分式方程(三)
中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用

4.(2021·广元第 17 题 6 分)解方程:x-2 3+x-3 1=4. 解:去分母,得 3(x-3)+2(x-1)=24, 去括号,得 3x-9+2x-2=24, 移项,得 3x+2x=24+9+2,
合并同类项,得 5x=35, 系数化为 1,得 x=7.
命题点 2:由分式方程的解的情况求字母的值(范围)(近 3 年考查 12 次)
则列方程正确的是
A.1x5-0800=12
000 x
15 000 12 000 C. x = x-8
B.1x5+0800=12
000 x
15 000 12 000 D. x = x +8
( B)
9.(2021·广安第 22 题 8 分)国庆节前,某超市为了满足人们的购物需
求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果
3.(RJ 八上 P155 习题 T4 改编)甲、乙两个机器人检测零件,甲比乙每小 时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%.若设甲 每小时检测 x 个,则根据题意,可列出方程为__3x00=x2-=0200××((11--1100%%))__.
4.(RJ 八上 P151 例 2 改编)解方程:
其大意为:现请人代买一批椽,这批椽的价钱为 6 210 文.如果每株椽
的运费是 3 文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的
价钱.试问 6 210 文能买多少株椽?设这批椽的数量为 x 株,则符合题
意的方程是
( A)
A.3(x-1)=6
210 x
B.6x-2110=3
C.3x-1=6
210 x
(3)由(2)可知,按相同金额加油更合算, 故答案为:金额.
人教版八年级数学上册第十五章分式知识点总结和题型归纳(无答案)

分式知识点总结和题型归纳第一部分分式的运算 (一)分式定义及有关题型题型一:考查分式的定义 :A一般地,如果 A ,B 表示两个整数,并且 B 中含有字母,那么式子 A 叫做分式,A 为分子,BB 为分母。
i-y ,是分式的有: x y题型二:考查分式有意义的条件 分式有意义:分母不为 0( B 0) 分式无意义:分母为 0( B 0) 【例1】当x 有何值时,下列分式有意义(1)—(2)-3^ ( 3)(4)( 5)丄x4x 22 x 21| x| 3x1x题型三:考查分式的值为 0的条件分式值为0:分子为0且分母不为0 ( A 0)B 0【例1】当x 取何值时, 下列分式的值为0.(1)Jx 3(2)|x| 2 x 242(3) x 22x 3x 5x 6【例2】当x 为何值时,下列分式的值为零:题型四:考查分式的值为正、负的条件分式值为正或大于 0:分子分母冋号(A或A 0 )B 0B 0【例1】下列代数式中:(1)5 |x 1 | x 4(2) 2^5 xx 6x 5x 1 -,2x分式值为负或小于0:分子分母异号(A °或八°)B 0 B0【例"(1)当x为何值时,分式为正;(3)当x为何值时,分式工为非负数.【例2】解下列不等式(1)1古 °(2)U题型五:考查分式的值为1,-1的条件分式值为1 :分子分母值相等(A=B)分式值为-1 :分子分母值互为相反数(A+B=°)【例1】若也L上的值为1,-1,则x的取值分别为________________________ x 2思维拓展练习题:a b1、若a>b>0, a2+ b2—6ab=0,则一a b2、一组按规律排列的分式:b2 b5 b8b11,2 , 3, 4 , L L ( ab 0),则第n个分式为a a a a(2)当x为何值时,分式5 x23 (x 1)2为负;A3、已知x23x 1 0,求X2 -2的值。
人教版初三数学下册中考知识点梳理:第7讲分式方程

第7讲分式方程一、知识清单梳理中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,65,AFD CD EB ∠=︒∕∕,则B 的度数为( )A .115°B .110°C .105°D .65°【答案】A【解析】根据对顶角相等求出∠CFB =65°,然后根据CD ∥EB ,判断出∠B =115°. 【详解】∵∠AFD =65°, ∴∠CFB =65°, ∵CD ∥EB ,∴∠B =180°−65°=115°, 故选:A . 【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.2.如图,矩形ABCD 中,AB=8,BC=1.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .6【答案】C【解析】试题分析:连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用”AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=45,且tan ∠BAC=12BC AB =;在Rt △AME 中,AM=12AC=25,tan ∠BAC=12EM AM =可得EM=5;在Rt △AME 中,由勾股定理求得AE=2.故答案选C .考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.3.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2. 下列判断: ①当x >2时,M=y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在; ④若M=2,则x=" 1" . 其中正确的有A .1个B .2个C .3个D .4个【答案】B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 22x 22=+=-,(舍去). ∴使得M=2的x 值是1或22+.∴④错误. 综上所述,正确的有②③2个.故选B .4.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =55,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D 【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D. 5.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位【答案】D【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意; B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意; C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意; D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意; 故选D.6.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,若∠C =65°,则∠P 的度数为( )A .65°B .130°C .50°D .100°【答案】C【解析】试题分析:∵PA 、PB 是⊙O 的切线,∴OA ⊥AP ,OB ⊥BP ,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C . 考点:切线的性质.79153 ) A .2到3之间 B .3到4之间 C .4到5之间 D .5到6之间【答案】D915335,∵253,∴355到6之间.故选D . 【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键. 8.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 【答案】C【解析】直接利用反比例函数的性质分别分析得出答案. 【详解】A 、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x ,函数图象位于第二、四象限,故此选项错误; C 、关于反比例函数y=-4x ,当x >0时,函数值y 随着x 的增大而增大,故此选项正确;D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误;故选C . 【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.9.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .16【答案】C【解析】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°. 