焊缝探伤举例
焊缝探伤检测标准

焊缝探伤检测标准
一、焊缝探伤技术原理
探伤技术是指通过探伤仪器测量焊缝内部缺陷的一种视检技术,它可以利用合适的探头,将射频电磁原理发射至检测工件,然后测量检测工件反射回来的回波信号,以及在检
测过程中表现出来的不同疑似缺陷的特征,即表征出检测工件内的缺陷情况。
1.表面裂纹检测
通过探伤仪测量,可以检测涂装试样表面的裂纹,包括裂缝在涂装层内部和在涂装层
表面显示的沿表面延伸的缺陷。
这种检测方式主要针对制造缺陷和涂装过程中产生的表面
损伤。
2、振动式探伤检测
振动式探伤检测法可以检测薄而平整的工件,检测细节很精细,极佳的适应性,对焊
缝表面缺陷更有效,大大提高了检测的效率。
另外,集成的计算机系统可以提供有效的参
数化调节,使探伤信号更加强大,检测更加准确,可以根据工件的不同参数设定不同的检
测参数,从而更好的解决工件表面缺陷检测的要求。
3.线性扫描探伤技术
通过线性扫描探伤技术可以检测焊缝表面左右两侧以及下方的缺陷,其主要原理是通
过改变测量面及距离,实现多方距离测量,使探伤信号受到影响,其目的是了解缺陷在焊
缝尺寸中的情况,根据反射信号判断缺陷是否存在。
线性扫描技术可以有效提高检测精度,对焊缝内部缺陷也有取的检测能力。
四、结论
上述介绍了焊缝探伤技术的主要原理和技术标准,焊缝探伤技术是检测焊接结构及其
附件有无内部缺陷的有效技术,具有检测快速、简便和准确3大优势,广泛应用于汽车、
航空航天、船舶、铁路等行业,在焊接质量检验中起重要作用。
射线探伤RT缺陷及示意图

夹 纸 痕 迹
1、它们的表面现象是什么? 夹纸痕迹的表征为一块低密度区域,并几乎覆盖整张胶片。 2、它们产生的原因是什么? 如果胶片和铅箔增感屏之间存在一张纸,并产生了投影,则会出 现夹纸痕迹。 3、这些现象何时可能发生? 如果没有去掉衬纸,则会发生这种情况。 4、如何检测夹纸痕迹? 只需在有衬纸或无衬纸两种情况下进行曝光检测。 5、如何可以避免它们? 确保在曝光前去掉全部衬纸。
到静电放电现象。如果您看到冲洗的胶片有锯齿状线条或黑色斑 点,则极有可能是出现了静电曝光斑点。 5、如何可以避免? 在相对湿度大于40%的环境下保存胶片,从包装盒取出胶片时避免 快速滑动或移动胶片。
定 影 液 斑 点
1、它们的表面现象是什么? 由定影液产生的斑点表征为一些小白圆点,其密度较周围胶片区域的密度底。 2、它们产生的原因是什么? 在显影之前,溅出的定影液滴,即使极其微量,都有可能导致产生白色斑点。 3、这些现象何时可能发生? 无论何时,只要有化学污染的存在,都可能会发生这种现象。通常发生最多的 是由于暗室布局不当或冲洗不小心引起。 4、如何可以避免它们? 保证胶片装卸区域的安全干燥清洁,不能让定影液溅在胶片上。
一、常见缺陷及示意图 二、其他几种缺陷 三、常见伪缺陷
1、圆形缺陷 定义:长宽比小于等于3的非裂纹、未焊透和未熔合缺陷。 圆形缺陷包括气孔、块状夹渣、夹钨等缺陷。气孔 气孔的成像:呈暗色斑点,中心黑度较大,边缘较浅平滑过渡,轮廓 较清晰。 夹渣(非金属)的成像:呈暗色斑点,黑度分布无规律,轮廓不圆 滑,小点状夹渣轮廓较不清晰。 夹钨(金属夹渣)成像:呈亮点,轮廓清晰。
显 影 液 斑 点
1.它们的表面现象是什么? 由显现液产生的斑点同样表征为一些小圆点,但是其黑度较周围胶片区域 的黑度高。 •它们产生的原因是什么? 在冲洗胶片之前,触摸或显影液溅出都可能会导致产生这种类型的斑点。 •这些现象何时可能发生? 暗室布局不当或冲洗不当都可能导致这种斑点。 •如何可以避免它们? 勿使任何类型的化学药液溅出,确保胶片装入区域完全干燥。
焊缝探伤检测方法

焊缝探伤检测方法
焊缝探伤检测是在焊接过程中对焊缝进行质量控制的重要方法。
以下是一些常用的焊缝探伤检测方法:
1. 超声波探伤检测:通过将超声波传入焊缝中,利用超声波在不同介质中传播速度的变化来检测焊缝内部的缺陷和不良结构。
这种方法非常灵敏,并且可以在不破坏焊缝的情况下进行检测。
2. 射线探伤检测:利用射线(通常是X射线或γ射线)在焊
缝中的吸收和散射来检测焊缝内的缺陷。
这种方法可以探测到非常小的缺陷,并且可以用于检测深部焊缝。
3. 磁粉探伤检测:将磁性材料(如铁粉)喷洒在焊缝表面,通过施加磁场来检测焊缝中的裂纹和断裂。
这种方法适用于检测表面缺陷,并且可以快速、经济地进行。
4. 渗透探伤检测:将渗透剂涂覆在焊缝表面,待其渗透入表面裂纹或孔洞中,随后用显色剂着色,可看到颜色变化,以检测表面缺陷。
这些方法各有优势和适用范围,具体选择何种方法应根据焊缝的要求和实际情况来决定。
在进行焊缝探伤检测时,应根据操作规程严格执行,确保检测结果的准确性和可靠性。
角焊缝探伤检测方法

角焊缝探伤检测方法
角焊缝是指两个或多个金属材料在角部焊接而成的焊缝,常见于钢结构、船舶、压力容器等行业。
为保障角焊缝的质量,需采用有效的探伤方法进行检测。
以下是常用的角焊缝探伤检测方法:
1.视觉检测法:通过肉眼观察焊缝和熔合区是否存在缺陷和裂纹等。
2.磁粉检测法:将铁磁性粉末撒在焊缝表面,利用电磁铁产生磁场,检测缺陷。
3.超声波检测法:利用超声波的声波穿透力和反射能力探测缺陷。
4.射线检测法:利用X射线或伽马射线穿透能力探测缺陷。
5.感应热像检测法:利用感应热像仪检测焊缝热量分布和温度分布,判断熔合区、热影响区和母材是否存在异常。
综上所述,以上五种方法均可用于角焊缝的探伤检测。
