大学物理实验迈克尔逊干涉仪讲义

大学物理实验迈克尔逊干涉仪讲义
大学物理实验迈克尔逊干涉仪讲义

迈克尔孙干涉仪

1881年美国物理学家迈克尔孙(A.A.Michelson)为测量光速,依据分振幅产生双光束实现干涉的原理精心设计了这种干涉测量装置。迈克尔孙和莫雷(Morey)用此一起完成了在相对论研究中有重要意义的“以太”漂移实验。迈克尔孙干涉仪设计精巧、应用广泛,许多现代干涉仪都是由它衍生发展出来的。

本实验的目的是了解迈克尔孙干涉仪的原理、结构和调节方法,观察非定域干涉条纹,测量氦氖激光的波长,并增强对条纹可见度和时间相干性的认识。

实验原理

1.迈克尔孙干涉仪的结构和原理

迈克尔孙干涉仪的原理图如图3.1.1-1所示,A和B为材料、厚度完全相同的平行板,A的一面镀上半反射膜,M1、M2为平面反射镜,M2是固定的,M1和精密丝杆相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm,M1和M2后各有几个小螺丝可调节其方位。

光源S发出的光射向A板而分成(1)、(2)两束光,这两束光又经M1和M2反射,分别通过A的两表面射向观察处O,相遇而发生干涉,B作为补偿板的作用是使(1)、(2)两束光的光程差仅由M1、M2与A板的距离决定。

由此可见,这种装置使相干的两束光在相遇之前走过的路程相当长,而且其路径是互相垂直的,分的很开,这正是它的主要优点之一。从O处向A处观察,除看到M1镜外,还可通过A的半反射膜看到M2的虚像M’2,M1与M2镜所引起的干涉,显然与M1、M’2引起的干涉等效,M1和M’2形成了空气“薄膜”,因M’2不是实物,故可方便地改变薄膜的厚度(即M1和M’2的距离),甚至可以使M1和M’2重叠和相交,在某一镜面前还可根据需要放置其他被研究的物体,这些都为其广泛的应用提供了方便。

2.点光源产生的非定域干涉

一个点光源S发出的光束经干涉仪的等效薄膜表面M1和M’2反射后,相当于由两个虚光源S1、S2发出的相干光束(图3.1.1-2)。若原来空气膜厚度(即M1和M’2之间的距离)为h,则两个

虚光源S 1和S 2之间的距离为2h ,显然只要M 1和M’2(即M 2)足够大,在点光源同侧的任一点P 上,总能有S 1和S 2的相干光线相交,从而在P 点处可观察到干涉现象,因而这种干涉是非定域的。

若P 点在某一条纹上,则由S 1和S 2到达该条纹任意点(包括P 点)的光程差?是一个常量,故P 点所在的曲面是旋转双曲面,旋转轴是S 1、S 2的连线,显然,干涉图样的形状和观察屏的位置有关。当观察屏垂直于S 1、S 2的连线时,干涉图是一组同心圆。下面我们利用图3.1.1-3推导?的具体形式。光程差

]1)441[()2(21

222

222222-++++=+-++=?R Z h Zh R Z R Z R h Z 把小括号内展开,则

???

?????+???? ??++-???? ??+++=?...44814421222222222R Z h Zh R Z h Zh R Z ()??????+--+++≈22322232222R Z Z h Z h h R ZR Z R Z hZ

??

????--+=δδδδ233

2222cos cos 2sin 1cos 2Z h Z h Z h h 由于h<

??

? ??+=?δδ2sin 1cos 2Z h h (1) 从式(1)可以看出,在δ=0处,即干涉环的中心处光程差有极大值,即中心处干涉级次最高。如果中心处是亮的,则λm h ==?112。若改变光程差,使中心处仍是亮的,则λ)(222n m h +==?,我们得到

λn h h h 2

1)(211212=?-?=-=? (2)

即M 1和M 2之间的距离每改变半个波长,其中心就“生出”或“消失”一个圆环。两平面反射镜之间的距离增大时,中心就“吐出”一个个圆环。反之,距离减小时中心就“吞进”一个个圆环,同时条纹之间的间隔(即条纹的稀疏)也发生变化。由式(2)λn h 2

1=?可知,只要读出干涉仪中M 1移动的距离?h 和数出相应吞进(或吐出)的环数就可求得波长。

把点光源换成扩展光源,扩展光源中各点光源是独立的、互不相干的,每个点光源都有自己的一套干涉条纹,在无穷远处,扩展光源上任两个独立光源发出的光线,只要入射角相同,都会会聚在同一干涉条纹上,因此在无穷远处就会见到清晰的等倾条纹。当M 1和M’2不平行时,用点光源在小孔径接收的范围内,或光源离M 1和M’2较远,或光是正入射时,在“膜”附近都会产生等厚条纹。

3. 条纹的可见度

使用绝对的单色光源,当干涉光的光程差连续改变时,条纹的可见度一直是不变的。如果使用

的光源包含两种波长λ1及λ2,且λ1和λ2相差很小,当光程差为2121λλ??? ?

?+==m m L (其中m 为正整数)时,两种光产生的条纹为重叠的亮纹和暗纹,使得视野中条纹的可见度降低,若λ1与λ2的光的亮度又相同,则条纹的可见度为零,即看不清条纹了。

再逐渐移动M 1以增加(或减小)光程差,可见度又逐渐提高,直到λ1的亮条纹与λ2的亮条纹重合,暗条纹与暗条纹重合,此时可看到清晰的干涉条纹,再继续移动M 1,可见度又下降,在光程差2123)(λλ??

