分式方程(第3课时)
第3课时 分式方程

宇轩图书
浙江考情分析
浙江三年中考
中考考点梳理
典型考题展示
能力评估检测
x-2 1 3. (2012· 宁波)分式方程 = 的解是 x=8. x+4 2 2x 4. (2013· 绍兴)分式方程 = 3 的解是 x=3. x-1
宇轩图书
浙江考情分析
浙江三年中考
中考考点梳理
典型考题展示
能力评估检测
5. (2013· 嘉兴)杭州到北京的铁路长 1 487 千米. 火 车的原平均速度为 x 千米/时,提速后平均速度增加了 70 千米/时,由杭州到北京的行驶时间缩短了 3 小时, 1 487 1 487 则可列方程为 - =3 . x x+70
浙江三年中考
中考考点梳理
典型考题展示
能力评估检测
【思路点拨】先解关于 x 的分式方程,求得 x 的 值,然后再依据 “解是非正数 ”建立不等式求 a 的取 值范围. 解析: 去分母, 得 a+ 2= x+ 1.解得 x= a+ 1.∵x≤0 且 x+ 1≠0, ∴ a+ 1≤0 且 a+ 1+ 1≠ 0, ∴a≤- 1 且 a≠ - 2.故选 B.
宇轩图书
浙江考情分析
浙江三年中考
中考考点梳理
典型考题展示
能力评估检测
(2013· 乐山 )甲、 乙两人同时分别从 A, B 两地沿同一条公路骑自行车到 C 地,已知 A, C 两 地间的距离为 110 千米,B,C 两地间的距离为 100 千 米,甲骑自行车的平均速度比乙快 2 千米 /时,结果两 人同时到达 C 地, 求两人的平均速度. 为解决此问题, 设乙骑自行车的平均速度为 x 千米 /时,由题意列出方 程,其中正确的是 ( 110 100 A. = x+ 2 x 110 100 C. = x- 2 x A ) 110 100 B. = x x+ 2 110 100 D. = x x- 2
第3课时 分式方程的实际应用——销售及其他问题【习题课件】八年级上册人教版数学

1
2
3
4
5
6
7
8
9
10
第3课时 分式方程的实际应用——
销售及其他问题
基础通关
能力突破
素养达标
8. 某种商品每件的标价是330元,按标价的八折销售时,仍可获利10
%,则这种商品每件的进价为
240
元.
9. 端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种
畅销口味的粽子.已知购进甲种粽子的金额是1 200元,购进乙种粽子的
2 400 元.
1
2
3
3 600 元,每台笔记本电脑的价格是
4
5
6
7
8
9
10
第3课时 分式方程的实际应用——
销售及其他问题
基础通关
能力突破
素养达标
其他问题
3. 某实验室现有浓度为30%的盐酸50克,要配制浓度为25%的稀盐
酸,需加入 x 克水.下面是小华所在的学习小组所列的关于 x 的方程,你
认为正确的是(
(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款
每件让利 m 元,采购人员发现(2)中的所有购买方案所需资金恰好相
同,试求 m 值.
解:(3)设购买资金为 W 元,
由题意,得 W =0.7×50 a +(40- m )(300- a )=( m -5) a +12 000-300
m,
由题意,得14 750≤50 a +40(300- a )≤14 800,
解得275≤ a ≤280.
∵ a 是正整数,
∴ a 的取值可以为275,276,277,278,279,280.
北师版八年级下册数学精品教学课件 第五章 分式与分式方程 第3课时 异分母分式的加减(2)