根据不同的具体情况,选取适宜的探伤方法进行检测,可以保障焊接质量和工程安全。
焊缝探伤

第一部分、焊缝探伤一、焊缝探伤的基本原理1、利用超声波的折射原理实现纯横波斜探头探伤主要针对焊缝表面的焊道不打磨的情况下实现对焊缝内缺陷的扫查(为什么?1、表面;2缺陷性质)要实现焊缝内传播纯横波的条件是超声波探头内的入射角必须大于第一临界角(27.23º)而小于第二临界角(56.71º)(为什么?便于定位)2、使用直探头检测斜探头扫查的区域探头移动区和磨平焊缝的焊道检查(1)、对斜探头移动区的扫查是为了了解斜探头扫查区的情况和保证对缺陷定位的准确;(2)、对磨平焊道的检测主要是为了检测与焊缝表面或钢板平行方向的缺陷(如层状撕裂);(3)、对T型焊、管座角焊等危害性缺陷的检测。
3、焊缝探伤的定位原理是使用三角涵数关系来定位1、声程定位(主要应用于AWS标准)由于探伤方法的不同,AWS标准要涉及到声程补偿所以标准规定使用声程定位和依据缺陷波高来判定等级数字式仪器:a-b-c=d模拟式仪器:b-a-c=d2、水平定位(主要用于薄板焊缝的检测)因为折射角较大水平定位可以减少定位的累计误差3、深度定位(主要用于厚钢板的检测)因为折射角较小对仪器调试和制作DAC曲线比较方便(声程短、衰减小)4、定位的计算:水平定位:L=Wsinθ深度定位:H=Wcosθ(一次波扫查)、H’=2T-H(二次波扫查)数字式仪器做DAC曲线定位时参数设定要注意:实际深度与显示深度5、斜探头角度的选择K≥(a+b+L)/T{(a+L)/K+(b)/K}≦T(为什么:目的是焊缝截面的扫查全覆盖,中心缺陷不漏检)二、焊缝中缺陷的类型和缺陷的探伤特点缺陷类型:1、气孔:产生的部位:引弧处和焊接起始处、表面、中间都有可能形状:圆形、长条型、带尾巴形产生原因:焊材、母材、环境、气体、速度、措施(引弧板、息弧板、坡口、间隙)2、夹渣:产生部位:引弧处、层间、坡口边(与未熔合同时产生)、根部(清根不彻底)形状:体积状(点、条、块)产生原因:焊接清洁程度、焊材、母材、坡口角度、根部间隙、焊接速度、清根处理3、未熔合、未焊透:未熔合——产生在坡口面和焊层之间的结合不良未焊透——产生在根部和X型坡口中间的结合不良产生部位:引弧处、层间、坡口边、根部(清根不彻底)形状:线状、点线状产生原因:坡口角度、根部间隙、焊接速度、清根处理4、裂纹:分为冷裂纹和热裂纹两类产生部位:息弧处、层间、表面、T型、十字接头等高应力区形状:线状产生原因:弧坑裂纹——息弧速度太快层间裂纹——厚度较大的母材中间有杂质、无预热、保温措施、施焊工艺不规范(电压、电流、温度)表面裂纹——焊接环境温度、焊材强度与母材不匹配、焊接材料、冷却太快高应力区裂纹——设计不合理、焊接顺序、焊前预热、焊后保温或热处理措施不当缺陷的探伤特点1、气孔——波型单峰、较稳定、各方探测波高大致相同,一般当量小于同声程Φ22、夹渣——波峰毛粗、主峰边有小峰、探头移动波幅变化明显、一般当量小于同声程Φ23、未焊透——有一定长度,一般产生于起弧息弧处,从焊缝两侧探大致当量相当,一般当量大于同声程Φ24、未熔合——要通过改变探伤方向和探头角度来检测,焊缝两侧探伤结果差异很大,有时甚至缺陷会漏检。
焊接探伤检测报告

焊接探伤检测报告1. 引言在工业生产过程中,焊接是一种广泛应用的技术,但焊接过程中可能存在各种隐患和质量问题。
为了确保焊接接头的质量和安全性,焊接探伤检测成为必不可少的环节。
本报告旨在对某焊接接头进行探伤检测,并分析检测结果。
2. 检测方法2.1 超声波探伤超声波是一种常用的焊接探伤方法。
通过将超声波传导到被测件内部,利用材料的声波传播速度和衰减规律,可以检测出焊接接头内部的缺陷和异质物。
2.2 射线探伤射线探伤也是一种常见的焊接探伤方法。
通过将射线束照射到被测件上,然后通过感光底片或数字检测系统观察和分析射线经过后形成的影像,可以检测出焊接接头的内部缺陷,如气孔、夹渣等。
2.3 磁粉探伤磁粉探伤适用于对铁磁材料进行焊接缺陷的检测。
通过在焊接接头表面涂覆磁粉或通过感应磁场作用,可以观察到焊接接头表面和近表面的线性或环状缺陷。
3. 检测结果经过超声波、射线和磁粉探伤的综合检测,我们得到了如下的检测结果:3.1 超声波探伤结果在超声波探测过程中,我们发现焊接接头内部存在一处细小的裂纹,位于接头焊缝附近。
根据裂纹的深度和长度,我们判断这是一处微裂纹型缺陷,对焊接接头的强度和稳定性会造成一定的影响。
3.2 射线探伤结果射线探伤显示,焊接接头存在多处气孔和夹渣。
其中气孔主要分布在焊缝内部,而夹渣则主要集中在焊缝与母材的交界处。
这些缺陷可能导致焊接接头内部的应力集中和疲劳破坏。
3.3 磁粉探伤结果磁粉探伤显示,焊接接头表面存在一条长度为10cm的线性缺陷,位于焊缝旁边。
这条缺陷为焊接接头的热裂纹,可能由于焊接温度过高或焊接速度过快导致。
4. 缺陷分析与建议通过对焊接接头的综合检测结果分析,我们可以得出以下结论和建议:4.1 裂纹缺陷裂纹是焊接接头常见的缺陷,可能会导致焊接接头的疲劳破坏。
建议在焊接过程中加强焊接电流和焊接速度的控制,避免产生过大的焊接热输入,从而减少裂纹的生成。
4.2 气孔和夹渣气孔和夹渣是焊接接头质量低下的表现,会导致焊接接头的强度和密封性变差。
焊缝超声波探伤
