是掀起了一股研发的新浪潮。 但是与发动机技术、整车开发技术相比,现阶段的BMS技术还相当不成熟。

48V电动车锂电池保护板

适用范围: 13串锂电池组,额定放电电流<20A,充电电流<3A 特点 ■高精度电压检测电路 ■低静态功耗 ■低温度系数 ■强抗干扰能力 一、主要技术参数 二、保护板功能说明 1、将锂电池与保护板按接线图连接 保护电路分别检测串联电池组中每只电池的电压和电流,控 制电池组的充放电过程。电池组中每只电池的电压均在过充

检测电压和过放检测电压之间,并且输出无短路现象时,MOS 管导通,通P+、P-可对电池组进行放电操作; 2、电池组过放保护功能 串联电池组中的任意一只电池的电压下降到过放检测电 压并且达到过放延时时间时,过放保护功能启动,切断放 电MOS管,禁止电池组对外输出电流,保护电池组安全, 电路板进入休眠状态,电路板消耗电流为休眠电流以下, 进入休眠状态的电路只有在连接充电器后,并且电池电压 超过过放恢复电压后才能恢复; 3、电池组过充保护功能 通过P+和C-对电池组充电过程中,当任何一节电池电压 上升到电池过充检测电压,并且超过过充延时时间时,过 充保护功能启动,切断充电MOS管,禁止对电池组充电, 保护电池组安全,当电池组连接负载放电或者电池电压下 降到过充恢复电压以下时,过充状态被恢复; 4、电池组短路保护功能 当电池组放电端口P+和P-发生短路时,保护电路会在短 路保护延时时间后,切断放电MOS管,禁止电池组对外 放电,当外部短路被移除后,电路自动恢复; 5、电池组过流保护功能 当电池组放电端口P+和P-发生过电流现象时,保护电路 会在过流保护延时时间后,切断放电MOS管,禁止电池 组对外放电,当外部短路被移除后,电路自动恢复。 6、电池组充电均衡功能 由于电池的匹配或者外界环境影响而导致电池组中每只电 池电池电压产生差异时,若串联各组之间的电池电压差异 超过设置值时允许均衡电路工作,均衡在充电过程中启动, 均衡电阻对相对容量最高的电池组进行放电,均衡电流为 均衡吸收电流值,以此来降低电池组电压上升速度,当串

特斯拉锂电池技术

TESLA电池: TESLA电动车的电池采用了松下提供的NCA系列(镍钴铝体系)18650钴酸锂电池,单颗电池容量为3100毫安时(mAh,一般我们在电瓶上看到的单位是“安时”,这主要是根据不同容量的电池来选择不同的单位)18650电池的技术更为成熟,比能量(参与电极反应的单位质量的电极材料放出电能的大小)方面它几乎是磷酸铁锂电池的两倍,也就是说,在同等体积的情况下,18650电池组成的电池单元可以储存更多的电能。这也是TESLA使用这种电池的其中一个原因; TESLA电动车与其它品牌电动车使用电池的情况 车型MODEL S 85KWh 丰田普锐斯 雪佛兰沃蓝 达 Volt 比亚迪e6 日产聆风 正极材料18650电池钴 酸锂 锰酸锂三元磷酸铁锂锰酸锂 电池供应商松下(三洋被 其收购) 松下LG化学比亚迪AESC 电池总容量85kWh 44kWh 16kWh 60kWh 24kWh 续航里程426km 20km 62km 300km 160km 电池质保期8年不限里程整车质保3年,10 万公里 8年,约16万公 里(英里换算) 5年,10万公里 8年,约16万公里(英 里换算) 续航里程为纯电动行驶里程,数据来自官方 尽管如此,把这种电池运用在电动车上还是有一定难度,比如,要想满足一辆电动车的使用需求就需要使用很多个18650锂电池,这就出现了一个要解决的问题,如何把它们组合在一起。 85kWh的MODEL S的电池单元一共运用了8142个18650锂电池,工程师首先将这些电池以砖、片逐一平均分配最终组成一整个电池包,电池包位于车身底板。

