人教版四年级数学下册 四则运算 讲义
人教版四年级数学下册 总复习 讲义

总复习总复习——四则运算本学期内容总结:{四则运算观察物体(二)运算定律小数的意义和性质三角形小数的加法和减法图形的运动(二)平均数与条形统计图数学广角——鸡兔同笼四则运算即加、减、乘、除,计算的话相信大家都会,但它们表示的意义以及什么时候使用哪种运算呢?我们就来复习一下例1、加、减、乘、除的概念(1)(),叫做加法。
相加的两个数叫做(),加得的数叫做()。
(2)(),叫做减法。
在减法中,已知的和叫做(),已知的加数叫做(),未知的加数叫做()。
(3)()叫做乘法。
相乘的两个数叫做(),乘得的数叫做()。
(4)()叫做除法。
例2、四则运算中,各部分的关系。
(1)加法各部分的关系:(2)减法各部分的关系:①()①()②()②()③()(3)乘法各部分的关系:(4)除法各部分的关系:①()①()②()②()③()(5)加法与减法互为逆运算,乘法与除法互为逆运算。
例3、四则运算的运算顺序:从()往()运算,先算()法,再算加减法()。
例4、括号有()括号、()括号、()括号,分别写作()、()、()。
例5、四则混合运算的顺序:步骤①:有括号,要先算()里面的式子。
从()往()运算,先算()括号的,再算()括号的,最后算()括号的。
步骤②:没有括号,也要从()往()运算。
先算()法,后算()法。
例6、在计算(200-36×47)÷44时,先算(),再算(),最后算()法,结果是()。
例7、650-320÷80,如果要改变运算顺序,先算减法,那么必须使用括号,算式是()。
例8、根据500÷125=4,4+404=408,804-408=396组成一个综合算式是()。
例9、与0相关的性质(1)一个数加上0,得()。
例如:5+0=5,9+0=9 。
(2)一个数减去0,得()。
例如:5-0=5,9-0=9 。
(3)当被减数等于减数,它们的差等于()。
例如:5-5=(),9-9=()。
第1讲 四则运算(单元讲义)-四年级下册数学热点难点一网打尽 人教版

第1讲四则运算(单元讲义)-四年级下册数学热点难点一网打尽人教版一、教学目标1.掌握基本的四则运算方法。
2.了解四则运算的优先级规则。
3.能够运用四则运算来解决日常生活中的问题。
二、教学重难点1.四则运算的基本方法。
2.运用四则运算解决实际问题。
三、教学过程1.导入新知识通过课堂讨论,引导学生发现四则运算在生活中的应用,如购物、计算食物配方等等。
通过这些例子,激发学生学习四则运算的兴趣和积极性。
2.四则运算基本概念在导入新知识之后,我们将通过教学案例解释四则运算的基本概念,如加法、减法、乘法和除法。
并通过示范性对话和实际算术例子,阐明四则运算的基本操作及其步骤。
加法:将两个或多个数合在一起,称为加法。
比如:14 + 21 = 35减法:将一个数从另一个数中减去,称为减法。
比如:87 - 16 = 71乘法:将两个或多个数相乘,称为乘法。
比如:9 × 6 = 54除法:将一个数分为若干部分,每一部分与另一个数相除,称为除法。
比如:45 ÷ 9 = 53.四则运算的优先级引导学生理解四则运算的优先级规则。
加括号是先运算的,然后乘除法,最后是加减法。
例如:5 + 8 ÷ 4 - 2 × 3 + 6 = 2首先,解决括号。
然后,先进行乘除法:8 ÷ 4 = 2, 2 × 3 = 6。
最后进行加减法,得到 5 + 2 - 6 + 6 = 2。
4.四则运算的应用通过实际例子,让学生了解四则运算在日常生活中的应用,如购物、计算食品配方等等。
并让学生通过实践运用四则运算,解决实际问题,从而提高他们的数学运算能力。
五、总结通过本次课程,学生已经掌握了四则运算的基本方法、优先级规则和实际应用。
我们希望他们能够在日常生活中积极运用所学知识,同时也希望他们能够在接下来的学习中更加熟悉、精通四则运算。
六、教学方式本节课针对四则运算的教学可以采用多种方式,包括但不限于:1.课堂演示通过教师演示和提问,向学生展示四则运算的基本步骤和优先级规则。
小学四年级下册数学讲义第一章 四则运算 人教新课标版(含解析)

人教版小学四年级数学下册同步复习与测试讲义第一章四则运算【知识点归纳总结】1、加减法的意义和各部分间的关系。
(1)把两个数合并成一个数的运算,叫做加法。
加法各部分间的关系:和=加数+加数加数=和-另一个数(2)已知两个数的和与其中一个加数,求另一个数的运算,叫做减法。
减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=差+减数(3)加法和减法是互逆运算。
【经典例题】1.下列算式中,小括号可以省略不写的是()A.(48﹣12)÷9B.87﹣(23+37)C.49+(8×7)【分析】逐个分析选项,找出去掉小括号后运算顺序没有变化的算式即可.【解答】解:A:(48﹣12)÷9是先算小括号里面的减法,再算括号外的除法;去掉小括号后变成48﹣12÷9,是先算除法,再算加法;运算顺序变化了;B:87﹣(23+37)是先算小括号里面的加法,再算减法;去掉小括号后变成87﹣23+37,是先算减法,再算加法;运算顺序变化了;C:49+(8×7)是先算小括号里面的乘法,再算括号外的加法;去掉小括号后变成49+8×7,是先算乘法,再算加法,运算顺序没有变化.所以C选项的小括号可以省略不写.故选:C.【点评】本题考查了小括号的作用:改变运算的顺序.2、乘除法的意义和各部分间的关系。
(1)求几个相同加数的和的简便运算,叫做乘法。
乘法各部分间的关系:积=因数×因数因数=积÷另一个因数(2)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
除法各部分间的关系:商=被除数÷除数除数=被除数÷商被除数=商×除数(3)乘法和除法是互逆运算。
【经典例题】2.下面的括号里应该填几?8×9﹣=25×6+20=74【分析】(1)先用8乘9,再用求出的积减去25即可;(2)先用74减去20,求出差,再用求出的差除以6即可.【解答】解:(1)8×9﹣25=72﹣25=47即:8×9﹣47=25;(2)(74﹣20)÷6=54÷6=9即:9×6+20=74;故答案为:47,9.【点评】解决本题逆着计算的顺序,根据加减法的互逆关系以及乘除法的互逆关系求解.3、关于“0”的运算(1)、“0”不能做除数;字母表示:a÷0错误(2)、一个数加上0还得原数;字母表示:a+0= a(3)、一个数减去0还得原数;字母表示:a-0= a(4)、被减数等于减数,差是0;字母表示:a-a = 0(5)、一个数和0相乘,仍得0;字母表示:a×0= 0(6)、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 0(7)、0÷0得不到固定的商;5÷0得不到商.(8)被减数等于减数,差是0 。
人教版四年级数学下册第一单元《四则运算》课件