? ??+?+=?+=?+m m m m L L 时,可见度最小(或为零)。因此,从某一可见度为零的位置到下一个可见度为零的位置,其间光程差变化应为()211λλ+?=??=?m m L 。化简后

L L ?=?=?2

2

1λλλλ (3) 式中21λλλ-=?,221λλλ+=

。利用式(3)可测出纳黄光双线的波长差。

4. 时间相干性问题 时间相干性是光源相干程度的一个描述。为简单起见,以入射角i=0作为例子,讨论相距为d 的薄膜上、下两表面反射光的干涉情况。这时两束光的光程差L=2d ,干涉条纹清晰。当d 增加某一数值d’后,原有的干涉条纹变成一片模糊,2d’就叫作相干长度,用L m 表示。相干长度除以光速c ,是光走过这段长度所需的时间,称为相干时间,用t m 表示。不同的光源有不同的相干长度,因而也有不同的相干时间。对于相干长度和相干时间的问题有两种解释。一种解释是认为实际发射的光波不可能是无穷长的波列,而是有限长度的波列,当波列的长度比两路光的光程差小时,以路光

已通过了半反射镜,另一路还没有到达,这时它们之间就不可能发生干涉,只有当波列长度大于两路光的程差时,两路光才能在半发射镜处相遇发生干涉,所以波列的长度就表征了相干长度。另一种解释认为:实际光源发射的光不可能是绝对单色的,而是有一个波长范围,用谱线宽度来表示。现假设“单色光”的中心波长为λ0,谱线宽度为λ?,也就是说“单色光”是由波长为2

0λλ?-到20λλ?+之间所有的波长组成的,各个波长对应一套干涉花纹。随着距离d 的增加,20λλ?+和2

0λλ?-之间所形成的各套干涉条纹就逐渐错开了,当d 增加到使两者错开一条条纹时,就看不到干涉条纹了,这时对应的m L d ='2就叫做相干长度。由此我们可以得到L m 与λ0及λ?之间的关系为:

λ

λ?=2

0m L (4) 波长差λ?越小,光源的单色性越好,相干长度就越长,所以上面两种解释是完全一致的。相干时间t m 则用下式表示

λ

λ?==c c L t m m 20 (5) 钠光灯所发射的谱线为589.0nm 与589.6nm ,相干长度有2cm 。氦氖激光器所发出的激光单色性很好,其632.8nm 的谱线,λ?只有10-14~10-7nm ,相干长度长达几米到几公里的范围。对白光而言,其λ?和λ是同一数量级,相干长度为波长数量级,仅能看到级数很小的几条彩色条纹。

5. 透明薄片折射率(或厚度)的测量

(1) 白光干涉条纹

干涉条纹的明暗决定于光程差与波长的关系,用白光光源,只有在d=0的附近才能在M 1、M’2交线处看到干涉条纹,这时对各种光的波长来说,其光程差均为2λ(反射时附加2

λ),故产生直线黑纹,即所谓的中央条纹,两旁有对称分布的彩色条纹。d 稍大时,因对各种不同波长的光,满足明暗条纹的条件不同,所产生的干涉条纹明暗互相重叠,结果就显不出条纹来。只有用白光才能判断出中央条纹,利用这一点可定出d=0的位置。

(2) 固体透明薄片折射率或厚度的测定

当视场中出现中央条纹之后,在M 1与A 之间放入折射率为n 、厚度为l 的透明物体,则此时程差要比原来增大

)1(2-=?n l L

因而中央条纹移出视场范围,如果将M 1向A 前移d ,使2

L d ?=,则中央条纹会重新出现,测出d

及l ,可由下式

)1(-=n l d (6)

求出折射率n 。

实验内容

基本内容部分(必做)

1、观察非定域干涉条纹

(1)打开He-Ne 激光器,使激光束基本垂直M 2面,在光源前放一小孔光阑,调节M 2上的三个螺钉(有时还需调节M 1后面的三个螺钉),使从小孔出射的激光束,经M 1与M 2反射后在毛玻璃上重合,这时能在毛玻璃上看到两排光点一一重合。

(2)去掉小孔光阑,换上短焦距透镜而使光源成为发散光束,在两光束程差不太大时,在毛玻璃屏上可观察到干涉条纹,轻轻调节M 2后的螺钉,应出现圆心基本在毛玻璃屏中心的圆条纹。

(3)转动鼓轮,观察干涉条纹的形状,疏密及中心“吞”、“吐”条纹随程差的改变而变化的情况。研究光程差的改变会引起干涉条纹的形状发生怎样的改变。

2、测量He-Ne 激光的波长

采用非定域的干涉条纹测波长。缓慢转动微动手轮,移动M 1以改变h ,利用式(2)λn h 21=?可算出波长,中心每“生出”或“吞进”50个条纹,记下对应的h 值。N 的总数要不小于500条,用适当的数据处理方法求出λ值。

(对以下实验内容,具体的测量方法和步骤均不给出,要求同学在预习过程中自己能够用书面写出。)

提高内容部分(必做)

3、调节观察白光干涉条纹,测透明薄片的折射率。

4、测量液体的折射率(测量方法及实验仪器见附件)。

选做内容部分

5、测钠黄光波长及钠黄光双线的波长差,观察条纹可见度的变化。

6、测量钠光的相干长度。

思考题

1、测He-Ne 激光波长时,要求n 尽可能大,这是为什么?对测得的数据应采用什么方法进行处理?