所以AFI BGC DHE GHI 、、、都是等边三角形.所以31AI AF BG BC ====,. 3317GI GH AI AB BG ∴==++=++=, 7232DE HE HI EF FI ==--=--=, 7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15; 故选C .10.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .45【答案】D【解析】如图,连接AB ,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, ∴4cos cos 5OB C ABO AB =∠==. 故选D .二、填空题(本题包括8个小题)11.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____.【答案】72°【解析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键12.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.【答案】20 cm.【解析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222''++(cm).A B A D BD121620故答案为:20cm. 【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.13.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .【答案】13【解析】试题解析:因为正方形AECF 的面积为50cm 2, 所以25010AC cm =⨯=, 因为菱形ABCD 的面积为120cm 2, 所以21202410BD cm ⨯==, 所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭故答案为13.14.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.【答案】4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解. 详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是AB 的中点,∴∠COD=45°, ∴OC=2CD=42,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.15.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.【答案】1:1【解析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可. 【详解】∵S △BDE :S △CDE =1:3, ∴BE :EC=1:3, ∵DE ∥AC , ∴△BED ∽△BCA , ∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1, 故答案为1:1. 【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 16.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 【答案】13.【解析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是2163=. 故答案为13【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.17.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)【答案】12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1, ∴当x>1时,y 随x 的增大而增大. ∴若x 1>x 2>1 时,y 1>y 2 . 故答案为>18.如图,△ABC 中,AB =BD ,点D ,E 分别是AC ,BD 上的点,且∠ABD =∠DCE ,若∠BEC =105°,则∠A 的度数是_____.【答案】85°【解析】设∠A=∠BDA=x ,∠ABD=∠ECD=y ,构建方程组即可解决问题. 【详解】解:∵BA =BD ,∴∠A =∠BDA ,设∠A =∠BDA =x ,∠ABD =∠ECD =y ,则有21802105x y y x ︒︒⎧+=⎨+=⎩, 解得x =85°, 故答案为85°. 【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本题包括8个小题)19.已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.【答案】(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.20.如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线.交BC 于点E .求证:BE=EC 填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O ,D ,E ,C 为顶点的四边形是正方形.【答案】(1)见解析;(2)①3;②1.【解析】(1)证出EC 为⊙O 的切线;由切线长定理得出EC=ED ,再求得EB=ED ,即可得出结论; (2)①由含30°角的直角三角形的性质得出AB ,由勾股定理求出BC ,再由直角三角形斜边上的中线性质即可得出DE ;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【详解】(1)证明:连接DO .∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,3∴3∴22AB AC,∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=12BC=3,故答案为3;②当∠B=1°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO 是矩形,∵OD=OC ,∴矩形DECO 是正方形.故答案为1.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.解方程组4311,213.x y x y -=⎧⎨+=⎩①② 【答案】53x y =⎧⎨=⎩ 【解析】将②×3,再联立①②消未知数即可计算. 【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.22.春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率. 【答案】小王在这两年春节收到的年平均增长率是【解析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x )元,在2018年的基础上再增长x ,就是2019年收到微信红包金额400(1+x )(1+x )元,由此可列出方程400(1+x )2=484,求解即可. 【详解】解:设小王在这两年春节收到的红包的年平均增长率是. 依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.23.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.【答案】(1)证明见解析;(2)1.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.24.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3 ,45;(2)108°;(3)16.【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【答案】(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.26.若关于x的方程311x ax x--=-无解,求a的值.【答案】1-2a=或【解析】分析:该分式方程311x ax x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【答案】C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.2.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【答案】B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算3.