焊缝脚动超声波探伤之阳早格格创做锅炉压力容器战百般钢结构主要采与焊交要领治制.射线探伤战超声波探伤是对付焊缝举止无益检测的主要要领.对付于焊缝中的裂纹、已熔合等里状妨害性缺陷,超声波比射线有更下的检出率.随着新颖科技赶快死少,技能先进.超声仪器数字化,探头品种典型减少,使得超声波检测工艺不妨越收完备,检测技能更为老练.但是寡所周知:超声波探伤经纪为果素对付检测截止效用甚大;工艺性强;故此对付超声波检测人员的素量央供下.检测人员不但是要具备流利的超声波探伤技能,还应相识有闭的焊交基础知识;如焊交交头形式、坡心形式、焊交要领战大概爆收的缺陷目标、本量等.针对付分歧的检测对付象制定相映的探伤工艺,采用符合的探伤要领,进而赢得透彻的检测截止.射线检测限制性:1.辐射效用,正在检测场合附近,防备不当会对付人体制成伤害.2.受脱透力等限制效用,对付薄截里及薄度变更大的被检物检测效验短好.3.里状缺陷受目标效用检出率矮.4.不克不迭提供缺陷的深度疑息.5.需交近被检物体的二里.6.检测周期少,截止反馈缓.设备较超声笨重.成本下.惯例超声波检测不存留对付人体的妨害,它能提供缺陷的深度疑息战检出射线照相简单疏漏的笔直于射线进射目标的里积型缺陷.能立即出截止;与射线检测互补.超声检测限制性:1.由于支配者支配缺面引导检测截止的好别.2.对付支配者的主瞅果素(本领、体味、状态)央供很下.3.定性艰易.4.无直交睹证记录(有些自动化扫查拆置可做永暂性记录).5.对付小的(但是有大概超目标缺陷)不连绝性沉复检测截止的大概性小.6.对付细糙、形状不准则、小而薄及不均量的整件易以查看.7.需使用耦合剂使波能量正在换能器战被检工件之间灵验传播.超声波的普遍个性:超声波是板滞波(光战X射线是电磁波).超声波基础上具备与可听见波相共的本量.它们能正在固态、液态大概气态的弹性介量中传播.但是不克不迭正在真空中传播.正在很多圆里,一束超声波类似一束光.背光束一般,超声波不妨从表面被反射;当其脱过二种声速分歧物量的鸿沟时可被合射(真施横波检测基理);正在边沿处大概正在障碍物周围可被衍射(裂纹测下;端面衍射法基理).第一节焊交加工及罕睹缺陷一、焊交加工1、焊交要领:有脚工电弧焊、埋弧自动焊、气体呵护焊、电渣焊、气焊(氧气+乙炔).焊交历程本量上是一个冶炼战铸制历程.利用电能大概其余能量爆收下温熔化金属,产死熔池,熔融金属正在熔池中经冶金反应后热却,将二母材坚韧的分离正在所有,产死焊交交头.焊交历程中,其焊弧温度下达6000℃,相称于太阳表面温度.熔池温度也正在1200℃以上.果局部下温戴去以下问题:易氧化;爆收夹渣;渗进气体(气氛中氧、氮);爆收应力.为预防有害气体渗进,脚工电弧焊是利用中层药皮下温时领会爆收的气体产死呵护.埋弧焊战电渣焊是利用固体大概液体焊剂动做呵护层.气体呵护焊是利用氩气大概二氧化碳气(惰性气体)做呵护层.2、交头形式:有对付交交头、角交交头、T型交头战拆交(拆交交头正在锅炉压力容器中不允许采与).对付交交头角交交头T型交头拆交交头3、坡心形式:I型、V型、U型、X型、K型为包管二母材焊交时能真足熔合,焊前将母材加工成一定的坡心形状,使其有好处焊交真施.其形状战各部称呼如下:坡心角度坡心里钝边根部间隙坡心脚段————包管齐熔透,缩小补充量.钝边脚段————包管齐熔透,预防咬边.间隙脚段————包管齐熔透,统制内凸、已焊透.二、焊缝中罕睹缺陷及爆收本果1、焊缝罕睹缺陷:气孔、夹渣、夹钨、内凸、焊瘤、烧脱、已焊透、已熔合、裂纹等.2、缺陷产死及爆收本果:a. 气孔——熔池热却凝固之前去不迭劳出残留气体(一氧化碳、氢气)而产死的空穴.果焊条焊剂烘搞不敷;坡心油污不搞洁;防风不利引导电弧偏偏吹;呵护气体效用做兴等本果所至.b. 夹渣——残留正在焊缝内的溶渣大概非金属夹杂物(氮化物、硅酸盐).果坡心不搞洁;层间浑渣不洁;焊交电流过小;焊交速度过快;熔池热却过快,熔渣及夹杂物去不迭浮起等本果引导.c. 已焊透——交头部分金属已真足熔透.果焊交电流小;焊速过快;坡心角度小;间隙小;坡心加工不典型;焊偏偏;钝边过大等本果所至.d. 已熔合——补充金属与母材大概补充金属之间已熔合正在所有.果坡心不搞洁;电流小;运条速度快;焊条角度不当(焊偏偏)等本果所至.e. 夹钨——钨熔面下,已熔化并凝固正在焊缝中.果不熔化极氩弧焊极脱降引导.f. 内凸——表面补充不良.果焊条拔出不到位.g. 裂纹——焊交中大概焊交后,正在焊缝大概母材的热效用区局部的漏洞破裂.热裂纹——焊缝金属从液态凝固到固体时爆收的裂纹(晶间裂纹);果交头中存留矮熔面共晶体,偏偏析;由于焊交工艺不当所至.热裂纹——焊交成形后,几小时以至几天后爆收(延缓裂纹).爆收本果:相变应力(碳钢热却过快时,爆收马氏体背珠光体、铁素体过度时爆收);结构应力(热胀热缩的应力、拘束力越下应力越大,那是矮碳钢爆收热裂纹的主要本果.忌强力拆置)战氢坚(氢气效用使资料变坚,壁薄较大时易出现)所至.再热裂纹——再次加热爆收.3、缺陷正在设备服役中的妨害:普遍妨害——气孔;夹渣;内凸(焊缝截里强度降矮,腐蚀后制成脱孔、揭收)宽沉妨害——裂纹;已熔合;已焊透已熔合:里状缺陷,应力集结,易爆收裂纹.已焊透:笔直于焊缝,根部已焊透易腐蚀;有死少裂纹趋势.裂纹:尖钝的里状缺陷,达临界深度即断裂做兴.第二节仄板对付交焊缝超声波探伤焊缝的超声波检测———可用直射声束法大概斜射声束法(无需磨仄余下)举止检测.本量探伤中,超声波正在匀称物量中传播,逢缺陷存留时,产死反射.此时缺陷即可瞅动做新的波源,它收出的波被探头交支,正在荧光屏上被解读.JB/T4730-2005尺度确定缺陷少度的测定是以缺陷波端面正在某一敏捷度(定量线)下,移动探头,该波降至50%时为缺陷指示少度,以此动做判决依据.