2、从图3.1.1-1中看,去掉干涉仪中的补偿板B 是否可行,为什么?

附件:

利用迈氏干涉仪测定液体折射率

一、方法介绍

本实验利用迈氏干涉仪测定液体折射率,可以测量透明液体,也可以测量部分透明的液体,如磁流体、各种油类、葡萄酒类、饮料等。

图1迈克尔逊干涉仪基本结构示意图

常用迈克尔逊干涉仪的基本结构如图1所示。在图中S 为光源,G 1是分束板,G 1的一面镀有半反射膜,使照在上面的光线一半反射另一半透射。G 2是补偿板,M 1、M 2为平面反射镜。 图中反射镜M 1为可移动反射镜,为便于反射镜能在液体中运动,本实验对其进行了改装,图2是其结构示意图。

图2动镜M 1示意图

根据干涉原理:

k L n ?=?λ2 (1)

L k n ??=2λ (2)

式中?L 为动镜M 1的移动量, n 为待测样品的折射率,?k 为干涉条纹变化数。

二、实验仪器及辅材

S M 2 M 1 G 1 G 2 CCD 扩束镜 计算机显示系统

迈克尔逊干涉仪,接收光斑信号的CCD,放大干涉条纹的透镜,显示CCD信号的计算机及显示器,大样品池(动镜放置在池内的液体中),He-Ne激光器(波长:632.8nm),激光器调整架,毛玻璃屏等

三、实验内容

1、正确搭建、调试光路;

2、选择好两束相干光束,通过CCD和显示器,观察、记录干涉条纹数据;

3、使用逐差法或其他方法处理数据;

4、计算待定液体折射率,及其不确定度。

八迈克尔逊干涉仪的调节和使用

实验15 迈克耳孙干涉仪的调节与使用 19世纪末,美国物理学家迈克尔孙(A.A.Michelson )为测量光速,依据分振幅产生双光束实现干涉的原理,设计制造了迈克尔孙干涉仪这一精密光学仪器。迈克尔孙与其合作者用这仪器完成了相对论研究中具有重要意义的“以太”漂移实验,实验结果否定了“以太”的存在,为爱因斯坦建立狭义相对论奠定了基础。 在近代物理学和近代计量科学中,迈克尔孙干涉仪不仅可以观察光的等厚、等倾干涉现象,精密地测定光波波长、微小长度、光源的相干长度等,还可以测量气体、液体的折射率等。迈克尔孙1907年获诺贝尔物理学奖。迈克尔孙干涉仪的基本原理已经被推广到许多方面,研制成各种形式的精密仪器,广泛地应用于生产和科学研究领域。近年来,美国物理学家正在用40m ×40m 的迈克尔孙干涉仪探测引力波。 1 [实验目的] 1.1了解迈克耳孙干涉仪的基本结构,学习其调节和使用方法。 1.2观察各种干涉条纹,加深对薄膜干涉原理的理解。 1.3测定激光的波长。 2 [实验仪器] 迈克耳孙干涉仪(WSM-100型),多束光纤激光器,钠光灯。 3 [仪器介绍] WSM-100型迈克耳孙干涉仪的主体结构如图16-1所示,主要由底座、导轨、拖板、定镜、读数及传动系统、附件等六个部分组成。 3.1底座 底座由生铁铸成,较重,确保证了仪器的稳定性。由三个调平螺丝9支撑,调平后可以拧紧锁紧圈10以保持座架稳定。 3.2导轨 导轨7由两根平行的长约280毫米的框架和精密丝杆6组成,被固定在底座上精密丝杆穿过框架正中,丝杆螺 距为1毫米,如图16-2所示。 3.3拖板部分 拖板是一块平板,反面做成与导轨吻合的凹槽,装在导轨上,下方是精密螺母,丝杆穿过螺母,当丝杆旋转时,拖板能前后移动,带动固定在其上的移动镜11(即M 1)在导轨面上滑动,实现粗动。M 1是一块很精密的平面镜,表面镀有金属膜,具有较高的反射率,垂直地固定在拖板上,它的法线严格地与丝杆平行。 M 1倾角可分别用镜背后面的三颗滚花螺丝13来调节,各螺丝的调节范围是有限度的,如果螺丝向后顶得过松,在移动时可能因震动而使镜面有倾角变化,如果螺丝向前顶得太紧,致使条纹不规则,严重时,有可能将螺丝丝口打滑或平面镜破损。 3.4定镜部分 图16-1 迈克耳逊干涉仪的结构示意图 图16-2 导轨结构示图

迈克尔逊干涉仪实验报告87789

迈克耳逊干涉仪 一.实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二.实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三.实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。

如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离为d,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M′2平行,则各处d相同,可得等倾干涉。系统具有轴对称不变性,故屏E上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d增加则中心“冒出”一个条纹,反之d减小则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N与d的变化量△d之间有下列关系 根据该关系式就可测量光波波长λ或长度△d。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1, 此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差 为,且由关系算出谱线的精细结构。 四.实验结果计与分析 次数初读数 d1(mm) 末读数 d2(mm) △ d=|d1-d2| (mm) (nm)(nm ) 137.7247937.754420.02963592.6592.6