3
m
m3
3m
3
2m (m 3)
m 3m 3
m
m3
3m
3
从 1,-3,3 中任 选一个你喜欢的 m 值代入求值.
1. m3
当
m
=
1
时,原式
1 1
3
1 2
做一做
先化简,再求值: 1 x 1
x
2 2
,其中 1
x
2.
解:
1 x 1
2 x2 1
1 x 1
2 (x 1)(x 1)
(x 1)
2
(x 1)(x 1) (x 1)(x 1)
计算结果要化为最简分式或整式.
例解4:原计式算: (m1)2m22
2m
5 2m
m
5 ••232m3mm4mm;41
2
(m
或
2)(2 2m
m)
9 m2 • 2m 2
先算括号里的
2m 3m
加法,再算括
3 m3 m 22 m
•
号外的乘法
2m
3m
2m 3 2m 6.
注:当式子中出现整式时,把整式看成整体,并把
第五章 分 式
5.3 分式的加减法
第3课时 异分母分式的加减(2)
复习引入 1. 分式的乘除法则是什么?用字母表示出来:
b d bd a c ac
b d b c bc a c a d ad
2. 分式的加减法则是什么?用字母表示出来:
b d bc ad bc ad a c ac ac ac
异分母 通分 相加减 转化为
同分母 分母不变 相加减 转化为
分子 (整式) 相加减
2. 分式的混合运算法则 先算乘除,再算加减;如果有括号先算括号内的.
北师大版八年级下册数学习题课件5.4分式方程第3课时分式方程的应用

知识点
4.【2020·孝感】某电商积极响应市政府号召,在线销售甲、乙、 丙三种农产品,已知 1 kg 乙产品的售价比 1 kg 甲产品的售价 多 5 元,1 kg 丙产品的售价是 1 kg 甲产品售价的 3 倍,用 270 元购买丙产品的数量是用 60 元购买乙产品数量的 3 倍. (1)求甲、乙、丙三种农产品每千克的售价分别是多少元.
BS版八年级下
第五章 分式与分式方程
5.4 分式方程 第3课时 分式方程的应用
习题链接
提示:点击 进入习题
1 见习题 2 见习题
3 见习题 4 见习题
5 见习题 6 见习题 7 见习题 8 见习题
答案显示
习题链接
提示:点击 进入习题
9 见习题 10 见习题 11 见习题 12 见习题
13 见习题
解:设乙店的利润为 w 元. 由题意得 w=(180-130)a+(180×0.9-130)b+(180×0.7- 130)(150-a-b)=54a+36b-600=54a+36×1502-a-600=36a +2 100.∵乙店按标价售出的数量不超过九折售出的数量,
知识点
∴a≤b,即 a≤1502-a,解得 a≤50. ∵w 随 a 的增大而增大, ∴当 a=50 时,w 取得最大值,此时 w=36×50+2 100=3 900. 答:乙店利润的最大值是 3 900 元.
知识点
解:设甲种货车每辆车可装 x 件帐篷,乙种货车每辆车可装 y 件 帐篷,依题意有x1=0x0y0+=2800y,0,解得xy==8100.0,
经检验,xy==81000,是原方程组的解,且符合题意. 答:甲种货车每辆车可装 100 件帐篷,乙种货车每辆车可装 80
件帐篷.
分式方程的ppt课件

为整式方程,再解整式方程.
问题2
你能试着解分式方程
90 30+v
=
60 30-v
吗?
问题3 这些解法有什么共同特点?
总结:
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
思考:
(1)如何把分式方程转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘以什么样的式子才能把每一个分母
解:移项、合并,得 50x =sv.
解得
x=
sv 50
.
检验:由于v,s 都是正数,当x
=
sv
时x(x+v)≠0,
所以,x
=
sv 50
50 是原分式方程的解,且符合题意.
sv
答:提速前列车的平均速度为 50 km/h.
探究列分式方程解实际问题的步骤
上面例题中,出现了用一些字母表示已知数据的形 式,这在分析问题寻找规律时经常出现.例2中列出的 方程是以x 为未知数的分式方程,其中v,s是已知常数,
思考: (1)这个问题中的已知量有哪些?未知量是什么? (2)你想怎样解决这个问题?关键是什么?
表达问题时,用字母不仅可以表示未知数(量), 也可以表示已知数(量).
探究列分式方程解实际问题的步骤
例2 某次列车平均提速v km/h.用相同的时间, 列车提速前行驶s km,提速后比提速前多行驶50 km, 提速前列车的平均速度为多少?
八年级 上册
15.3 分式方程 (第2课时)
课件说明
• 本课是在学生已经学习了分式方程的概念并能够 解简单的分式方程的基础上,进一步巩固可化为 一元一次方程的分式方程的解法,归纳出解分式 方程的一般步骤,能够列分式方程解决简单的实 际问题.
华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计