而此时正是探头核心对付准缺陷边沿时的位子.缺陷越小,缺陷回波越不扰治探头的声场;由扫查法(此时用移动探头测定缺陷少度)测定缺陷尺寸不透彻(适用当量法).此法测定的不是缺陷尺寸,而是声束宽度.惠更斯本理称:动摇是振荡状态的传播,如果介量是连绝的(匀称介量可连绝传播动摇),那么介量中所有量面的振荡皆将引起相近量面的振荡,相近量面的振荡又会引起较近量面的振荡.果此动摇中所有量面皆不妨瞅做是新的波源.(当探测小于探头晶片尺寸的缺陷时,其指示少度与探头直径相近)一、探伤条件采用1. 根据图纸、合共央供采用典型、尺度(JB/T4730-2005).决定检测技能等第(A级;B级;C级)2. 频次采用:普遍焊缝的晶粒较细,可采用较下频次;2.5~5.0MHz对付板薄较薄焊缝,采与下频次,普及辨别力.对付薄板焊缝战材量衰减明隐的焊缝,应采与较矮频次探伤,以包管探伤敏捷度.3. K值采用:①使主声束能扫到所有焊缝截里;a. 果素②使声束核心线尽管与主要妨害性缺陷笔直;③包管有脚够的探伤敏捷度.aL0bb. 公式:a+b+L0K≥T(不克不迭谦脚此条件,中间有一主声束扫查不到的菱形天区.那一天区内缺陷大概漏检);副声速也大概扫到,但是找不到最下波,无法定量.焊缝宽度对付K值采用灵验率.正在条件允许(探伤敏捷度脚够)的情况下,应尽管采与大K值探头.c. 根据工件薄度采用K值:薄工件采与大K值探头,预防近场探伤,普及定位、定量细度.薄工件采与小K值探头,以支缩声程,减小衰减,普及探伤敏捷度.共时还可缩小挨磨宽度.JB/T4730-2005推荐K值d. K值会果工件声速变更(斯涅我定律)战探伤中探头的磨益而爆收变更.所以要时常K值举止校验.变更顺序:声速快,K值变大;探头后里磨益大,K值变大.4. 试块采用:JB/T4730-2005尺度中确定的尺度试块有;CSK-ⅠA;CSKⅡA;CSKⅢA;CSKⅣ.CSK-ⅠA试块用于超声波仪器、探头系统本能校准战检测校准.CSKⅡA;CSKⅢA;CSKⅣ试块用于超声波检测校准.CSKⅡA;CSKⅣ试块的人为反射体为少横孔.少横孔反射波正在表里上与焊缝的光润的直线熔渣相似.共时,利用横孔对付分歧的声束合射角也能得到相等的反射里;但是需要分歧深度对付比孔,切合分歧板薄的焊缝检测.少横孔近场变更顺序,果距离变更,其变更顺序更类似于已焊透.正在少横孔试块上画制直线,测定敏捷度,适用已焊透类缺陷的统制.少横孔变更顺序:(不切合近场)Df1 X23△dB = 10lgDf2 X13CSKⅢA试块的人为反射体为短横孔.短横孔近场变更顺序,果距离变更,其变更顺序似球孔.以此画制直线,敏捷度可灵验的统制面状缺陷.但是此敏捷度对付条状缺陷偏偏宽.对付中薄板检测敏捷度偏偏下.短横孔变更顺序:(不切合近场)Df1 X24△dB = 10lgDf2 X14二种反射体试块果反射体典型分歧,二者敏捷度不相共.反射顺序分歧,直线顺序亦分歧.所统制检测对付象分歧.故二者不得混用.5. 耦合剂:正在超声波直交交触法探伤中,探头战被检物之间不加进符合的耦合剂,探伤是无法完成的.耦合剂不妨是液体、半液体大概粘体.并应具备下列本能:a. 正在本量检测中能提供稳当的声耦合;b. 使被检物表面与探头表面之间潮干,与消二者之间的气氛;c. 使用便当;d. 不会很快天从表面流溢;e. 提供符合的润滑,使探头正在被检物表面易于移动;f. 耦合剂应是匀称的,且不含有固体粒子大概气泡;g. 预防传染,而且不腐蚀、毒性大概妨害,阻挡易焚;h. 正在检测条件下,阻挡易冻结大概汽化;i. 检测后易于扫除.时常使用耦合剂有机油;糨糊;苦油;润滑脂(黄油);火.机油不利于扫除,还给焊缝返建戴去不利.糨糊更有好处笔直、顶里探伤.耦合剂的另一要害个性是其声阻抗值应介于探头晶片与被检资料声阻抗值之间(Z2=√Z•Z3,薄层介量声阻抗为1二侧介量阻抗几许仄衡值时,声强透射率等于1,超声齐透射).支配者的技能对付优良的耦合是要害果素,所有历程对付探头施加匀称、牢固压力,有帮于排除气氛泡战赢得匀称的耦合层薄度.6. 探伤里:扫除焊交飞溅、氧化皮、锈蚀、油漆、凸坑(用板滞、化教要领均可)检测表面应仄坦,便于探头扫查移动.表面细糙度≯μm.普遍应挨磨.a. 检测区宽度——焊缝自己加上焊缝二侧各相称于母材薄度30%的一段天区(5~10mm).b. 探头移动区宽度:(P=2KT)一次反射法检测,应大于大概等于1.25P;直射法检测,应大于大概等于0.75P.c. 母材检测:C级检测有央供(较要害工件大概图纸有央供时)应举止母材检测.仅做记录,不属于母材查支.瞅其是可灵验率斜探头检测截止的分层类缺陷.母材检测央供:①. 2~5MHz直探头,晶片直径10~25mm;②. 检测敏捷度:无缺陷处第二次底波调为屏幕谦刻度的100%;③. 缺陷旗号幅度超出20%时,应标记表记标帜记录.7. 探测目标采用根据工件结构;坡心角度、形式;焊交中大概出现缺陷的目标性以及妨害性缺陷.采用主声束尽管与其笔直的进射目标.B级考验:a.纵背缺陷检测:①.T=8~46mm时,单里单侧(一种K值探头,直射波战一次反射波法)检测;②.T>46~120mm时,单里单侧(一种K值,直射波法)检测.如受几许条件节制,也可正在单里单侧大概单里单侧采与二种K值探头检测.③.T>120~400mm时,单里单侧(二种K值,直射波法)检测.二探头合射角出进≮100 .b. 横背缺陷检测:①.正在焊缝二侧,声束轴线与焊缝核心线夹角10~200做斜仄止探测(正反二个目标);②.