已知a35a等于()A.1 B.2 C.3 D.4【答案】B351,进而得出答案.【详解】∵a35∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.4.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【答案】B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.5.实数21-的相反数是()A.21--B.21+C.21--D.12【答案】D【解析】根据相反数的定义求解即可.【详解】21-的相反数是-21+,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm【答案】A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.33πB.32πC.πD.32π【答案】A【解析】试题分析:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=23,∠A=30°,∴OB=3,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC长为6033 1803ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.8.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c【答案】C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.9.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C .22D.52【答案】C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG=22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.10.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,332) B.(2,332) C.(332,32) D.(32,3﹣332)【答案】A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×33=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,332).故选A.二、填空题(本题包括8个小题)11.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.【答案】1 4【解析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形,∴针头扎在阴影区域内的概率为14;故答案为:14.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.12.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.【答案】4﹣π【解析】由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,∴m=≠±2,∴m=2,∴S阴=S正方形-S圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题13.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.【答案】12【解析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出线段长度解答.【详解】根据题意观察图象可得BC=5,点P 在AC 上运动时,BP ⊥AC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BP ⊥AC 时BP=4,又勾股定理求得CP=3,因点P 从点C 运动到点A ,根据函数的对称性可得CP=AP=3,所以ABC ∆的面积是13+342⨯⨯()=12. 【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型. 14.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.15.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .【答案】13【解析】试题解析:因为正方形AECF的面积为50cm2,所以25010AC cm=⨯=,因为菱形ABCD的面积为120cm2,所以21202410BD cm⨯==,所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭故答案为13.16.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.【答案】1.5【解析】在Rt△ABC中,225AC=AB+BC=,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得32x=.17.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为___________元.【答案】28【解析】设标价为x元,那么0.9x-21=21×20%,x=28.18.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.【答案】30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.考点:折叠图形的性质三、解答题(本题包括8个小题)19.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.求y 与x 之间的函数关系式,并写出自变量x 的取值范围;求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1)()401016y x x =-+≤≤ (2)()225225x --+,16x =,144元 【解析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润⨯销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【详解】(1)设y 与x 的函数解析式为y kx b =+,将()10,30、()16,24代入,得:10301624k b k b +=⎧⎨+=⎩, 解得:140k b =-⎧⎨=⎩, 所以y 与x 的函数解析式为()y x 4010x 16=-+;(2)根据题意知,()()()2W x 10y x 10x 40x 50x 400=-=--+=-+- ()2x 25225=--+, a 10=-<,∴当x 25<时,W 随x 的增大而增大,10x 16,∴当x 16=时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.20.省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?【答案】(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图21.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B 与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG 为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)。
分式方程的教学设计一等奖3篇

1、分式方程的教学设计一等奖一、教学目标1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。
2.通过本节课的教学,向学生渗透“转化”的数学思想方法;3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。
二、重点·难点·疑点及解决办法1.教学重点:的解法.2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。
三、教学步骤(一)教学过程1.复习提问(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?(3)解方程,并由此方程说明解方程过程当中产生增根的原因。
通过(1)、(2)、(3)的准备,可直接点出本节的内容:的解法相同。
在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的`解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。