18650电池的稳定性 虽然18650钴酸锂电池是满足较高续航行驶里程的关键,但它在高温状态下的稳定性相比镍钴锰酸锂(NCM)和磷酸铁锂电池则要稍差些,因此,在安全性方面就需要技术的有力支撑。 暴烈的性格曾让它也惹了不少麻烦,记得在几年前,索尼公司就因旗下笔记本产品所使用的电池发生爆炸采取了召回行动。不过,现在的18650电池已经可以在技术上避免自燃或无故爆炸的情况出现。不过,在发生强烈的撞击后,这种电池还是存在着很大的爆炸可能,另外,对于低温环境的适应能力也不是很稳定,在低温环境下,钴酸锂电池容易出现因过度放电导致过热的情况。这样看来,如何管理这些电池就成了十分重要的事。 如何监控电池包的状态 电池包内的保险装置分布到每一节18650钴酸锂电池,每一节18650钴酸锂电池两端均设有保险丝,当电池出现过热或电流过大时,保险丝会切断,以此避免因某个电池出现异常情况(过热或电流过大)时影响到整个电池包。

电动自行车用锂离子蓄电池组充电技术条件及安全性检测规范

ICS点击此处添加ICS号 点击此处添加中国标准文献分类号DB 天津市地方标准 DB 12/ T 246—2012 代替 DB12/T246-2005 电动自行车用锂离子蓄电池组、充电器技术 条件及安全性检测规范 (送审稿) -XX-XX发布XXXX-XX-XX实施

目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语及命名 (1) 3.1 电池组术语、定义和符号 (1) 3.2 充电器术语、定义和符号 (3) 3.3 电池组型号命名 (3) 3.4 充电器的型号命名 (4) 4 要求 (5) 4.1 电池组的要求 (5) 4.1.1 外观、外形尺寸、重量、充电接口及标志和代号 (5) 4.1.2 电池组电性能 (7) 4.1.3 荷电保持能力 (7) 4.1.4 循环寿命 (7) 4.1.5 振动 (7) 4.1.6 电池组安全性 (7) 4.2 充电器的要求 (8) 4.2.1 对触及带电部件的防护 (8) 4.2.2 输入功率、电流、直流输出电流和充电关断电流 (8) 4.2.3 发热 (8) 4.2.4 工作温度下的泄漏电流和电气强度 (8) 4.2.5 过载保护 (8) 4.2.6 机械强度 (8) 4.2.7 布线 (9) 4.2.8 输入、输出线及插头 (9) 4.2.9 安全标志 (9) 4.2.10 说明书 (9) 5 试验方法 (9) 5.1 测试条件 (9) 5.2 测量仪表、设备 (9) 5.3 电池组检验前的预处理 (9) 5.4 充电制度 (10) 5.5 电池组 (10) 5.5.1 外观、外观尺寸、重量、标志 (10) 5.5.2 电性能 (10) 5.5.3 荷电保持能力 (10) 5.5.4 循环寿命 (10)