迈克尔逊干涉仪测He-Ne激光的波长

实验十 迈克尔逊干涉仪测He-Ne 激光的波长 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作设计制作出来的精密光学仪器。它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。在近代物理和计量技术中有广泛的应用。 【实验目的】 1.了解迈克尔逊干涉仪的特点,学会调整和使用。 2.学习用迈克尔逊干涉仪测量单色光波长及薄玻璃片厚度的方法。 【实验仪器】 WSM-100型迈克尔逊干涉仪,HNL -55700型H e -N e 激光器、扩束镜,白赤灯,毛玻璃片,光具座,薄玻璃片。 【实验原理】 迈克尔逊干涉仪工作原理:如图10-1所示。在图中S 为光源,G 1是分束板,G 1的一面镀有半反射膜,使照在上面的光线一半反射另一半透射。G 2是补偿板,M 1、M 2为平面反射镜。 光源H e -N e 激光器S 发出的光经会聚透镜L 扩束后,射入G 1板,在半反射面上分成两束光:光束(1)经G 1板内部折向M 1镜,经M 1反射后返回,再次穿过G 1板,到达屏E ;光束(2)透过半反射面,穿过补偿板G 2射向M 2镜,经M 2反射后,再次穿过G 2,由G 1下表面反射到达屏E 。两束光相遇发生干涉。 补偿板G 2的材料和厚度都和G 1板相同,并且与G 1板平行放置。考虑到光束(1)两次穿过玻璃板,G 2的作用是使光束(2)也两次经过玻璃板,从而使两光路条件完全相同,这样,可以认为干涉现象仅仅是由于M 1镜与M 2镜之间的相对位置引起的。 为清楚起见,光路可简化为图10-2所示,观察者自E 处向G 1板看去,透过G 1板,除直接看到M 1镜之外,还可以看到M 2镜在G 1板的反射像M 2',M 1镜与M 2'构成空气薄膜。事实上M 1、M 2镜所引起的干涉,与M 1、M 2'之间的空气层所引起的干涉等效。 1.干涉法测光波波长原理: 考虑M 1、M 2'完全平行,相距d 时的情况。点光源S 在镜M 1、M 2'中所成的像s '、s ''构成相距d 2的相干光源,光路如图10-3所示。设s ''到0点的距离 为h 。这种情况下,干涉现象发生在两光相遇的所有空间中,因此干涉是非定域 的。对于屏幕上任意一点P 处,设s ''到0点的距离为h 。两像光源发出的光相 遇时的光程差为δ,P 点处发生相长干涉的条件为: λ=θ-θ+=δk h d 2h 2 1cos cos (10—1) 由(10-1)式,结合图3可以看出,保持h 与d 不变,令P 点向外移动时,1θ、2θ将增大,对应级次K 将伴随δ减小,所以中央条纹的级次高。 2E 图10-1 迈克尔逊干涉仪原理图 M M '图10-3干涉光程计算 2S 图10-2 迈克尔逊干涉仪简化光路

大学物理实验-迈克尔逊干涉仪

(1312实验室)迈克尔逊干涉仪实验 一.实验目的 (1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法 (2)学习一种测定光波波长的方法,加深对等倾的理解 (3)用逐差法处理实验数据 二.实验仪器 迈克尔逊干涉仪、He-Ne激光器、扩束镜等。 三.实验原理 迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson)和莫雷(E.W.Morley)合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。 1.干涉仪的光学结构 迈克尔逊干涉仪的光路和结构如图1与2 所示。M1、M2是一对精密磨光的平面反射镜, M1的位置是固定的,M2可沿导轨前后移动。G1、 G2是厚度和折射率都完全相同的一对平行玻璃 板,与M1、M2均成45°角。G1的一个表面镀 有半反射、半透射膜A,使射到其上的光线分为 光强度差不多相等的反射光和透射光;G1称为 分光板。当光照到G1上时,在半透膜上分成相 互垂直的两束光,透射光(1)射到M1,经M1 反射后,透过G2,在G1的半透膜上反射后射向 E;反射光(2)射到M2,经M2反射后,透过 G1射向E。由于光线(2)前后共通过G1三次, 而光线(1)只通过G1一次,有了G2,它们在 玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以G2称为补偿板。当观察者从E处向G1看去时,除直接看到M2外还看到M1的像M1ˊ。于是(1)、(2)两束光如同从M2与M1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M1′~M2间“形成”的空气薄膜的干涉等效。 反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 2. 单色点光源的非定域干涉 本实验用He-Ne激光器作为光源(见图3),激光通过扩束镜L汇聚成一个强度很高的点光源S,射向迈克尔逊干涉仪,点光源经平面镜M2、M2反射后,相当于由两个点光源S1ˊ和S2ˊ发出的相干光束。Sˊ是S的等效光源,是经半反射面A所成的虚像。S1′是S′经M1′所成的虚像。S2′是S′经M2所成的虚像。由图3可知,只要观察屏放在两点光源