在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。
2.例题讲解例1 解方程。
分析对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程当中,发现问题并及时纠正。
解:两边都乘以,得去括号,得整理,得解这个方程,得检验:把代入,所以是原方程的根。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(包含答案解析)(3)

一、选择题1.已知113x y -=,则代数式21422x xy yx xy y----的值( )A .4B .9C .-4D .-82.若关于x 的方程 2033x a x x ++=++有增根,则 a 的值为( ) A .1B .3C .4D .53.分式293x x --等于0的条件是( )A .3x =B .3x =-C .3x =±D .以上均不对4.若整数a 使得关于x 的不等式组3(1)32(1)x ax x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2 5.下列变形不正确...的是( ) A .1a ba b a b -=-- B .1a ba b a b+=++ C .221a b a b a b+=++ D .221-=-+a b a b a b6.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣27.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定8.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m-+-=- D .22112323x x x x--=--- 9.若分式12x -有意义,则x 的取值范围是( ) A .0x ≠B .2x ≠-C .2x ≠D .x 取任意实数10.小红和小丽分别将9000字和7500字的两篇文稿录入计算机,…,求两人每分钟各录入多少字?设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…”表示的缺失的条件应为( ) A .两人每分钟录入字数的和是220字B .所用时间相同,两人每分钟录入字数的和是220字C .所用时间相同,小红每分钟录入字数比小丽多220字D .所用时间相同,小丽每分钟录人字数比小红多200字 11.如果a ,b ,c 是正数,且满足1a b c ++=,1115a b b c a c++=+++,那么a ba b b a cc c +++++的值为( ) A .1- B .1C .2D .1212.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( ) A .3000300052x x -=+ B .3000300052x x -= C .3000300052x x -=+ D .3000300052x x-= 二、填空题13.先化简再求值:214111x x x -⎛⎫-÷ ⎪--⎝⎭,其中2x =. 14.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b⊗=-,这里等式右边是实数运算.例如:21113138⊗==--,则方程2(2)14x x ⊗-=--的解是__________. 15.一艘轮船在静水中的速度为a 千米/时,若A 、B 两个港口之间的距离为50千米,水流的速度为b 千米/时,轮船往返两个港口之间一次需____________小时. 16.若分式11x -值为整数,则满足条件的整数x 的值为_____. 17.我们知道,假分数可以化为整数与真分数的和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;如果假分式2412+++x x x 的值为整数,则x 的负整数值为______.18.氢原子的半径约为0.00000000005m ,用科学记数法表示为______ m . 19.若关于x 的方程12x -+3=12ax x --有增根,则a =_____. 20.已知114y x-=,则分式2322x xy yx xy y +---的值为______.三、解答题21.某工程限期完成,甲队单独做正好按期完成,乙队单独做则要误期3天.现两队合作2天后,余下的工程再由乙队单独做,也正好如期完成,该工程限期多少天?22.先化简,再求值:222422244x x xxx x x--⎛⎫-+÷⎪+++⎝⎭,其中22x=-.23.在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数51()32127()2ax xybx xx⎧+<⎪⎪=⎨⎪--+≥⎪⎩的性质及其用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x的取值范围是全体实数,下表列出了变量x与y的几组对应数值:x…52--1122314325234...y (012)8331762651332-…____________(2)描点、连线:在平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:__________________(3)已知函数12733y x=-+,并结合两函数图象,直接写出当y1>y时,x的取值范围____________________24.阅读下列材料:我们在使用完全平方公式222()2a b a ab b ±=±+时,可以把这个公式分成三部分:a b ±称为加减项;②22a b +称为平方项;③ab 称为乘积项在以上三部分中,已知任意两部分都可以求得第三部分. 例:若225,21a b a b +=+=,求ab 的值. 解:由5a b +=可得22()5a b +=22225a b ab ++=把2221a b +=代入上式得21225ab += 2ab =请结合以上方法解决下列问题:(1)若2238,13a b ab +==,求+a b 的值;(2)若2410a a -+=,求221a a +的值. 25.计算:()22163x y x⋅. 26.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论.【详解】 解:由11xy =3,得y xxy -=3,即y -x =3xy ,x -y =-3xy ,则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xyxy xy----=4.故选:A . 【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.2.A解析:A 【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x 的值,代入整式方程求出a 的值即可. 【详解】解:分式方程去分母得:20x a ++=, 由分式方程有增根,得到x+3=0,即x=-3, 把x=-3代入整式方程得:320a -++=,解得1a = 故选:A . 【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点.3.B解析:B 【分析】根据分式等于0的条件:分子为0,分母不为0解答. 【详解】由题意得:290,30x x -=-≠, 解得x=-3, 故选:B . 【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键.4.D解析:D 【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和. 【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >,∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D . 【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.5.C解析:C 【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案. 【详解】 A. =1a b a b a b a b a b--=---,故此项正确; B. =1a b a b a b a b a b++=+++,故此项正确; C.22a ba b ++为最简分式,不能继续化简,故此项错误;D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确;故选C . 【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.6.C解析:C 【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可. 