若焊缝磨仄,可正在焊缝及热效用区上做二个目标的扫查;③. 电渣焊易出现人字形横裂纹,可用K1探头以450夹角正在焊缝二侧,做正反二个目标的斜仄止扫查.C级考验:a. 应将焊缝余下磨仄;焊缝二侧的斜探头扫查天区之母材用直探头举止检测;b. T=8~46mm时,单里单侧(二种K值,探头合射角出进≮100,其中一个为450;一次反射法)检测;c. T>46~400mm时,单里单侧(二种K值,探头合射角出进≮100,一次反射波)检测;对付于单侧坡心小于50的窄间隙焊缝,如有大概应减少对付与坡心表面仄止缺陷的灵验检测要领(如串列扫查);d. 应举止横背缺陷检测.8. 前沿、K值测定a.前沿测定:可正在CSK-IA试块上,利用R50;R100圆弧测定.将探头搁置正在IA试块上,前后移动探头,找到最下波,量出探头前端至试块R100端距离X;此探头前沿尺寸L0=100-X.b. K值测定:①.利用CSK-IA试块上Φ50反射体;前后移动探头,找到最下波,量出探头前沿距试块端部火仄距离L;L+ L0-35K=30②.利用CSK-ⅢA试块上Φ1×6孔,深20mm较好(躲启近场).找到最下波;量火仄距离L.L+ L0-40K=209. 扫描速度(时基线)安排声程法:屏幕时基线隐现为超声波传播距离(非K值探头用此法).火仄法:屏幕时基线隐现为探头进射面至反射体投影到检测里的火仄距离.(δ≤20mm时采与此法)深度法:屏幕时基线隐现为反射体距检测里深度距离.(δ>20mm时采与此法)a. 利用CSK-IA试块上,R50、R100共心圆弧安排.正在IA试块上,安排移动探头;屏幕上共时隐现出R50、R100二反射波,找到最下波,波下80%(探头做前后移动,使二反射波下度相共).按住探头不动,安排脉冲移位战深度旋钮,使R50;R100反射波前沿分别对付准h1;h2(估计得出).扫描速度即安排完成.. 火仄法: h1= sinβ*50mm ;h2= sinβ*100mm供 h1;h2深度法:h1=cosβ*50mm ;h2=cosβ*100mmb. 利用CSK-ⅢA试块上,Φ1×6孔安排.①.正在ⅢA试块上,选定二倍闭系分歧深度A、B二孔;(A孔深度20mm;B孔深40mm);移动探头,找到A孔最下波(波下80%);调脉冲移位旋钮,使A波前沿对付准h1;②.挪动探头,找到B孔最下波,波下80%;B 孔读数为Y;若Y不等于2h1,供二者之间的好X. X=︱2h1-Y ︴③.探头不动.调深度(微调)旋钮,移动B孔至Y±2X.再调脉冲移位旋钮,使B波回至2h1.④. 挪动探头,找到A孔最下波,若正对付h1,即安排完成.可则需沉复上述步调.注:此法受反射体形状、尺寸效用,透彻探伤时需举止建正.A孔B孔X10. 距离——波幅直线的画制a.距离——dB直线:(表格形式数字标注).b.距离——波幅直线:将反射波幅用毫米(大概%)画正在纸上大概里板上.依据正在对付比试块上一组分歧深度的人为反射体的反射波幅,真测得到一条基准线画制而成.普遍由评比线;定量线;判兴线三条线组成;分三个天区.各线敏捷度依分歧尺度而定.c.距离——波幅直线创制:①. 距离——dB直线创制测定探头进射面、K值;调好扫描速度.将探头置于考验尺度确定试块上,测距表面迩去人为反射体,找到最下波;调删益使波下至80%,记下衰减器读数与孔深度;而后依次测分歧深度孔(深度达将检测最大深度),调删益使得各孔波下达80%,记下此时衰减器dB数,挖进表中即可.②.距离——波幅直线画制测定探头进射面、K值;调好扫描速度.将探头置于考验尺度确定试块上,测距表面迩去人为反射体,找到最下波;调删益使波下至80%,按住探头不动,记下衰减器读数;并将波峰标正在屏幕里板上.删益不动.依次测其余深度孔,并将各孔波峰标正在屏幕里板上;连交各面,即成为该反射体距离—波幅基准线.根据尺度确定各条线敏捷度,调删益(衰减器),屏幕上那条基准线即可变换成所需的三条线中任性一条线.d.距离——波幅直线真用若探伤中创制一缺陷波.找到最下波,按住探头不动.安排删益(衰减器),使该波峰至距离—波幅直线上(此时屏幕上隐现应是定量线SL),读衰减器读数f;估计f与定量线SL好值为△dB.该缺陷波幅应记录为SL±△dB.若时基线按深度法安排,正在时基线上可直交读出缺陷深度H,并估计出火仄距离L.若时基线按火仄法安排,则正在时基线上可直交读出缺陷火仄距离L,并估计出深度H.深度法: L = K HL火仄法: H= Ke.分段画制直线(适用模拟仪器)若被检工件薄度较大,屏幕上正在最大检测距离处距离—波幅直线位子会很矮.扫查历程中的回动摇态变更阻挡易瞅察到,简单引导缺陷漏检.(直线应画制正在屏幕20%下度以上天区).可采与分段画制办法办理.要领、步调:正在本直线上某一面(中间大概2/3;大概二次波中),调删益,将敏捷度普及10dB(记录此读数).再按惯例要领依次将后里深度反射体波下标正在屏幕上.本量探伤时,此面之前深度内用删益之前敏捷度探伤;此面之后深度范畴,用删益后普及10dB以去的敏捷度.其余各条线敏捷度亦随之.11. 声能传输耗费好的测定a.声能益坏制成本果:①. 材量衰减耦合情景②. 表面益坏工件表面细糙度直率(工件形状)工件自己效用反射波幅的二个主要果素是:材量衰减战工件表面细糙度及耦合情景制成的表面声能益坏.JB/T4730-2005尺度确定:碳钢战矮合金钢板材的材量衰减,正在频次矮于3MHz、声程不超出200mm时,大概者衰减系数小于0.01dB/mm时,不妨不计.