起动用锂离子蓄电池性能试验方法及技术要求

起动用锂离子蓄电池性能试验方法及技术要求 1 范围 本标准规定了汽车起动用锂离子蓄电池(以下简称蓄电池)性能试验方法及技术要求。 本标准适用于装载在汽车上的起动用锂离子蓄电池。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41 电工术语原电池和蓄电池 GB/T 19596 电动汽车术语(ISO 8713:2002,NEQ) GB/T 5008.1-2013 起动用铅酸蓄电池第1部分:技术条件和试验方法 3 术语和定义 GB/T 2900.41、GB/T 19596和GB/T 5008.1-2013界定的以及下列术语和定义适用于本文件。为了便于使用,以下重复列出了GB/T 2900.41、GB/T 19596和GB/T 5008.1-2013中的某些术语和定义。 3.1 电池单体 secondary cell 将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子,并被设计成可充电。 3.2 电池模块 battery module 将一个以上电池单体按照串联、并联或串并联方式组合,并作为电源使用的组合体。3.3 电池包 battery pack 通常包括电池单体、电池管理模块(不含BCU)、电池箱及相应附件(冷却部件、连接线缆等),具有从外部获得电能并可对外输出电能的单元。 3.4 电池系统 battery system 一个或一个以上的电池包及相应附件(管理系统、高压电路、低压电路及机械总成等)构成的能量存储装置。 3.5 额定容量 rated capacity 以制造商规定的条件测得的并由制造商申明的电池单体、模块、电池包或系统的容量值。 注:额定容量通常用安时(Ah)或毫安时(mAh)来表示。 3.6 初始容量 initial capacity 新出厂的动力蓄电池,在室温下完全充电后,以1 I1 (A)电流放电至企业技术条件中规定的放电终止条件时所放出的容量(Ah)。 3.7 容量恢复能力 capacity recovery

电动自行车用铁锂电池使用说明书

使用标准:Q/HGY06-2007电动自行车用铁锂电池使用说明书 THE TECHNICAL MANUUAL OF IRON-LITHIUM BATTERY FOR ELECTRIC BICYCLE 哈尔滨光宇电源股份有限公司 HAEBIN COSLIGHT POWER CO., LTD

目录 1. 产品规格与结构 2. 磁盘性能指标 2. 产品性能 技术指标 安全性能 3. 产品使用方法 电池充电 电池放电 电池存贮与补充充电 4. 电池使用维护及注意事项 5. 质量保证

企业简介 哈尔滨光宇电源股份有限公司位于哈尔滨市开发区迎宾路集中区太南路8 号,占地面积12万平方米,建筑面积10万平方米。 公司在追求与完美品质结合的同时,一贯秉承科技创新的经营理念,凭借雄厚的经济实力和专业经验,与国内多所高校和研究机构建立了长期的合作关系,依托国内电动车市场的高速发展,率先采用国际最先进技术,自主研发出铁锂动力电池,获得多项国家专利,电池各项性能指标达到世界领先水平。光宇电源已经成为中国锂动力电池行业最具核心竞争力的企业之一。 哈尔滨光宇电源股份有限公司从日本引进全自动化锂电池生产线,主要设备包括和膏机、涂布机、辊压机、分切机、卷绕机、全自动组装一体机,充放电检测设备、激光焊接机和注夜机等相近设备。 公司先后通过ISO9001、QS9000、ISO14000和OHSA18001管理体系认证,产品通过了美国UL认证、德国T ǖV认证,有利地保证了产品从设计、制造、服务等方面均达到国际领先水平。 1. 产品规格与结构 1.1产品规格

1.2产品结构

矿用隔爆(兼本安)型锂离子蓄电池电源安全技术要求(试行)

矿用隔爆(兼本安)型锂离子蓄电池电源安全技术要求 (试行) 随着煤炭工业发展和矿山装备技术进步,监测通信系统、紧急避险设施、井下运输车辆等对防爆电源的容量要求越来越高,同时GB3836.2-2010《爆炸性环境第2部分:由隔爆外壳“d”保护的设备》中明确禁止“在正常使用时可能释放电解气体的电池”在隔爆外壳内使用。为满足目前煤矿装备的迫切需要,在充分研究、反复征求各方面专家意见以及进行相关试验研究的基础上,制定本安全技术要求。 1 范围 本技术要求规定了矿用隔爆(兼本安)型锂离子蓄电池电源产品分类、型号命名、安全技术要求、检验规则等内容。 本技术要求适用于在煤矿井下使用的矿用隔爆(兼本安)型锂离子蓄电池电源的安全标志管理。 2 规范性引用文件 GB 3836.1-2010 爆炸性环境第1部分:设备通用要求 GB 3836.2-2010 爆炸性环境第2部分:由隔爆外壳“d”保护的设备 GB 3836.3-2010 爆炸性环境第3部分:由增安型“e”保护的设备 GB 3836.4-2010 爆炸性环境第4部分:由本质安全型“i”保护的设备 GB 14048.1-2006 低压开关设备和控制设备第1部分总则 MT/T 154.2-1996 煤矿用电器设备产品型号编制方法和管理办法 MT/T 408-1995 煤矿用直流稳压电源 MT 209-1990 煤矿通信、检测、控制用电工电子产品通用技术要求 MT/T 1051-2007 矿灯用锂离子蓄电池 MT/T 1078-2008 矿用本质安全输出直流电源 QC/T 743-2006 电动汽车用锂离子蓄电池 3 术语和定义