【详解】解:由题意得,x 2﹣1≠0,解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1,∴满足条件的整数x 可能是0、﹣2、﹣3, 故选:C . 【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键.7.A解析:A 【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案. 【详解】222(3)93333()x x x x y x y x y==⨯+++,故分式的值扩大到原来的3倍, 故选:A . 【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键.8.A解析:A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断. 【详解】 解:A 、1122x xx x+--=---,故A 不正确; B 、b a a b c c --+=-,故B 正确; C 、a b a bm m-+-=-,故C 正确; D 、22112323x x x x --=---,故D 正确. 故答案为:A . 【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.9.C【分析】根据分式有意义的基本条件计算即可. 【详解】∵分式12x -有意义, ∴x-2≠0,∴2x ≠, 故选C . 【点睛】本题考查了分式有意义的条件,熟记有意义的条件,熟练转化成不等式是解题的关键.10.B解析:B 【分析】根据工作时间=工作总量÷工作效率,从而得出正确答案. 【详解】解:设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…“表示的缺失的条件应补为所用时间相同,两人每分钟录入字数的和是220字, 故选:B . 【点睛】本题主要考查了由实际问题抽象出分式方程,根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.11.C解析:C 【分析】先根据题意得出a=1-b-c ,b=1-a-c ,c=1-a-b ,再代入原式进行计算即可. 【详解】解:∵a ,b ,c 是正数,且满足a+b+c=1, ∴a=1-b-c ,b=1-a-c ,c=1-a-b , ∴a b a b b a cc c +++++ =111a ca b b c a ca b b c ----++--+++ =1113a b b c a c++-+++ =53- =2 故选:C本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.12.D解析:D 【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解. 【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个, 依题意得:3000300052x x-= 故选:D . 【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.;【分析】先计算括号内的代数式然后化除法为乘法进行化简然后代入求值【详解】当时原式【点睛】本题考查了分式的化简求值注意先把代数式化简然后再代入求值解析:12x -+;-【分析】先计算括号内的代数式,然后化除法为乘法进行化简,然后代入求值. 【详解】214111x x x -⎛⎫-÷ ⎪--⎝⎭22114x x x x --=⋅-- 12x -=+当2x =时,原式== 【点睛】本题考查了分式的化简求值.注意先把代数式化简,然后再代入求值.14.【分析】根据题中的新运算法则列出分式方程再根据分式方程的解法解答即可【详解】解:∴方程为:去分母得解得:经检验是原方程的解故答案为:x=5【点睛】本题考查了新定义的运算法则的计算分式方程的解法解题的 解析:5x =【分析】根据题中的新运算法则列出分式方程,再根据分式方程的解法解答即可. 【详解】 解:211(2)(2)4x x x ⊗-==---∴方程为:12144x x =--- 去分母得124x =-+, 解得:5x =,经检验,5x =是原方程的解, 故答案为:x=5. 【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.15.【分析】假设A 到B 顺流B 到A 逆流根据流程速度时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长两式相加即可求解【详解】解:假设A 到B 顺流B 到A 逆流∵轮船在静水中的速度为千米/时水流的速度为千米解析:22100aa b - 【分析】假设A 到B 顺流,B 到A 逆流,根据流程、速度、时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长,两式相加即可求解. 【详解】解:假设A 到B 顺流,B 到A 逆流,∵轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时,A 、B 两个港口之间的距离为50千米∴轮船往返A 到B 需要花费的时长为:5050a b a b++- ()()()()5050a b a b a b a b -++=+-()()50505050a b a ba b a b -++=+-22100aa b =-故答案为:22100a a b -. 【点睛】 本题考查列代数式,解题的关键是明确题意,熟练掌握路程、时间、速度三者之间的关系,列出相应的代数式.16.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x 的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】 解:因为分式11x -有意义,所以x-1≠0,即x≠1, 当分式11x -值为整数时, 有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.17.【分析】先把分式化为真分式再根据分式的值为整数确定的值【详解】解:分式的值为整数或的负整数值为故答案为:【点睛】本题考查了利用分式的性质对分式进行变形解题的关键是理解真分式的定义解析:1-、3-、5-【分析】先把分式化为真分式,再根据分式的值为整数确定x 的值.【详解】 解:2412+++x x x ()223=2x x +-+ 3=22x x +-+ 分式2412+++x x x 的值为整数, 21x ∴+=±或3x =±1x ∴=-、3-、5-、1∴x 的负整数值为1x =-、3-、5-,故答案为:1-、3-、5-.【点睛】本题考查了利用分式的性质对分式进行变形,解题的关键是理解真分式的定义. 18.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:用科学记数法 解析:11510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法把0.0000 0000 005表示为5×10-11.故答案为:5×10-11.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根因此可将原方程去分母然后将增根代入求a 的值【详解】解:去分母得1+3x ﹣6=ax ﹣1∵方程有增根所以x ﹣2=0x =2是方程的增根将解析:1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,因此可将原方程去分母,然后将增根代入求a 的值.【详解】解:去分母,得 1+3x ﹣6=ax ﹣1,∵方程有增根,所以x ﹣2=0,x =2是方程的增根,将x =2代入上式,得1+6﹣6=2a ﹣1,解得a =1,故答案为1.【点睛】本题考查分式方程的增根,掌握增根是分式方程化为整式方程后产生的使分式方程的分母为0的根是解答的关键.20.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键解析:11 2【分析】先根据题意得出x-y=4xy,然后代入所求的式子,进行约分就可求出结果.【详解】∵114 y x-=,∴x-y=4xy,∴原式=2()383112422x y xy xy xyx y xy xy xy-++==---,故答案为:112.【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.三、解答题21.6天【分析】设该工程期限是x天,则乙队需要(x+3)天完成工程,根据题意可得,甲乙合作2天完成的任务+乙做(x-2)天完成的任务=1,据此列方程.【详解】解:设该工程限期x天根据题意,得1122133xx x x-⎛⎫++= ⎪++⎝⎭解得6x=经检验,6x=是原分式方程的解,且符合题意答:该工程限期6天.