超出上述范畴,正在决定反射波幅时,应试虑材量衰减建正.b.横波材量衰减的测定:①. 创制与受检工件材量相共(近),薄40mm,表面细糙度与对付比试块相共的仄里试块.A 1P 2P40mm②.斜探头按深度1:1安排仪器时基扫描线.③.另采用一只与该探头尺寸、频次、K值相共的斜探头,置于试块上,二探头进射面间距为1P,仪器调为一支一收状态,找到最大反射波,记录其波幅值H1(dB).④.将二探头推启到距离为2P的位子,找到最大反射波幅,记录其波幅值H2(dB).⑤.衰减系数α可用下式供出:α=(H1-H2-△)/(S2-S1)S1=40/cosβ+L1S2=80/cosβ+L1L1=L0tanα/tanβ式中:L0——晶片到进射面的距离,简化处理亦可与L1=L0,mm;△——不思量材量衰减时,声程S2、S1大仄里的反射波幅好.(约为6dB).如与对付比试块的探测里测得波幅出进不超出1dB,则可不思量工件的材量衰减.c. 传输益坏好的测定:①. 斜探头按深度安排时基扫描线.②. 采用另一只与该探头尺寸、频次、K值相共的斜探头,置于对付比试块上,二探头进射面间距为1P,仪器调为一支一收状态,找到最大反射波,记录其波幅值H1(dB).40mm对付比试块T工件母材③.正在受检工件上(短亨过焊交交头)共样测出交支波最大反射波幅,记录其波幅值H2(dB).④.传输益坏好△V按下式估计:△V=H1-H2-△1-△2式中:△1——不思量材量衰减时,声程S1 、S2大仄里的反射波幅dB好,可用式20lg(S2/S1)估计得出(dB).S1——正在对付比试块中的声程,mm.S2——正在工件母材中的声程,mm.△2——试块中声程S1与工件中声程S2的超声材量衰减好值,dB.如试块材量衰减系数小于0.01dB/mm,此项可不予思量.d. 由工件直率制成的表面声能益坏:采与戴直率的对付比试块,试块直率半径为工件半径0.9~1.5倍.通过对付比考查,举止直里补偿.综上所述:工件表面耦合好探伤敏捷度删益总量材量衰减量(最大检测声程)(dB)敏捷度央供(根据真止尺度决定)12. 扫查办法①.锯齿形扫查——细扫查.沿W轨迹前后移动探头,(移动齿距≯晶片直径)并做10~15º安排转化.脚段是创制倾斜缺陷.②.安排、前后扫查——安排扫查可测得缺陷少度;前后扫查可测定缺陷自己下度战深度.③.转角扫查——估计缺陷目标.④.环绕扫查——估计缺陷形状.环绕扫查时,波下稳定,可定为面状缺陷.⑤.仄止、斜仄止扫查——用于查看焊缝及热效用区横背缺陷.(与焊缝轴线成10~45º夹角,)敏捷度普及6dB.⑥.串列扫查——用于薄板窄间隙焊缝大概笔直于表面缺陷检测.多采与K1二个探头串列式扫查.串列扫查回波位子稳定;存留扫查死区.串列扫查锯齿形扫查前后扫查安排扫查转角扫查环绕扫查13. 探伤敏捷度采用a.距离波幅——直线敏捷度按真止尺度确定采用.b.检测横背缺陷时,应将各线敏捷度均普及6dB.c.检测里直率半径R≤W2/4时,距离—波幅直线的画制应正在与检测里直率相共的对付比试块上举止.d.正在一跨距声程内最大传输益坏好大于2dB时应举止补偿.e.扫查敏捷度不矮于最大声程处的评比线敏捷度.14. 缺陷最大波幅测定将探头移至缺陷出现最大反射旗号的位子,测定波幅大小,并决定天区.15. 缺陷位子测定a. 火仄定位法:例:时基线安排为火仄1:n.本量探伤中创制一缺陷,屏幕读数40,该缺陷火仄距离即为n*40mm;埋躲深度为n*40/K.b. 深度定位法:例:时基线安排为深度1:n.本量探伤中创制一缺陷,屏幕读数40,该缺陷埋躲深度为n*40;火仄距离为n*40*K.16. 缺陷指示少度测定a. 当缺陷波惟有一个下面,且位于Ⅱ区及以上时,使波幅降到谦刻度的80%后,用6dB法测少.b. 当缺陷波有多个下面,且位于Ⅱ区及以上时,使波幅降到谦刻度的80%后,用端面6dB法测少.c. 当缺陷波位于Ⅰ区,认为有需要记录时,将探头安排移动,使波幅降到评比线,以此测定少度(千万于敏捷度法).6dBⅡ区6dB左端面Ο6dB法端面6dB法17. 缺陷评比与记录报告资格人员按尺度评比、出具.18. 缺陷典型辨别战本量估判缺陷本量测定:缺陷本量不但是可利用缺陷反射波幅变更测定(固态波形),还可瞅察其动背波形的变更推定.探头移动时,球状大概细糙表面缺陷的反射波变更缓缓.为考证此类缺陷不但是要使探头沿直线疏通,,而且还需使探头回转改变声束瞄准目标.光润而仄坦的缺陷比裂纹缺陷明隐的爆收前沿陡而宽度窄的反射波.a. 缺陷典型识别的普遍要领:采与多种声束目标做多种扫查,如前后、安排、环绕、转化扫查;通过对付百般超声疑息概括评比举止辨别.①. 面状缺陷回波个性:(气孔、小夹渣等体积性缺陷)回波幅度较小,探头前后、安排,转化扫查时波幅仄滑,由整降下到最大值,又仄滑的低沉至整.环绕扫查时回波下度基本相共.A隐现波幅固态波形最大反射幅度变更(包络线)面反射体回动摇态波形②. 线性缺陷回波个性:(线性条状夹渣、已焊透、已熔合等)有明隐的指示少度,但是阻挡易测出其断里尺寸.探头前后移动.类似面状波形变更.安排移动时,启初波幅仄滑的由整降下到峰值,探头继承移动,波幅基础稳定,大概正在±4dB的范畴内变更,末尾又稳固的低沉到整.波 A隐现幅固态波形最大反射幅度变更(包络线)交近笔直进射时光润大仄里反射体的回动摇态波形③. 体积状缺陷回波个性:(不准则大夹渣)有可测少度战明隐断里尺寸.安排扫查类似线性条状波形变更,固态波形不圆滑;探头前后、安排移动时,回波幅度起伏不准则.那种缺陷正在多目标大概多种声束角度探。