3.1 单体电池 构成蓄电池最小电气单元的电极和电解质的组合。 3.2 电池组 以串联方式连接起来,增加电压的两个或两个以上单体电池。 3.3 电池模块 由5个或以上单体电池串联组成的单元。 3.4 电池管理系统 通过检测单体电池与热、电相关数据,对单体电池或电池组进行充放电管理、保护与控制的装置。 3.5 矿用隔爆(兼本安)型锂离子蓄电池电源 能量存储、转换装置,由隔爆外壳、单体电池或电池组、电池管理系统等组成。有时还可包括充电系统、放电系统、显示系统、电源输入系统、电源输出系统等。 4 产品分类 4.1 按用途分 (1)监测通信系统用后备电源,包括安全监控、人员管理、通信等系统后备电源; (2)紧急避险设施用后备电源,包括避难硐室、可移动式救生舱等后备电源; (3)运输车辆用电源,包括防爆蓄电池电机车、防爆无轨胶轮车、单轨吊等用动力电源; (4)防爆柴油机起动机用电源; (5)其它。 4.2 按使用类型分 (1)后备电源; (2)动力电源。 5 产品名称与型号 5.1 产品名称

关于-锂离子动力电池组的成本分析

关于锂离子动力电池的成本分析 一、锂离子动力电池的目标市场 锂离子电池由于工作电压高、储能较大、无记忆性和质量轻等优势发展迅速,一直在移动通讯、笔记本电脑等电器上大量使用;近年来随着新能源汽车的推广,锂离子电池被认为是最有效的能量工艺装置;同时新能源(太阳能、风能)并网发电站项目建设步伐加快,锂电池组为代表的储能技术成为核心发展的对象。 针对电动汽车使用的电池以功率型电池为主,其特点是:电池的放电倍率很大,那么在设计过程中就要注意减小电池的内阻;在极片的选取上,高功率型的电池极片要厚些,在涂敷的厚度上,高功率型的电池极片要涂得薄些,这样锂离子和电子在电阻相对较大的电极活性物质上迁移的距离小,总内阻减小,可以支持大电流,以达到高功率的要求; 针对储能电池以能量型电池为主,其特点与功率电池相反。对于高能量型电池,放电的倍率较小,那么在综合考虑内阻和容量的时候可以把容量排在前面,当然在增大容量的过程中也要尽可能地减小内阻。 二、锂离子动力电池组的产业链状况

结合项目目前的状况,这里重点讨论电芯的成本情况,因为作为一个电池组(电池包),电芯是基础,多个电芯串并联组成电池组,多电池组串并联组成电池包,然后装在电动车上使用或做储能电源。而且其成本特性属于变动成本,后期电池组装过程中更多的与设备、软件等固定成本相关。电芯的关键是:正极(阴极)、负极(阳极)、电解液和隔膜。 三、锂离子电池的成本分析 1、正极(阴极)材料:锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3: 1~4:1),因此正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前锂离子动力电池场上主要使用以下五种材料:

铅酸电池、锂电池等各种电动车电池优缺点分析

目前市场上电动自行车使用的电池品种很多。除了使用量最大的阀控密封式铅酸蓄电池以外,还有镍氢电池、镍镉电池、锂离子电池、锌空电池等等。这些蓄电池都具有各自独特的优点,以下我们就来分别认识一下各电池的特性与功用。 铅酸电池 其中,以铅酸蓄电池为数量最多。铅酸蓄电池的价格最低,也最常用,中国是全世界铅酸蓄电池最大的生产国。其含污染的成分比较少,可回收性好。缺点是比容小。也就是说,在同样的容量下,电池重量和体积都大。目前的铅酸蓄电池基本上是由浮充类型的电池发展而来的。浮充电池不适应快速充电和大电流放电,虽然技术人员的花费了大量的心血进行了卓有成效的改进,可以进入实用了,但是其寿命还是非常不理想的。胶体电池 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。广义而言,胶体电池与常规铅酸电池的区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质的反应利用率,据非公开资料表明可达到70wh/kg的重量比能量水平,这些都是现阶段工业实践及有待工业化的胶体电池的应用范例。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 镍氢电池 镍氢电池的比容比铅酸蓄电池好很多,单体电池的寿命也比较好,其大电流充放电特性也比铅酸蓄电池好。问题是镍氢电池串连电池组的管理问题比较多,一旦发生过充电以后,就会形成单体电池隔板熔化的问题,导致整组电池迅速失效。所以,国产的镍氢电池的关键技术问题还是充电器和电池管理系统的问题,而这个问题还没有引起各个电池制造商和车厂足够的重视。所以,镍氢电池的发展收到很大的制约。镍镉电池镍镉电池的大电流特性比镍氢电池好,其抗过充电特性也比镍氢电池好,中国又是世界上镍镉电池的生产大国。一些人提出镉污染的问题,中国现在还在大量的向欧洲出口镍镉电池及其应用产品,欧洲到2006年才开始限制。据中央电视台播放的消息,神州五号还是采用镍镉电池的。这是其相对比较高的可靠性的优点使该品种电池还在应用与宇航设备上。这样看,电动自行车方面过早的使镍镉电池退出应用是否有一些过激?而镍镉电池的成本和充电器的成本都明显低于镍氢电池,只要回收处理好了,还是应该保留这个电池品种的。

矿用锂离子蓄电池安全标志现场评审准则(暂行)

附件3 矿用锂离子蓄电池安全标志现场评审准则(暂行) ★否决项●考核项■观察项 序号项目名称评审内容及要求 1 机构 1.1 注册资金★法人执照或营业执照的注册资金应不少于2000万元。 1.2 生产合法性★①营业执照应在有效期内; ★②所生产产品应在其营业执照的经营范围内。 1.3 生产场所★应具备产品生产所需要的固定场所,生产场所面积不小于5000m2,有生产场所的合法证明文件。 2 管理体系 2.1 体系文件★①应有健全的质量管理机构以及完整有效的质量管理体系文件。 ●②质量管理体系文件应具有可操作性并与现行操作相符; ●③应有明确的质量方针和目标,并传达至全体员工; ●④应建立质量否决制度。

序号项目名称评审内容及要求 2.2 内部审核与管理评审■①应有内部审核、管理评审制度; ■②应根据实际情况安排内部审核和管理评审; ■③产品质量审核内容至少应包括:《矿用锂离子蓄电池安全技术要求(试行)》规定的试验项目、生产过程和关键工序、用户质量反馈意见等; ■④对审核发现的问题,应及时制定、实施纠正措施,并对实施效果进行跟踪验证。 3 人员 3.1 技术人员★至少应具有20名获得或相当于中级及以上专业技术职称的在册技术人员。 3.2 人员素质●①相关负责人应对锂离子蓄电池安全性能有较深了解; ★②技术负责人应熟悉锂离子蓄电池性能以及其影响因素,主要技术人员应熟悉标准、《矿用锂离子蓄电池安全技术要求(试行)》、图纸、生产工艺、检验等工作; ●③关键工序的人员应该熟悉其生产工艺、设备操作规程等内容,操作熟练; ●④检验人员应该熟悉标准、检验规程等内容,操作熟练。 3.3 培训■①应制定并实施培训管理制度; ■②应有年度培训计划,并明确培训要求; ■③应有人员培训状况记录,并能反映出与产品质量有关的全部人员的培训情况; ●④应对从事特殊工种的人员进行资格培训,并持证上岗; ●⑤应有与产品相关的矿山法规、标准的培训及记录。 4 技术文件管理