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.22.2x--;【分析】首先把括号里进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.【详解】解:222422244 x x xxx x x--⎛⎫-+÷⎪+++⎝⎭=222244(2)22x x x x x x--+++- =222(2)(2)22x x x x xx --++- =2x --当2x =时,原式=2)2=--【点睛】本题是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.23.(1)251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩;(2)函数图象见解析;当1x >时,y 随x 的增大而减小;(3)12x <或3x > 【分析】(1)代入1x =-和12x =即可求解; (2)利用描点作图法画出图象,再根据图象写出性质即可;(3)联立函数解析式,求出交点,即可得出结论.【详解】解:(1)当1x =-时,513a -+=,解得23a =; 当12x =时,1272b --+=,解得2b =; ∴y 与x 的函数关系式为:251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩; (2)函数图象如下:函数性质:当1x >时,y 随x 的增大而减小;(3)当1x ≤时,25332733y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,可得122x y ⎧=⎪⎨⎪=⎩;当1x >时,2272733y x x y x ⎧=--+⎪⎪⎨⎪=-+⎪⎩,可得313x y =⎧⎪⎨=⎪⎩, ∴当y 1>y 时,x 的取值范围为12x <或3x >. 【点睛】本题考查函数图象,掌握待定系数法求解析式、描点作图等方法是解题的关键. 24.(1)±8;(2)14【分析】(1)根据示例提供的方法可以求得a+b 的值;(2)根据a 2-4a+1=0,通过变形可以求得所求式子的值.【详解】解:(1)∵a ,b 满足a 2+b 2=38,ab=13,∴222()2a b a b ab +=+-,即:38=(a+b )2-2×13,解得,a+b=8或a+b=-8,(2)∵a 2-4a+1=0, ∴140a a -+=, ∴14a a+=,∴21()16a a +=, ∴221216a a ++=, ∴22114a a +=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法,利用数形结合的思想解答.25.3212x y【分析】按照分式乘法和幂的运算法则计算即可.【详解】 解:()22163x y x⋅. 421363x y x=⨯, 3212x y =.【点睛】本题考查了分式乘法和幂的运算,解题关键是熟练运用分式乘法和幂的运算法则进行计算.26.(1)甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服;(2)选择甲工厂较好.【分析】(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服,根据工作时间=工作总量÷工作效率结合甲工厂单独完成任务比乙工厂单独完成任务多用10天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用总费用=每天需要的费用×工作时间,可分别求出选择甲、乙两工厂所需费用,比较后即可得出结论.【详解】解:(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服, 依题意得:12001200101.5x x-=, 解得:x=40, 经检验,x=40是原方程的解且符合题意,∴1.5x=60.答:甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服.(2)选择甲工厂所需费用为200×120040=6000(元);选择乙工厂所需费用为350×120060=7000(元).∵6000<7000,∴从经济角度考虑,选用甲工厂较好.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.。
初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析1.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍。
已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍。
(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x。
【答案】(1)购买这批乒乓球拍和羽毛球拍的总费用为 4000+25x ;(2)x=40。
【解析】(1)若每副乒乓球拍的价格为x元,根据购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍即可得出答案,(2)根据购买的两种球拍数一样,列出方程=,求出方程的解,再检验即可。
试题解析:(1)若每副乒乓球拍的价格为x元,则购买羽毛球拍花费:2000+25x,则购买这批乒乓球拍和羽毛球拍的总费用为:2000+2000+25x=4000+25x;(2)若购买的两种球拍数一样,根据题意得:=,解得:x1=40,x2=﹣40,经检验;x1=40,x2=﹣40都是原方程的解,但x2=﹣40不合题意,舍去,则x=40。
【考点】分式方程的应用。
2.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【答案】C【解析】分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选C【考点】分式方程的解3.解方程:.【答案】此方程无解.【解析】首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.试题解析:解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得:2x=4,解得:x=2.检验:当x=2时,x﹣2=0,故x=2不是原方程的根,∴此方程无解.【考点】解分式方程.4.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?【答案】(1)3;(2)方案3总工资最低,最低总工资为4800元.【解析】(1)设单独由乙队摘果,需要x天才能完成,根据题意列出分式方程,求出分式方程的解得到x的值,检验即可;(2)分别求出三种方案得总工资,比较即可.试题解析:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2()=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;(2)方案1:总工资为6000元;方案2:总工资为5200元;方案3:总工资为4800元,则方案3总工资最低,最低总工资为4800元.【考点】分式方程的应用.5.娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?【答案】(1)大货车速度为60km/h,则小轿车的速度为90km/h;(2)当小刘出发时,小张离长沙还有120km.【解析】(1)由题意,设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,根据“小刘比张晚出发1小时,最后两车同时到达长沙,”列出方程解决问题;(2)利用(1)中小张开着大货车的速度,即可求得答案.试题解析:解:(1)设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,由题意得﹣=1解得x=60,则1.5x=90,答:大货车速度为60km/h,则小轿车的速度为90km/h.(2)180﹣60×1=120km答:当小刘出发时,小张离长沙还有120km.【考点】分式方程的应用6.若关于x的方程无解,则m=________.【答案】1或.【解析】分式方程去分母转化为整式方程,根据分式方程无解得到x-4=0,求出x的值代入整式方程即可求出m的值.试题解析:去分母得:x-2=3+m(x-4),整理得:(1-m)x=5-4m若1-m=0,即m=1,方程无解;若1-m≠0,即m≠1时,根据题意:x-4=0,即x=4,将x=4代入整式方程得:m=.综上,m的值为1或.【考点】分式方程的解.7.一行20人外出旅游入住某酒店,因特殊原因,服务员在安排房间时每间比原来多住1人,结果比原来少用了一个房间.设原来每间住x人,则下列方程正确的是A.B.C.D.【答案】A.【解析】设原来每间住x人,原来所用房间数为,实际所用房间数为.所列方程为.故选A.【考点】由实际问题抽象出分式方程.8.