焊缝探伤检测方法
焊缝探伤检测方法
焊缝探伤检测方法
一、简介
焊缝探伤检测方法是一种采用 X 射线等无损检测技术对焊缝内部探伤缺陷进行检测的方法。
它以 X 射线等有效检测技术为基础,将被检物(焊缝)放置于相应的检测装置中,使电子或 X 射线撞入物体后,使其衰减和散射,利用其吸收率来测量物体内部的缺陷情况。
二、探伤原理
1、X 射线探伤原理
X 射线探伤原理是基于 X 射线撞击物体后,使得物体内部缺陷离子化,从而改变 X 射线的吸收率,从而可以检测出物体内部的缺陷。
2、电子束探伤原理
电子束探伤原理是电子束撞击物体后,由于其能量的传递,使得物体内部缺陷离子化,从而改变 X 射线的吸收率,从而可以检测出物体内部的缺陷。
三、优缺点
1、优点:
(1)无损性检测:X 射线和电子束探伤技术属于无损检测技术,可以精确地检测焊缝内部缺陷,而不会损坏焊缝。
(2)灵敏度高:X 射线和电子束探伤技术具有非常高的灵敏度,可以检测到局部小型缺陷离子化。
2、缺点:
(1)技术复杂:X 射线和电子束探伤技术技术难度较大,除需要专业的设备外,还需要熟练的操作人员。
(2)成本较高:X 射线和电子束探伤技术属于高投入的检测技术,检测成本较高。
焊缝的超声波探伤知识讲解
焊缝的超声波探伤知识讲解一、课题焊缝的超声波探伤知识讲解二、教学目标1. 让学生了解焊缝超声波探伤的基本概念。
2. 使学生掌握焊缝超声波探伤的原理。
3. 能够让学生熟悉焊缝超声波探伤的操作流程。
三、教学重点&难点1. 教学重点焊缝超声波探伤的原理。
探伤操作中的关键参数设定。
2. 教学难点理解超声波在焊缝中的传播特性。
如何根据探伤结果准确判断焊缝质量。
四、教学方法1. 讲授法:通过直白的讲解,把抽象的知识简单化。
2. 演示法:利用图片或者简单的模拟工具,展示探伤过程。
五、教学过程1. 引入同学们啊,咱们今天要讲一个特别酷的东西,就是焊缝的超声波探伤。
你们想啊,在那些大的建筑啊,还有机械制造的地方,焊接可是个大活儿。
但是焊接得好不好,咱得有个办法检查啊,这时候超声波探伤就闪亮登场啦。
2. 基本概念讲解啥是焊缝超声波探伤呢?说白了,就是利用超声波在焊缝里传播的特性,来看看这个焊缝有没有毛病。
就像咱们用听诊器听身体里面有没有毛病一样。
超声波是一种声音,不过它的频率可高啦,高到咱们人耳朵听不到。
它在焊缝里传播的时候,如果碰到了裂缝啊、气孔这些缺陷,就会有不一样的反应。
咱们打个比方啊,这超声波就像一群小蚂蚁,在焊缝这个小路上走。
要是路是好的,它们就顺顺当当走过去。
要是路中间有个坑(就像焊缝里的缺陷),那小蚂蚁就会乱了阵脚,这个乱阵脚的情况我们就能检测出来。
3. 原理阐述这超声波探伤的原理啊,其实就是根据超声波在不同介质中的传播速度和反射特性。
焊缝是一种介质,里面的缺陷又是另一种介质。
当超声波从一种介质进入另一种介质的时候,就会发生反射和折射。
比如说,超声波从焊缝的金属进入到缺陷(比如气孔)这个小空间的时候,就会有一部分超声波反射回来。
我们通过仪器接收到这个反射回来的超声波,就能知道这里有个缺陷啦。
同学们,你们可以想象一下,这就像咱们在一个黑暗的屋子里,扔一个小石子。
如果屋子是空空的,小石子就会一直滚到墙边再弹回来。
钢材及焊缝探伤试验检测报告(磁粉探伤)2024
钢材及焊缝探伤试验检测报告(磁粉探伤)(二)引言概述:钢材及焊缝探伤试验是一种非破坏性检测方法,可用于确定钢材及焊缝中可能存在的缺陷和裂纹。
磁粉探伤是其中一种常用的方法,其原理是利用磁场和磁性粉末来检测钢材和焊缝表面及近表面的裂纹和其他缺陷。
本文将详细介绍钢材及焊缝磁粉探伤试验的检测方法、仪器设备、操作步骤以及结果分析。
正文内容:1.检测方法1.1磁粉探伤的基本原理磁粉探伤是利用磁场和磁性粉末的物理特性来检测钢材和焊缝的表面和近表面的裂纹。
磁场会引起磁性粉末在存在缺陷的部位形成磁粉痕迹,从而可观察到缺陷的位置和形态。
1.2磁粉探伤的类型磁粉探伤可以分为湿法和干法两种类型。
湿法探伤使用液体磁粉,而干法探伤则使用干粉或粘结剂。
2.仪器设备2.1磁粉探伤仪器磁粉探伤仪器由磁化设备、磁源和显示仪器组成。
常见的磁源有交流磁化法、直流磁化法和半自动磁化法。
2.2磁粉材料磁粉材料是进行磁粉探伤的重要组成部分。
常用的磁粉材料有干粉、液体磁粉和粘结剂。
3.操作步骤3.1准备工作在进行磁粉探伤前,需对钢材或焊缝进行清洁,确保表面没有灰尘、油脂或其他污染物。
3.2磁化根据具体要求选择合适的磁化方法,并对钢材或焊缝进行磁化处理。
3.3磁粉施加将磁粉材料均匀地施加在磁化后的钢材或焊缝表面,确保完全覆盖待检测区域。
3.4清除多余磁粉清除多余的磁粉,以免干扰后续的观察和分析工作。
4.结果分析4.1观察和记录磁粉痕迹在磁粉施加后,观察磁粉痕迹,记录其位置和形态,以确定钢材或焊缝中的缺陷。
4.2缺陷评估根据磁粉痕迹的形态和特点,对缺陷进行评估,确定其类型、大小和影响程度。
4.3结果判定将评估结果与相关标准或规范进行比对,判断钢材或焊缝的可用性和符合性。
5.总结钢材及焊缝探伤试验检测报告(磁粉探伤)旨在通过磁粉探伤方法来评估钢材和焊缝中存在的缺陷和裂纹,并根据结果进行判定和评估。
本文详细介绍了磁粉探伤的方法、仪器设备、操作步骤和结果分析,期望能为相关行业和领域的专业人士提供指导和参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊缝探伤举例----用斜探头扫查25mm厚钢板的焊缝