华师大版数学八年级下册16.3《可化为一元一次方程的分式方程》(第3课时)教学设计一. 教材分析《可化为一元一次方程的分式方程》是华师大版数学八年级下册第16.3节的内容。
本节课的主要内容是让学生掌握分式方程的解法,通过将分式方程转化为整式方程,让学生理解分式方程的解法实质,提高学生解决实际问题的能力。
二. 学情分析学生在八年级上册已经学习了分式的概念、性质和运算,对分式有了一定的认识。
但是,对于分式方程的解法,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生将分式方程转化为整式方程,让学生通过已有的知识解决新的问题。
三. 教学目标1.知识与技能目标:让学生掌握分式方程的解法,并能运用到实际问题中。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 教学重难点1.重点:分式方程的解法。
2.难点:如何将分式方程转化为整式方程,以及如何运用分式方程解决实际问题。
五. 教学方法1.自主学习:让学生在课堂上自主探究分式方程的解法。
2.合作交流:引导学生分组讨论,分享解题心得。
3.实例讲解:通过具体例子,让学生理解分式方程的解法在实际问题中的应用。
六. 教学准备1.课件:制作课件,展示分式方程的解法。
2.练习题:准备一些分式方程的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,让学生回顾分式的性质和运算。
2.呈现(10分钟)展示分式方程的解法,引导学生将分式方程转化为整式方程。
3.操练(10分钟)让学生独立解决一些简单的分式方程,巩固所学知识。
4.巩固(10分钟)讲解一些典型的分式方程案例,让学生进一步理解分式方程的解法。
5.拓展(10分钟)引导学生运用分式方程解决实际问题,提高学生的应用能力。
6.小结(5分钟)总结本节课所学内容,让学生明确分式方程的解法及其在实际问题中的应用。
《分式方程》第三课时参考教案

3.4.3 分式方程(三)●教学目标(一)教学知识点1.用分式方程的数学模型反映现实情境中的实际问题.2.用分式方程来解决现实情境中的问题.(二)能力训练要求1.经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力.2.认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型.(三)情感与价值观要求1.经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.2.培养学生的创新精神,从中获得成功的体验.●教学重点1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.2.根据实际意义检验解的合理性.●教学难点寻求实际问题中的等量关系,寻求不同的解决问题的方法.●教具准备实物投影仪投影片三张第一张:做一做,(记作§3.4.3 A)第二张:例3,(记作§3.4.3 B)第三张:随堂练习,(记作§3.4.3 C)●教学过程Ⅰ.提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.Ⅱ.讲授新课出示投影片(§3.4.3 A )[生]第二年每间房屋的租金=第一年每间房屋的租金+500元. (1) [生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租?[生]问题也可以是:这两年每年房屋的租金各是多少?[师]下面我们就来先解决第一个问题:每年各有多少间房屋出租?[师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x 96000元,第二年每间房屋的租金为x102000元,根据题意,得 x 102000=x96000+500 解这个方程,得x=12经检验x=12是原方程的解,也符合题意.所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得:第一年每间房屋的租金为1296000=8000(元), 第二年每间房屋的租金为12102000=8500(元).[师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x+500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得x 96000= 500102000+x 解,得x=8000x+500=8500(元)经检验:x=8000是原分式方程的解,也符合题意.所以这两年每间房屋的租金分别为8000元,8500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.出示投影片(§3.4.3 B )[生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表)[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费.[师]下面我们就来用等量关系列出方程.[师生共析]设超出5 m 3部分的水,每立方米收费设为x 元,则1月份, 张家超出 5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.17⨯-m 3,总用水量为5+x55.15.17⨯-; 李家超出 5 m 3部分的水费为(27.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.27⨯-m 3,总用水量为(5+x55.15.27⨯-) m 3 根据等量关系,得x 55.15.17⨯-+5=(x 55.15.27⨯-+5)×32 解这个方程,得x=2.经检验x=2是所列方程的根.所以超出5 m 3部分的水,每立方米收费2元.Ⅲ.随堂练习出示投影片(§3.4.3 C )[生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本.硬皮本的价格=软皮本的价格×(1+21) [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本的价格为x 元,则硬皮本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )21(15+本.根据题意,得, x 15= x )211(15++1解,得x=5经检验x=5是原方程的根,也符合题意,所以(1+21)x=23×5=7.5(元) 故这种软皮本和硬皮本的价格各为5元、7.5元.Ⅳ.课时小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.Ⅴ.课后作业习题3.8图3-4Ⅵ.活动与探究如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为 3 km ,王老师家到学校的路程为0.5 km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?(2003年吉林省中考题)[过程]分析题目中的等量关系:王老师骑车速度=王老师步行速度×3;王老师从家出发骑车接小明所用的时间=平时步行上学所用时间+20分钟. [结果]设王老师步行速度为x km/h ,则骑自行车的速度为3x km/h. 依题意,得x 35.032+⨯=x 5.0+6020 解得x=5经检验x=5是原方程的根,这时3x=15答:王老师步行速度为5 km/h,骑自行车的速度为15 km/ h.●板书设计。
第3课时 分式方程的应用(2)