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成. (1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【答案】(1)乙工程队单独做需要80天完成;(2)甲队做了45天,乙队做了50天.【解析】(1)根据“甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成”,设乙工程队单独完成这项工作需要x天,列出方程求解即可;(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,可得到方程,再根据x<46,y<52,得到方程组,其中x、y均为正整数,解此方程组即可得到答案.试题解析:(1)设乙工程队单独完成这项工作需要x天,由题意得,解之得x=80.···················································3分经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.·······················································4分(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,所以,即,又x<46,y<52,·····························5分所以,解之得42<x<46,因为x、y均为正整数,所以x=45,y=50.·················································7分答:甲队做了45天,乙队做了50天.···························································8分【考点】分式方程的应用;一元一次不等式(组)的应用.9.⑴解方程:=-3 ⑵解不等式组:【答案】(1) 原方程无解;(2)-1≤x<2.【解析】(1)先根据“去分母、去括号、揿项、合并同类项、系数化为1”的步骤解方程,然后再检验即可求得方程的解.(2)先求出不等式组中①、②的解集,再找到公共部分即可.(1)∵=-3=-31=x-1-3(x-2)1=x-1-3x+6x=2经检验:x=2是增根,所以原方程无解.(2)解不等式(1)得:x<2;解不等式(2)得:x≥ -1所以:不等式组的解集为:-1≤x<2.考点: 1.解分式方程;2.解一元一次不等式组.10.随着梅雨季节的临近,雨伞成为热销品.某景区与某制伞厂签订2万把雨伞的订购合同.合同规定:每把雨伞的出厂价为13元.景区要求厂方10天内完成生产任务,如果每延误1天厂方须赔付合同总价的1%给景区.由于急需,景区也特别承诺,如果每提前一天完成,每把雨伞的出厂价可提高0.1元.⑴如果制伞厂确保在第10天完成生产任务,平均每天应生产雨伞把;⑵生产2天后,制伞厂又从其它部门抽调了10名工人参加雨伞生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该厂原计划安排多少名工人生产雨伞?⑶已知每位工人每天平均工资为60元,每把雨伞的材料费用为8.2元.如果制伞厂按照⑵中的生产方式履行合同,将获得毛利润多少元?(毛利润=雨伞的销售价-雨伞的材料费-工人工资)【答案】(1)2000;(2)原计划安排150名工人生产雨伞;(3)制伞公司支付完员工工资后将剩余24400元.【解析】(1)根据某景区与某制伞厂签订2万把雨伞的订购合同,厂方10天内完成生产任务,即可得出平均每天应生产雨伞数量;(2)设原计划安排x名工人生产雨伞得出每人平均生产雨伞的数量,进而表示出提高工作效率后的生产数量,即可得出等式方程求出即可;(3)根据毛利润=雨伞的销售价﹣雨伞的材料费﹣工人工资求出即可.试题解析:(1)20000÷10=2000;(2)设原计划安排x名工人生产雨伞.由题意可得解之得:x="150"经检验:x=150是原方程的解,答:原计划安排150名工人生产雨伞;(3)(元)答:制伞公司支付完员工工资后将剩余24400元.【考点】分式方程的应用.11.A、B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从 B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.求甲从A地到B地步行所用的时间.【答案】3小时.【解析】本题的等量关系是路程=速度×时间.本题可根据乙从B到A然后再到B用的时间=甲从A到B用的时间-20分钟-40分钟来列方程.试题解析:设甲从A地到B地步行所用时间为x小时,由题意得:化简得:2x2-5x-3=0,解得:x1=3,x2=-,经检验知x=3符合题意,∴x=3,∴甲从A地到B地步行所用时间为3小时.考点: 分式方程的应用.12.对于非零的两个实数a,b,规定a⊗b=-,若1×(x+1)=1,则x的值为 () A.B.C.1D.-【答案】D【解析】由规定可知:-1=1去分母:1-(x+1)=x+1解得x=-当x=-时,分母x+1=-+1≠0∴x=-是原方程的根.13.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,列出方程 .【答案】.【解析】设乙队每天安装x台,根据甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,则.故答案是.【考点】由实际问题抽象出分式方程.14.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15∶12∶10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so.研究15、12、10这三个数的倒数发现:-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x、5、3(x>5),则x的值是________.【答案】15【解析】依据调和数的意义,有-=-,解得x=15.15.全民健身活动中,组委会组织了长跑队和自行车队进行宣传,全程共10千米,自行车队的速度是长跑队速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车队晚到了2小时,如果设长跑队跑步的速度为x千米/时,那么根据题意可列方程为A.+2=+B.-=2-0.5C.-=2-0.5D.-=2+0.5【答案】C【解析】自行车队的速度是长跑队的速度的2.5倍,可得自行车队的速度为2.5x,整个过程长跑队一共比自行车队多用了2-0.5小时,据此可列方程-=2-0.5.16. (1)甲、乙两人同时从A地出发去B地,甲的速度是乙的1.5倍.已知A、B两地相距27千米,甲到达乙地3小时后,乙才到达,求甲、乙两人的速度.(2)甲、乙两人同时从相距9千米的A、B两地同时出发,若相向而行,则1小时相遇,若同向而行,乙在甲前面,则甲走了18千米后追上乙,求甲、乙两人的速度.【答案】(1)甲为4.5千米/时,乙为3千米/时. (2)甲为6千米/时,乙为3千米/时.【解析】(1)根据甲比乙少用3小时为等量关系列出方程.设乙的速度为x千米/时,列方程得-=3,甲为4.5千米/时,乙为3千米/时.(2)设甲的速度为x千米/时,相向而行,1小时相遇,则(甲速+乙速)×1=9,所以乙速=9-x.又若同向而行,乙在甲前面,则甲走了18千米后追上乙,即甲走18千米所用时间=乙走9千米所用的时间相等,由此可列出方程,得=,甲为6千米/时,乙为3千米/时.17.已知关于x的方程的解是正数,则m的取值范围为 __.【答案】m>﹣6且m≠﹣4.【解析】解分式方程后需要检验,原方程整理得:2x+m=3x﹣6,解得:x=m+6,∵x>0,∴m+6>0,即m>﹣6,又∵原式是分式方程,∴x≠2,即m+6≠2,∴m≠﹣4,综上所述,则m的取值范围为m>﹣6且m≠﹣4.【考点】解分式方程.18.某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?【答案】解:(1)设打折前售价为x,则打折后售价为0.9x,由题意得,,解得:x=4。
分式方程的解法及应用
分式方程的解法及应用一、目标与策略明确学习目标及要紧的学习方式是提高学习效率的首要条件,要做到心中有数!学习目标:分式方程的概念和解法;分式方程产生增根的缘故;分式方程的应用题。
重点难点:重点:分式方程转化为整式方程的方式及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象出数量关系.难点:查验分式方程解的缘故,实际问题中数量关系的分析.学习策略:经历“实际问题——分式方程——整式方程”的进程,进展分析问题、解决问题的能力,渗透数学的转化思想,培育数学的应用意识。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(一)什么叫方程?什么叫方程的解?答:含有的叫做方程.使方程两边相等的的值,叫做方程的解.(二)分式的大体性质:分式的分子与分母同乘(或除以)同一个,分式的值不变,那个性质叫做分式的大体性质.用式子表示是:M B M A B A M B M A B A ÷÷=⨯⨯=,(其中M 是不等于0的整式). (三)等式的大体性质:等式的两边都乘(或除以)同一个数或 (除数不能为0),所得的结果仍是等式。