迈克尔逊干涉仪实验报告精品

1 2 1 2 1 2 1 2 1 2 实验目的: 1) 学会使用迈克尔逊干涉仪 2) 观察等倾、等厚和非定域干涉现象 3) 测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源 S 出 发的光经过称 45。 放置的背面镀银的半透玻璃板 P 1 被分成互相垂直的强度几乎相等的两束光, 光 路 1 通过 M 1 镜反射并再次通过 P 1 照射在观察平 面 E 上,光路 2 通过厚度、折射率与 P 1 相同的玻 璃板 P 2 后由 M 2 镜反射再次通过 P 2 并由 P 1 背面的 反射层反射照射在观察平面 E 上。图中平行于 M 的M ' 是M 经 P 反射所成的虚 1 2 2 1 像,即 P 到 M 与 P 到 M ' 的光程距离相等,故从 P 到M 的光路可用 P 到M ' 等 价替代。这样可以认为 M 与 M ' 之间形成了一个空气间隙, 这个空气间隙的厚度 可以通过移动 M 1 完成,空气间隙的夹角可以通过改变 M 1 镜或 M 2 镜的角度实现。 当 M 与M ' 平行时可以在观察平面 E 处观察到等倾干涉现象,当 M 与M ' 有一 1 2 1 2 定的夹角时可以在观察平面 E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当 θ =0 时的光程差 δ 最大,即圆心所对应的

1 2 1 2 干 涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心 “冒出” ;若 d 减小时,圆环逐渐 缩小, 最后“淹没”在中心处。 每“冒” 出或“ 缩”进一个干涉环,相应的光程差改变了一个波长, 也就是 M 与 M ’ 之间距离 变化了半个波长。 若将 M 与 M ’ 之间距离改变了 △d 时,观察到 N 个干涉环变化,则 △d=N 由此可测单色光 的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到 随着动镜 M 1 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即 反衬度从最大到最小再到最大的周期性变化, 利用这一特性, 可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1) )观察非定域干涉条纹 1) 通过粗调手轮打开激光光源, 调节激光器使其光束大致垂直于平面反光镜 M 2 入射,取掉投影屏 E ,可以看到两排激光点 2) 粗调手轮移动 M 1 镜的位置,使得通过分光板分开的两路光光程大致相等 3) 调节M 1 、M 2 镜后面的两个旋钮, 使两排激光点重合为一排,并使两个最 亮的光点重合在一起。此时再放上投影屏 E ,就可以看到干涉条纹。 4) 仔细调节 M 、 M 镜后面的两个旋钮,使 M 与 M ' 平行,这时在屏上可 以看到同心圆条纹,这些条纹为非定域条纹。 5) 转动微调手轮,观察干涉条纹的形状、疏密及中心“吞” 、“吐”条纹随光程差 改变的变化情况。

迈克尔逊干涉仪测‘

实验四 用迈克尔逊干涉仪空气的折射率 一、实验目的 用分离的光学元件构建一个迈克尔逊干涉仪。 通过降低空气的压强测量其折射率。 二、仪器和光学元件 光学平台;HeNe 激光;调整架,35x35mm ;平面镜,30x30mm ;磁性基座;分束器50:50;透镜,f=+20mm ;白屏;玻璃容器,手持气压泵,组合夹具,T 形连接,适配器,软管,硅管 三、实验原理 借助迈克尔逊干涉仪装置中的两个镜,光线被引进干涉仪。通过改变光路中容器内气体的压强,推算出空气的折射率。 If two Waves having the same frequency ω , but different amplitudes and different phases are coincident at one location , they superimpose to ()()2211sin sin αα-?+-?=wt a wt a Y The resulting can be described by the followlng : ()α-?=wt A Y sin w ith the amplitude δ cos 22122212?++=a a a a A (1) and the phase difference 21ααδ-= In a Michelson interferometer , the light beam is split by a half-silvered glass plate into two partial beams ( amplitude splitting ) , reflected by two mirrors , and again brought to interference behind the glass plate . Since only large luminous spots can exhibit circular interference fringes , the Iight beam is expanded between the laser and the glass plate by a lens L . If one replaces the real mirror M3 with its virtual image M3 /, , Which is formed by reflection by the glass plate , a point P of the real light source appears as the points P / , and P " of the virtual light sources L l and L 2 · Due to the different light paths , using the designations in Fig . 2 , 图 2 the phase difference is given by : θλπδcos 22???=d (2) λis the wavelength of the laser ljght used . According to ( 1 ) , the intensity distribution for a a a ==21 is 2cos 4~2 22δ??=a A I (3) Maxima thus occur when δis equal to a multiple of π2,hence with ( 2 ) λθ?=??m d cos 2;m=1,2,….. ( 4 )