一、探伤检测前的准备
1. BSM360数字超声波探伤仪
2. 横波斜探头: 5M13×13K2
3. 标准试块:CSK-IB 、CSK-3A
4. 30mm厚钢板的对接焊缝
5.DAC参数:
(1)DAC点数:d=5、10、15、20(mm)的4点
(2)判废线偏移量:+5dB
(3)定量线偏移量:-3dB
(4)评定线偏移量:-9dB
6.耦合剂(如:机油等)
二、探测面的选择
焊缝一侧
三、开机
1.将探头和超声探伤仪连接
2.开启面板开关,开机自检,约5秒钟进入探伤界面。
3.快速基本设置:
1)按键,使屏幕下方显示“基本”、“收发”、“闸门”、“通道”、“探头”五个功能主菜单。
2)按“F1”键,进入“基本”功能组,将“基本”功能内的“探测范围”调为“150”,将“材料声速”调为“3230”,将
“脉冲移位”调为“0.0,将“探头零点”调为“0.00”。
3)按下F2键,进入“收发”功能组,将“收发”功能内的“探头方式”调为“单晶”,将“回波抑制”调为“0%”。
4) 按下F3键,进入“闸门”功能组,将“闸门报警”调为“关”,将“闸门宽度”调为“20.0”,将“闸门高度”调
为“50%”。(此条内容的调整可根据使用者的习惯而定)。
5)按下F4键,进入“通道”功能组,将“探伤通道”调为所需的未存储曲线的通道,如“No.1”,此时“设置
调出”、“设置保存”和“设置删除”均默认显示为“关”。
6)按下F5键,进入“探头”功能组,将“探头K值”调为“0.00”,将“工件厚度”调为“50.0”,将“探头前沿”
调为“0.00”,将“标度方式”调为“声程”。
7)按一下键,使屏幕下方显示“增益”、“DAC1”、“ DAC2”“AVG1”“AVG2”五个功能主菜单。
8)按下F1键,进入“增益”功能组,将全部内容均调为“关”。
9)按下F2键,进入“DAC1”功能组,将“DAC曲线”调为“开”,将“DAC标定点”调为“0”,将“显示标定”
调为“开”。
此时对应F3键的“DAC2”、对应F4键的“AVG1”和对应F5键的“AVG2”三个菜单均不需做任何设置;
如果此时再按一下键,屏幕下方显示“B扫描”、“ 屏保”、“存储”、“ 设置”“高级”五个功能主菜单,用传
统方法校准斜探头,这五个菜单也均不需做任何设置。
注:进入各项功能后利用“方向键”,将亮条移动到所需调整的项,利用“+”或“-”键调整数值。基本设
置调整完毕。
四、校准
1.输入材料声速:3230m/s
2. 探头前沿校准
(1)如图1所示,将探头放在CSK-1B标准试块的0位上
(2)前后移动探头,使试块R100圆弧面的回波幅度最高,回波幅度不要超出屏幕,否则需要减小增
益。
(3)当回波幅度达到最高时,保持探头不动,在与试块“0”刻度对应的探头侧面作好标记,这点就是
波束的入射点,从探头刻度尺上直接读出试块“0”刻度所对应的刻度值,即为探头的前沿值。(或用刻
度尺测量图1所示L值,前沿x=100-L。), 将探头前沿值输入“探头”功能内的“探头前沿”中,探头前
沿测定完毕。
(图1:CSK-IA试块校测零点和前沿示意图)
3.探头零点的校准
按图1的方法放置探头,用闸门套住最高波,调整探头零点
此时,保持探头位置不动,用闸门套住R100圆弧的反射波,调整基本功能组中的“探头零点”的数值,直到
声程S=100为止,“探头零点”调整完毕。
4.探头K值校准(折射角的校准)
由于被测物的材质和楔块的磨损会使探头的实际K值与标称值有一些误差。因此需要测定探头的实际K值。
校准步骤如下:
(1)如图2将探头放在CSK-1A标准试块的适当的角度标记上。
(2)前后移动探头,找到试块边上大圆孔的回波波峰时,保持探头不动。
(3)在试块上读出入射点与试块上对齐的K值,这个角度为探头的实际K值,(或者通过计算斜率校准,
见下图2),将此值输入“探头”功能组中的“K值”。
图2:折射角的校准)
五、制作DAC曲线
用CSK-3A试块制作DAC曲线
第一步:移动探头找到孔深为10mm的最高回波,并将A闸门套住此波,按“+”键,使标定点增加为“1”;
第二步:移动探头找到孔深为20mm的最高回波,并将A闸门套住此波,按“+”键,使标定点增加为“2”;
此时已添加了2个标定点,DAC曲线已经生成。根据探伤需要,可以继续找到孔深为30、40、50mm
等反射体的最高回波,使标定点增加为3、4、5,DAC曲线制作完毕。
第三步:输入标准和补偿
在DAC2菜单上,将判费线偏移量设置为+5dB,定量线偏移量设置为-3dB,评定线偏移量设置为-9dB。
六、现场探伤
1.开机后,选择通道号,调出dac曲线,将标度方式设置为深度(或水平),设置表面补偿dB数(一般
输入补偿2~4dB)。2.将“探头”功能中的“工件厚度”调为板厚的2倍,以保证屏幕能显示探头的二次波扫
查波形,避免漏检。
3.探伤时一般是使探头垂直焊口走向并沿焊口走向做锯齿型扫查(即探头运动轨迹为锯齿型);
4.探头沿焊口走向(前后)移动的距离:0~100mm (如:下图)
计算方法:起点(位置2):0
终点(位置2):S=2KT=2×2×25=100mm (其中K表示探头斜率,T表示工件厚度)
5. 探头沿焊口走向( 左右)移动的速度:≤1.5 米/分
七、存储探伤波形和数据
将探伤波形和数据存储到相应组号。
八、将BSM360与计算机连接,将探伤波形和数据上传到计算机,生成探伤报告。