方案一:请甲队单独施工完成此工程;
方案二:请乙队单独施工完成此工程;
方案三:甲、乙两队合作完成此工程.以上三种方案哪一种 Nhomakorabea用最少?
解:(2)方案一,费用为2 000×20=40 000(元);
方案二,费用为1 400×30=42 000(元);
方案三,费用为(2 000+1 400)×12=40 800(元).
A.
C.
+
=4
B.
=4
D.
+
-
+
-
+
=200
-
-
=200
3.A,B 两地相距 180 km,新修的跨海大桥开通后,在 A,B 两地间行驶的长途客车平均车速提高了 50%,
而从 A 地到 B 地的时间缩短了 1 h,若设原来的平均车速为 x km/h,则根据题意可列方程为
根据题意,得 + = .解这个方程,得 x=30.
经检验,x=30 是所列方程的根. x= ×30=20.
∴甲队单独完成此工程所需时间为 20 天,乙队单独完成此工程所需的时间为 30 天.
(2)若请甲队施工,公司每日需付费用2 000元;若请乙队施工,公司每日需付费用1 400元.在规定时
他步行到学校少用20 min,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启
动电瓶车等共用4 min.
(1)求李老师步行的平均速度;
解:(1)设李老师步行的平均速度为 x m/min,则他骑电瓶车的平均速度为 5x m/min.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清 第 周 星期 第 节 本学期学案累计: 16 课时 姓名:________
课题:16.3 分式方程(第3课时)
学习目标 我的目标 我实现 1.会分析题意找出等量关系.
2.会列出可化为一元一次方程的分式方程解决实际问题.
学习过程 我的学习 我作主
导学活动1:知识回顾
解下列方程 1.1441222-=-x x 2.x
x x -=+--23123
解分式方程的步骤: 。
导学活动2:知识引入
1.引导说出列方程解应用题的步骤 .
2.相关背景:相关背景:时间速度路程⨯= 时间路程速度= 速度
路程时间= 导学活动3:知识转化
例4:从2004年5月起,某列车平均速度提速40千米/小时,用相同的时间,列车提速前行驶125千米,提速后比提速前多行驶50千米,求提速前列车的平均速度为多少千米/小时?
练习1.从2004年5月起,某列车平均速度提速v 千米/小时,用相同的时间,列车提速前行驶s 千米,提速后比提速前多行驶50千米,求提速前列车的平均速度为多少千米/小时?
徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!
学习评价 我的评价 我自信
当堂检测(限时:12分钟 )我自信 我进取
1、解方程: 22
122=-+-x x x x
2.八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发.结果他们同时到达,已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.
3.两个小组同时开始攀登一座450米高的山,第一组的攀登速度是第二组的2倍,他们比第二组早15分钟到达了顶峰,求两个小组的攀登速度各是多少?
自我小结:列方程解应用题的步骤 自我评价:我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差
课后作业 我的作业 我承担
课本(P32)习题16.3 第6、7题。