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

实验6-5-迈克尔逊干涉仪的原理与使用

实验6—5 迈克尔逊干涉仪的原理与使用 一.实验目的 (1).了解迈克尔逊干涉仪的基本构造,学习其调节和使用方法。 (2).观察各种干涉条纹,加深对薄膜干涉原理的理解。 (3).学会用迈克尔逊干涉仪测量物理量。 二.实验原理 1.迈克尔逊干涉仪光路 如图所示,从光源S 发出的光线经半射镜 的反射和透射后分为两束光线,一束向上 一束向右,向上的光线又经M 1 反射回来, 向右的光线经补偿板后被反射镜M2反射回来? 在半反射镜处被再次反射向下,最后两束光线在 观察屏上相遇,产生干涉。 2.干涉条纹 (1).点光源照射——非定域干涉 如图所示,为非定域干涉的原理图。点S1是光源 相对于M1的虚像,点S 2’是光源相对于M2所成 的虚像。则S1、S2`所发出的光线会在观察屏上形 成干涉。 当M1和M2相互垂直时,有S1各S2`到点A 的 光程差可近似为: i d L cos 2=? ① 当A 点的光程差满足下式时 λk i d L ==?cos 2 ② A 点为第k级亮条纹。 由公式②知当i 增大时c osi 减小,则k 也减小,即条纹级数变高,所以中心的干涉条纹的级次是最高的 (2)扩展光源照明——定域干涉在点光源之前加一毛玻璃,则形成扩展光源,此时形 成的干涉为定域干涉,定域干涉只有在特定的位置才能看到。 ①.M 1与M2严格垂直时,这时由于d 是恒定的,条纹只与入射角i 在关,故是等倾干涉 ②.M 1与M2并不严格垂直时,即有一微小夹角,这种干涉为等厚干涉。当M1与M2夹角很小,且入射角也很小时,光程差可近似为 )21(2)2sin 1(2cos 222 i d i d i d L -≈-=≈?③ 在M1与M2`的相交处,d =0,应出现直线条纹,称中央条纹。 3.定量测量 (1).长度及波长的测量 由公式②可知,在圆心处i =0 0, cosi=1,这时 λk d L ==?2 ④ 从数量上看如d减小或增大N 个半波长时,光程差L ?就减小或增大N 个整波长,对应

迈克尔逊干涉仪实验报告

实验目的: 1)学会使用迈克尔逊干涉仪 2)观察等倾、等厚和非定域干涉现象 3)测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏 实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源S 出发的光经过称。45放置的背面镀银的半透玻璃板1P 被分成互相垂直的强度几乎相等的两束光,光 路1通过1M 镜反射并再次通过1P 照射在观察平 面E 上,光路2通过厚度、折射率与1P 相同的玻 璃板2P 后由2M 镜反射再次通过2P 并由1P 背面 的反射层反射照射在观察平面E 上。图中平行于1M 的'2M 是2M 经1P 反射所成的虚像,即1P 到2M 与1P 到'2M 的光程距离相等,故从1P 到2M 的光路可用1P 到'2M 等价替代。这样可以认为1M 与'2M 之间形成了一个空气间隙,这个空气间隙的厚度可以通过移动1M 完成,空气间隙的夹角可以通过改变1M 镜或2M 镜的角度实现。当1M 与' 2M 平行时可以在观察平面E 处观察到等倾干涉现象,当1M 与'2M 有一定的夹角时可以在观察平面E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当θ =0 时的光程差δ 最大,即圆心所对应的干

涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心“冒出” ;若 d 减小时,圆环逐渐 缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是 M 与M ’之间距离 变化了半个波长。 若将 M 与 M ’之间距离改变了△d 时,观察到 N 个干涉环变化,则△d =N 由此可测单色光的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1)观察非定域干涉条纹 1)通过粗调手轮打开激光光源,调节激光器使其光束大致垂直于平面反光镜2M 入射,取掉投影屏E ,可以看到两排激光点 2)粗调手轮移动1M 镜的位置,使得通过分光板分开的两路光光程大致相等 3)调节1M 、2M 镜后面的两个旋钮,使两排激光点重合为一排,并使两个最亮的光点重合在一起。此时再放上投影屏E ,就可以看到干涉条纹。 4)仔细调节1M 、2M 镜后面的两个旋钮,使1M 与' 2M 平行,这时在屏上可以看到同心圆条纹,这些条纹为非定域条纹。 5)转动微调手轮,观察干涉条纹的形状、疏密及中心“吞”、“吐”条纹随光程差改变的变化情况。

迈克尔逊干涉仪实验与最佳测量区间的分析

迈克尔逊干涉仪实验与最佳测量区间的分析 摘要:用迈克尔逊干涉仪能观察到等倾干涉、等厚干涉条纹和白光干涉的彩色条纹。产生等倾干涉与等厚干涉不仅与M 1与2'M 之间的夹角α有关,还受其间空气 层厚度d 的影响。在测H e-N e 激光波长时,通过分析,在一定的测量区间内,测得的波长误差较小。本文主要对等倾干涉等厚干涉所遇到的现象、特点及仪器的调节图像的判断进行分析,接着分析白光干涉现象中央条纹的亮暗,最后对测波长的最佳区间分析,并经过实验得出最佳测量范围。 关键词:迈克尔逊干涉仪 等倾干涉 等厚干涉 白光干涉 最佳测量区间 Michelson interferometer experiment with the best measurement interval analysis Abstract: Such dumping intervention, uniform thickness interference, white stripe and color interference fringes as can be observed in the Michelson interferometer. Inclined to interfere in the formation and the thickness intervention with the M 1 and 2'M the angle, which is also affected by the air layer thickness d effects. The He – Ne laser wavelength measurement, after analysis, in a certain interval measurement, the measurement error of wavelength is smaller. In this paper, such as the dumping of interference encountered thick interference phenomena, characteristics and the regulatory apparatus judgment image analysis then analyzes white interference fringes of the central-darkness, in the final test ,after the best wavelength interval analysis, we carry out some experiments and make out the best measurement range Key words: Michelson interferometer dumping intervention uniform thickness interference the white light interference best sampling interval