解析电动自行车锂电池组保护电路设计

解析电动自行车锂电池组保护电路设计 发表时间:2019-12-23T09:45:32.933Z 来源:《电力设备》2019年第18期作者:周长山 [导读] 摘要:锂电池具有能量密度高、使用寿命长、自放电率较小等特点,常用于储能系统,也是目前电动车行业的首选能源。 (哈尔滨光宇电源股份有限公司黑龙江哈尔滨 150078) 摘要:锂电池具有能量密度高、使用寿命长、自放电率较小等特点,常用于储能系统,也是目前电动车行业的首选能源。锂电池组由单体锂电池串联而成。由于受锂电池自身和生产加工的制约,单体锂电池存在电阻、电压、容量等方面的差异,加之电池组装顺序不同,以及产生热量后的散热速率、自放电速率的差别等,因此,加强锂电池组保护电路的研究具有重要意义。本文中,主要对锂电池组保护电路设计展开相关概述。 关键词:锂电池;电池组;保护电路 引言 锂离子电池是目前已经商业化应用的电池中比能量最高的品种,因此在电动车设计中被广泛关注。现有的电池设计和制造技术难以保持电池单体参数的一致性,在实际装车使用时,由于安装位置的不同、散热状况的差别、周围环境的变化等因素,一定程度上使得电池参数的不一致性更加显著,这些参数差异会导致一个电池组内各电池单体间的不均衡问题,使其具有不同的荷电状态和端电压,严重降低电池组性能,甚至产生安全隐患。 1锂电池和电池组建模 针对锂电池管理研究,首先要明确锂离子电池的动态和静态特性。电池和电池组建模仿真能够反映电池充放电特性,是开展机理研究的重要手段。 1.1锂电池模型 锂电池模型通过电池电压、温度等可测量参数对电池的内部性能进行描述,并对参数变化进行预测。常用的锂电池模型包括电化学模型、数学模型和等效电路模型。 电化学模型是根据电池内部化学反应过程构建模型。从电化学原理出发,准确模拟电池内部电离子的传输、扩散、电化学反应、热力学现象,描述电池离子浓度的分布梯度,分析电池衰减机制和健康状态。电化学模型通常由多个偏微分方程构成,模型较复杂。 数学模型是依据实验数据,运用经验公式和数理方法建立电池经验模型,从理论上分析锂电池的一般规律。常用的数学模型有Kinetic 模型和离散马尔科夫链电池模型,但都仅关注电池外特征,难以描述电池机理过程和电池的电压?电流外特征。 等效电路模型是采用电容、电阻等电子元器件搭建电池模型,描述充放电过程中电池特性,能够较好地反映电池的动态特性,常用于电池荷电状态估算。等效电路模型具有简单直观、精度较高、计算量较小的优点。常用的等效电路模型有Rint模型、Thevenin模型、PNGV 模型。Rint模型简单,但忽略了温度、电解液浓度等因素对电池特性的影响。Thevenin模型考虑温度、电流倍率的影响,模型参数容易辨识,具有一定的动态和静态性能,但无法同时描述电池充放电过程中内部电解液发生的浓度差和电化学两种极化现象,且不能准确描述电池实时动态。在Thevenin模型基础上,增加一组RC回路,组成二阶RC等效电路模型,能兼顾电池的稳态特性和暂态特性,但无法排除自放电和温度的影响。PNGV模型则能很好地体现电池动态性能。 1.2锂电池组建模 由于单体电池状态变化、电池包内温度分布情况和电池成组方式等因素都会影响电池组特性,因此电池组建模更加困难。常用的电池组模型包括神经网络模型、电化学模型和等效电路模型。 国内学者经常会根据电池的电化学特性构建电池组电化学模型,利用卡尔曼滤波和最小二乘法分别建立在线和离线参数辨识方法,并通过实验对模型进行验证。国外学者则倾向于根据统计方法搭建电池组模型,缺点是精度由电池参数辨识的准确性决定,缺乏工程验证。学者们大多将并联电池模组简化为一个大电池模型,再将大电池模型串联组成电池组模型。假设各单体电池参数完全相同,进行整体参数辨识和仿真,但是忽略了电池连接方式对电池组性能的影响,无法对电池模组中各单体电池一致性衰减过程进行准确描述。为提高模型精度,山东大学王丽梅等人进一步考虑电池连接件阻抗和极柱引出位置等影响因素,采用Thevenin模型构建电池组等效电路模型,对电池组充放电性能进行仿真,如图1所示。 图1 基于 Thevenin 模型的并联电池模组等效电路模型 针对电池组的模型构建通常简化处理,常忽略电池参数差异。在储能系统中,电池数量多,电池参数呈离散式分布,若不能充分考虑电池参数差异问题,电池组模型精度将无法满足实际应用中的设计要求。 2锂电池组均衡管理控制策略 主动型和被动型是目前锂电池均衡管理控制策略的两种主要形式。被动型均衡管理控制策略也称耗散型均衡管理控制策略,在每个单体电池上并联一个可控的电阻进行分流,将容量大的电池中多余的电量以热量的形式消耗掉,从而实现整组电池电压的均衡。主动型均衡管理控制策略主要利用电路拓扑开关结构和算法进行融合,实现电量的转移,分为电量消耗型均衡管理控制策略和非电量消耗型均衡管理控制策略。电量消耗型属于电量浪费,非电量消耗型则是通过储能元件将电量多的部分传递给电量较少的电池。非电量消耗型均衡管理控