(四)解以下方程:(1)9-3x =5x +5;(2)52221+-=--y y y知识点一:分式方程的概念里含有未知数的方程叫分式方程。
要点诠释:(1)分式方程的三个重要特点:①是 ;②含有 ;③分母里含有 。
(2)分式方程与整式方程的区别就在于分母中是不是含有 (不是一样的字母系数),分母中含有未知数的方程是 ,不含有未知数的方程是方程,如:关于x 的方程x x =-21和12723+=-x x 都是 方程,而关于x 的方程x x a =-21和d cb x =+1都是 方程。
知识点二:分式方程的解法(一)解分式方程的基本思想把分式方程化为 方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。
初三数学下册分式方程的解法
初三数学下册分式方程的解法分式方程是指方程中含有分式的方程。
在初三数学下册中,我们将学习如何解决各种类型的分式方程。
本文将详细介绍几种常见的分式方程解法。
一、通分法解分式方程当分式方程的分母不同或难以直接消去时,我们可以利用通分的方法来解决。
示例问题1:求方程 (2/x) + (3/y) = 1 的解。
解:首先,我们需要通过通分将分母相同化,我们可以将方程两边的分子相乘,得到 2y + 3x = xy。
接下来,我们将方程整理成一般的二次方程形式,即 xy - 2y - 3x = 0。
然后,我们尝试将该方程转化为一元一次方程。
可以将方程两边同时除以 x,得到 y - 2/y - 3 = 0。
再进一步,我们将 y - 2/y 看做一个整体,得到 y(y - 2) - 3 = 0。
现在,我们可以将该方程因式分解为 (y - 3)(y - 1) = 0。
因此,我们得到两个可能的解:y = 3 或 y = 1。
将得到的解带入原方程可验证,所以方程的解为 y = 3 或 y = 1。
示例问题2:求方程 (1/x) - (1/y) = 1/4 的解。
解:首先,我们需要通过通分将分母相同化,得到 (y - x)/(xy) = 1/4。
下一步,我们将方程两边同时乘以 4xy,得到 4(y - x) = xy。
现在,我们将方程整理成一般的二次方程形式,即 xy - 4y + 4x = 0。
然后,我们尝试将该方程转化为一元一次方程。
可以将方程两边同时除以 y,得到 x - 4 + 4/y = 0。
进一步,我们将 4 + 4/y 看做一个整体,得到 x(4 + 4/y) - 4 = 0。
现在,我们可以将该方程因式分解为 4(x/y + 1) - 4 = 0。
因此,我们得到一个可能的解:x/y + 1 = 1,即 x/y = 0。
将得到的解带入原方程可验证,所以方程的解为 x/y = 0。
二、代换法解分式方程当分式方程中存在较为复杂的分母时,我们可以利用代换的方法来解决。
分式方程教研活动记录(3篇)
第1篇一、活动背景为了提高我校教师对分式方程教学的掌握程度,提升教学质量,我校于2021年10月25日开展了分式方程教研活动。
本次活动旨在通过集体备课、课堂观摩、课后研讨等形式,帮助教师深入理解分式方程的教学内容和方法,提高教学效果。
二、活动内容1. 集体备课(1)备课内容:本次集体备课围绕分式方程的基本概念、性质、解法等方面展开。
教师们共同探讨如何将理论知识与实际教学相结合,提高学生的理解和应用能力。
(2)备课过程:首先,由备课组长带领教师们回顾分式方程的基本概念和性质。
然后,教师们针对分式方程的解法进行讨论,分享各自的教学经验和心得。
最后,针对不同学段、不同层次的学生,教师们共同制定了分式方程的教学计划。
2. 课堂观摩(1)观摩内容:本次课堂观摩选取了两位教师分别执教分式方程的相关内容。
两位教师的教学风格迥异,但都注重启发学生思维,引导学生主动参与课堂。
(2)观摩过程:教师们认真聆听两位教师的授课,观察学生的课堂表现,并做好记录。
3. 课后研讨(1)研讨内容:课后,教师们针对观摩的课堂进行研讨,分享各自的教学心得和体会。
(2)研讨过程:首先,教师们对两位教师的课堂教学进行评价,肯定优点,指出不足。
然后,针对分式方程的教学难点和重点,教师们共同探讨解决方案,分享教学经验。
三、活动总结1. 活动成效通过本次教研活动,教师们对分式方程的教学有了更深入的理解,掌握了分式方程的教学方法和技巧。
在集体备课环节,教师们共同制定了分式方程的教学计划,为今后的教学提供了有力保障。
在课堂观摩和课后研讨环节,教师们相互学习、取长补短,提高了自身的教学水平。
2. 改进措施(1)加强教师培训:定期组织教师参加分式方程教学的培训,提高教师的专业素养。
(2)优化教学设计:针对分式方程的教学难点和重点,优化教学设计,提高教学效果。
(3)关注学生差异:根据学生的实际情况,制定分层教学方案,满足不同层次学生的学习需求。
(4)加强教学反思:教师们要注重教学反思,不断总结经验,提高教学质量。
16.3.3分式方程的应用(工程问题)
新课讲解
做一做 1. 抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲 队单独做正好按期完成,而乙队由于人少,单独做 则超期3个小时才能完成.现甲、乙两队合作2个小 时后,甲队又有新任务,余下的由乙队单独做,刚 好按期完成.求甲、乙两队单独完成全部工程各需 多少小时?
分析:设甲队单独完成需要x小时,则乙队需要(x+3)小时. 根据等量关系“甲工效×2+乙工效×甲队 单独完成需要时间=1”列方 程.
月完成总工程的三分之一,这时乙队加入,两队又共同工作了
半个月,总工程全部完成.哪个队的施工速度快?
表格法分析如下:设乙单独完成这项工程需要x个月.
工作时间(月)
甲队
3
2
乙队
1
2
工作 效率
1
3 1
x
工作总量(1)
1 2
1 2x
新课讲解
等量关系:甲队完成的工作总量+乙队完成的工作总量=“1”
解:设乙单独完成这项工程需要x个月.记工作总量为1,
1 3
1
1 2
1 3
1 x
1
两队合作
1
2
11 x3
新课讲解
1.题中有“单独”字眼通常可知工作效率; 2.通常间接设元,如××单独完成需 x(单位时间),则可表示出 其工作效率; 3.弄清基本的数量关系,如本题中的“合作的工效=甲、乙两队工作 效率的和”. 4.解题方法:可概括为“321”,3指工程问题中的三量关系,即工作效 率、工作时间、工作总量;2指工程问题中的“两个主人公”,如甲队 和乙队,或“甲单独和两队合作”;1指工程问题中的一个等量关系, 即两个主人公工作总量之和=全部工作总量.
当x=11时,2x=22,所以乙用了240分钟,甲 用了120分钟,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辛店中学“6+1”导学案
班级 八年级 科目 数学 编号 10 主备人 崔明飞 授课时间 学 习 提 纲 第四环节 感悟升华 列分式方程解应用题的一般步骤是什么? 第五环节 巩固练习 1. 小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书高出一半,他们所买的科普书比所买的文学书少1 本.这种科普书和这种文学书的价格各是多少? 2. 某商店销售一批服装,每件售价150元,可获利25%。求这种服装的成本. 3. 甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米? 二.布置作业:教材“习题2.9”中第1、2 题. 老师导学
课题 分式方程(三) 备课成员:李彩瑞 李维青 审核人
学
习
目
标
1.通过日常生活中的情境创设,经历探索分式方程应用的过程,会检验根的合理性;
2.经历“实际问题情境——建立分式方程模型——求解——解释解的合理性”的过
程,进一步提高学生分析问题和解决问题的能力,增强学生学数学、用数学的意识.
学
习
提
纲
第一环节 复习回顾
1.解分式方程的一般步骤:
2.解方程 214111xxx
3.列一元一次方程解应用题的一般步骤分哪几步?
第二环节 探究新知
例1.某单位将沿街的一部分房屋出租.每间房屋的租金第二年比
第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为
10.2万元.
(1)你能找出这一情境的等量关系吗?
(2)根据这一情境,你能提出哪些问题?
(3)你能利用方程求出这两年每间房屋的租金各是多少吗?
第三环节 小试牛刀
例2. 某市从今年1月1日起调整居民用水价格, 每立方米水费上涨
1
3
.小丽家去年12月份的水费是 15 元,而今7月份的水费则是30
元.已知小丽家今年7月份的用水量比去年12月份的用水量多53m ,
求该市今年居民用水的价格.
老师导学
小
结
1.内容小结:今天这节课大家有什么收获?你学到了哪些
知识?2.方法归纳:本节课的学习过程中,你有什么
感想?
反
思