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪(实验报告) 一、实验目的 1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2、区别等倾干涉、等厚干涉和非定域干涉,测定He-Ne 激光波长 二、实验仪器 迈克尔逊干涉仪、He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。 (图一) (图二) 三、实验原理 ①用He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板P1和P2上后就将光分成了两束分别射到M1 和M2 上,反射后通过P1 、P2 就可以得到两束相关光,此时就会产生干涉条纹。 ②产生干涉条纹的条件,如图2 所示,B 、C 是两个相干点光源,则到A 点的光程差δ =AB-AC=BCcosi , 若在A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数) ,因为i 和k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k? 。 四、实验步骤 1、打开激光电源,先不要放扩束镜,让激光照到分光镜P1 上,并调节激光的反射光照射到激光筒上。 2、调节M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。 3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。没有的话重复2 、3 步骤,直到产生同心圆的干涉条纹图案。 4、微调M2是干涉图案处于显示屏的中间。 5、转动微量读数鼓轮,使M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。记下当前位置的读数d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进30 次则记一次数据,共记录10 次数据即d0、d1 (9) 6、关闭激光电源,整理仪器,处理数据。 五、实验数据处理 数据记录: 数据处理: Δd0=d5-d0=0.05202mm??????? Δd1=d6-d1=0.05225mm Δd2=d7-d2=0.04077mm??????? Δd3=d8-d3=0.04077mm Δd4=d9-d4=0.05071mm Δd(平均)=(Δd0+Δd1+Δd2+Δd3+Δd4)/5 =0.047304mm

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

迈克尔逊干涉仪(实验报告)

一、实验目的 1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2、区别等倾干涉、等厚干涉和非定域干涉,测定 He-Ne 激光波长 二、实验仪器 迈克尔逊干涉仪、 He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。 (图一) (图二) 三、实验原理 ①用 He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板 P1和 P2上后就将光分成了两束分别射到 M1 和 M2 上,反射后通过 P1 、 P2 就可以得到两束相关光,此时就会产生干涉条纹。 ②产生干涉条纹的条件,如图 2 所示, B 、 C 是两个相干点光源,则到 A 点的光程差δ =AB-AC=BCcosi , 若在 A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数 ) ,因为 i 和 k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k。 四、实验步骤 1、打开激光电源,先不要放扩束镜,让激光照到分光镜 P1 上,并调节激光的反射光照射到激光筒上。 2、调节 M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。 3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在 P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。没有的话重复 2 、 3 步骤,直到产生同心圆的干涉条纹图案。 4、微调 M2是干涉图案处于显示屏的中间。 5、转动微量读数鼓轮,使 M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。记下当前位置的读数 d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进 30 次则记一次数据,共记录 10 次数据即 d0、 d1 (9)

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报 告 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

迈克耳逊干涉仪 一. 实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二. 实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三. 实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。 如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚

干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M ′2之间的距离为d ,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M ′2平行,则各处d 相同,可得等倾干涉。系统具有轴对称不变性,故屏E 上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d 增加 则中心“冒出”一个条纹,反之d 减小 则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N 与d 的变化量△d 之间有下列关系 根据该关系式就可测量光波波长λ或长度△d 。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为: 当,时V=1,此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差为,且由关系算出谱线的精细结构。 四. 实验结果计与分析 钠光的平均波长 次数 初读数 d 1(mm ) 末读数 d 2(mm ) △d=|d 1-d 2| (mm) (nm) (nm) 1 其中λ=2*Δd/100,根据λ0=; = E=% 钠光的精细结构:

迈克尔逊干涉仪测量空气折射率

空气折射率的测量 学习要点和重点: 1、迈克尔逊干涉仪原理, 2、利用迈克尔逊干涉原理测量气体折射率的方法。 学习难点: 1、 光路的调整, 2、 干涉条纹变化数目的读取。 迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。本实验利用迈克尔逊原理测量空气折射率。 一、 实验目的与要求 1、 学习一种测量气体折射率的方法; 2、 进一步了解光的干涉现象及其形成条件; 3、 学习调整光路的方法。 二、 实验仪器 He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。 三、 实验原理 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。2M '表示M 2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为 M 2M 图1 迈克尔逊干涉仪光路示意图

)(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为nm 0.633的光的折射率 00027652.1=n ,它与真空折射率之差为410765.2)1(-?=-n 。用一般方法不易测出这个折射率差, 而用干涉法能很方便地测量,且准确度高。 四、 实验内容及步骤 (一)实验装置 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 (二)测量方法 图2 测量空气折射率实验装置示意图 气压表

迈克尔逊干涉实验思考题

迈克尔逊干涉实验思考题 1、什么是干涉?什么是光的干涉?光的干涉有哪些必要与先决条件?什么是想干光? 2、光的干涉实验现象是什么?本实验光的干涉现象是什么? 3、在物理光学中有两类光的干涉现象,一种是等厚干涉,一种是等倾干涉,什么是等倾干涉?“等倾”是什么概念?指的是谁和谁的夹角? 4、等倾干涉是哪两束光在什么条件下出现的什么光学现象?此现象与等厚干涉的牛顿环有什么区别? 5、激光经扩束镜后的光线是平行光吗?为什么?激光经扩束镜后的光线与等倾干涉现象有何关系?如果激光经扩束镜后的光线是平行光又会出现什么干涉现象?为什么? 6、迈克尔逊干涉仪是一种分振幅双光束干涉仪,在实验中,激光光束是如何分解的?分解后的两束光经定反射镜和动反射镜回到观察屏出现等倾干涉的实验条件是什么? 7、补偿板的作用是什么(请详细说明)?取消补偿板还能实现光的等倾干涉现象吗?为什么? 8、在实验中,为了说明问题的方便把哪一个反射镜虚拟化?虚拟化的前提是什么? 9、在实验中,正确的操作是我们看到:观测屏会出现明暗相间的等倾干涉同心圆环。这说明形成干涉的两束光是平行光汇聚同一圆环,为什么?这两束光与各自的反射镜法线反射角是什么状态?如果不平行会出现什么实验现象?为什么? 10、形成等倾干涉的两束光的光程差公式,讲义上直接给出了,请予以详细说明。 11、本实验的实验条件是什么?用什么实验方法能达到实验条件?具体如何操作?每一步骤的目标是什么?具体如何操作? 12、在本实验中,观测屏出现什么实验现象才可记录实验数据?为什么?等倾干涉中心圆斑干涉现象与牛顿环干涉圆斑有何区别? 13、什么是实验计数的条件?有些什么要求?在实验计数中,干涉圆环中心发生漂移是什么光学现象?为什么必须克服才能继续实验?