锂离子电池技术发展现状与趋势

锂离子电池技术发展现状与 趋势

一、文献综述 1、前言 现阶段,日本、韩国、美国等国家引领锂离子动力电池技术的发展。日本的行业技术水平具有领先优势,韩国的动力电池制造能力处于领先地位,美国则具有引领前沿的科研能力。 2、国外发展现状 2·1日本 2·11 2009年,日本政府推出了RISING计划(创新型蓄电池尖端科学基础研究事业)和U~EAD项目(汽车用下一代高性能电池系统),并于2013年更新了动力电池技术发展路线图(RM2013),具体指标有2020年电池的续航里程实现250~350km·电池系统总电量达到25~35kW·h,电池能量密度实现250Wh· kg-1,功率密变达到1500W·kg-1,循环寿命达到1000-1500次,价格成本降低到2万日元/W·h。RM2013指明了电极材料的发展方向,正极材料要发展xLiMn03·(1~x)LiMO2(M=Ni,Co,Mn,0≤x≤1)、LizMSi0s、LiNiosMn1s04、LiCnP04、Li2MSO·F、LiMO2(M=Ni,Co,Mn);负极材料要发展Sn~CoC合金,Si基负极包括Si/C和Si0,以及Si基合金。 2·12日本具有代表性的锂离子动力电池企业为松下电池公司。松下是动力电池行业的领导者,作为Tesla最主要的动力电池供应商,凭借Tesla的发展稳居市场领导者地位,全球市场份额在20%左右。目前松下电池主要给ModelS和MndelX提供18650圆柱电池,正极采用镍钴铝三元材料(NCA),负极使用硅碳复合材料,单体能量密度可达252Wh·kg-1,而即将使用在Mode13上的21700圆柱形电池单体能量密度更是提高到300Wh·kg-1·是目前行业内能量密度最高的电池。 2·2韩国 2·21 2011年,韩国启动了包含锂离子电池关键材料、应用技术研究、评价及测试基础设施以及下一代电池研究的二次电池技术研发项目。LG化学和三星SDI是具有代表性的韩国锂离子动力电池企业,也是动力电池领域的后起之秀,两者凭借先

相关文档
最新文档