用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长 〔引课:〕 在大学物理中我们学习了光的薄膜干涉,知道薄膜干涉现象分为两种: 在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢? ***************************** 迈克尔逊干涉仪 ***************************** ***注意*** 本实验只利用迈克尔逊干涉仪测量等倾干涉图像 〔正课:〕 实验目的与要求 迈克尔逊干涉仪的构造 迈克尔逊干涉仪的原理 迈克尔逊干涉仪的使用 实验原理 1.迈克尔逊干涉仪的构造 等厚干涉等倾干涉

2.迈克尔逊干涉仪的原理 (1) 光路图 图30—2 迈克尔逊干涉仪光路图 光源S发出的光到达分光板 1 G后,被分成振幅(强度)几乎相等的反射光(1)和透射光(2)。光束(1)向着 1 M前进,光束(2)经过 2 G后向着 2 M前进,这两束光分别在 1 M和2 M上反射后逆着各自的入射方向返回,最后到达光屏E。由于这两束光是来自同一光源S的同一束光,因此他们是两列相干光束,在E 处必有干涉图样形成。

(2) 光程差的计算 1M 和2M ˊ平行时(1M ⊥ 2M ),将观察屏垂直置于S 1和S 2ˊ连线处,就可以观察到等倾干涉圆环条纹。由于1M 和2M ˊ之间 为空气,折射率n =1,故光程差 θδcos 2d =。 并且有: θδcos 2d == ?? ? ? ?----+--------暗条纹明条纹λλ)2/1(k k ( k=0、1、2…) 对光程差δ作进一步的分析: 图30—4 非定域等倾干涉

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告 一、实验题目:迈克尔逊干涉仪 二、实验目的: 1. 了解迈克尔逊干涉仪的结构、原理和调节方法; 2. 观察等倾干涉、等厚干涉现象; 3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长; 三、实验仪器: 迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏、小孔光阑四、实验原理(原理图、公式推导和文字说明): 在图M 2′是镜子M 2 经A面反射所成的虚像。调整好的迈克尔逊干涉仪,在 标准状态下M 1、M 2 ′互相平行,设其间距为d.。用凸透镜会聚后的点光源S是 一个很强的单色光源,其光线经M 1、M 2 反射后的光束等效于两个虚光源S 1 、S 2 ′ 发出的相干光束,而S 1、S 2 ′的间距为M 1 、M 2 ′的间距的两倍,即2d。虚光源 S 1、S 2 ′发出的球面波将在它们相遇的空间处处相干,呈现非定域干涉现象,其 干涉花纹在空间不同的位置将可能是圆形环纹、椭圆形环纹或弧形的干涉条纹。 通常将观察屏F安放在垂直于S 1、S 2 ′的连线方位,屏至S 2 ′的距离为R,屏上 干涉花纹为一组同心的圆环,圆心为O。 设S 1、S 2 ′至观察屏上一点P的光程差为δ,则 )1 /) (4 1 ( ) 2 ( 2 2 2 2 2 2 2 2 2 - + + + ? + = + - + + = r R d Rd r R r R r d R δ (1) 一般情况下d R>>,则利用二项式定理并忽略d的高次项,于是有

??? ? ??+++=? ??? ??+-++?+=)(12)(816)(2)(4222 22222222222 2 r R R dr r R dR r R d R r R d Rd r R δ (2) 所以 )sin 1(cos 22θθδR d d + = (3) 由式(3)可知: 1. 0=θ,此时光程差最大,d 2=δ,即圆心所对应的干涉级最高。旋转微调鼓轮使M 1移动,若使d 增加时,可以看到圆环一个个地从中心冒出,而后往外扩张;若使d 减小时,圆环逐渐收缩,最后消失在中心处。每“冒出”(或“消失”)一个圆环,相当于S 1、S 2′的距离变化了一个波长λ大小。如若“冒出”(或“消失”)的圆环数目为N ,则相应的M 1镜将移动Δd ,显然: N d /2?=λ (4) 从仪器上读出Δd 并数出相应的N ,光波波长即能通过式(4)计算出来。 2. 对于较大的d 值,光程差δ每改变一个波长所需的θ的改变量将减小,即两相邻的环纹之间的间隔变小,所以,增大d 时,干涉环纹将变密变细。 五、实验步骤 六、实验数据处理(整理表格、计算过程、结论、误差分析): m m 105-5?=?仪 N=30

相关文档
最新文档