3×4=12
因数×因数=积 12÷3=4 有12枝花,每3枝插一瓶,可以插几瓶?
12÷4=3
有12枝花,平均插到4个花瓶里,每个花瓶 插几枝?
二、自主探究,乘除法定义
3×4=12 因数×因数=积
除法:已知两个因数的积与其 中一个因数,求另一个因数的 运算叫除法。
四、巩固应用,拓展提高。
(2)根据加、减法各部分间的关系,写出另外两
个算式。
17×42=714
714÷17=42 714÷41=17
③ 蜗牛6小时爬了30m,平均每小时爬行几米?
30÷6=5(米) 答:蜗牛平均每小时爬行5米。
四、巩固应用,拓展提高。
1.基本练习。 (1)下面各题应用什么方法计算?为什么?
④ 一头大象的体重是5600kg,正好是一头牛的8 倍。这头牛重多少千克?
5600÷8=700(人) 答:这头牛重700千克。
二、自主探究,乘除法定义
每个花瓶里插3枝花,4个花瓶一共插多少枝花? 3×4=12
因数×因数=积
乘法:求几个相同加数和的简便运算叫乘法。
二、自主探究,乘除法定义
每个花瓶里插3枝花,4个花瓶一共插多少枝花?
3×4=12
因数×因数=积
结合情景和这个乘法算 式也改写出用其他运算方 法计算的问题吗?
二、自主探究,乘除法定义
第一单元 四则运算
加、减法的意义及 各部分间的关系 (例1)
一、创设情境,提出问题
中国新世纪四大工程之一。
青藏铁路
一、创设情境,提出问题
814km 1142km
西宁到拉萨的铁路长多少千米? 格力木到拉萨的铁路长多少千米? 西宁到格里木的铁路长多少千米?
人教版四年级数学下册《四则运算》第4课时教学课件精品PPT小学优秀课堂课件

人教版小学四年级数学下册第 1 单元第 4 课时 括 号问题:我们目前学过哪几种运算?我们学过的加、减、乘、除四种运算统称四则运算。
(加法、减法、乘法、除法)说出下列各题的运算顺序,并进行计算120÷5-2= 120÷(5-2)=2240为什么算出的结果不同呢?这是因为小括号的作用(一)感受小括号的作用(1)96÷12+4×2问题:说一说这道题的运算顺序,再计算。
第一步:除法:96÷12第二步:乘法:4 ×2第三步:加法:8+8 96÷12+4 ×2=8+8=164说说这道题的运算顺序,再计算。
(2) 96÷(12+4)×2第一步:加法:12+4第二步:除法:96÷(12+4)第三步:乘法:96÷(12+4)×2 96÷(12+4)×2=96÷16×2=6×2=12▲秘诀就在:算式中有小括号时,要先算小括号里面的动动脑筋,为什么(1)(2)算式得出不一样的结果?小结:(1)只有加、减法或只有乘、除法运算的算式,按从左往右的顺序计算。
(2)既有加、减法又有乘、除法运算的算式,要先算乘除法,再算加减法。
(3)如果有括号的算式,要先算括号里面的。
(二)感受中括号的作用96÷[(12+4)×2]=96÷[16×2]=96÷32=3问题: 1. 如果在96÷(12+4)×2的基础上再加上中 括号,你知道运算顺序应该是怎样的吗?2. 先说一说运算的顺序,再计算。
总结一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
先说一说下面各题的运算顺序,再计算。
360÷(70-4×16)=360÷(70-64)=360÷6=60 158-[(27+54)÷9]=158-[81÷9]=158-9=149列式计算:(1)43与76的和乘以17与14的差,积是多少?(43+76)×(17-14)=119×3=357(2)125除以84减79的差,商是多少?125÷(84-79)=125÷5=25一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
人教版小学四年级数学下册第一单元《四则运算》集体备课主讲稿

人教版四年级数学下册《第一单元》单元备课(一)教学内容本单元的教学主要内容有五个:1、加减法的意义和各部分之间的关系2、乘除法的意义和各部分之间的关系3、有关零的运算4括号5、解决问题-租船问题。
另外包括练习一至练习三的三个练习。
(二)教材说明:这一单元是这册书中一个重点单元。
本单元主要教学并梳理混合运算的顺序。
混合运算前面学生已经学会按从左往右的顺序计算两步式题,并且知道括号的作用,这里主要教学含有两级运算的运算顺序,并对所学的混合运算的顺序进行整理。
其主要内容有:整理同级运算的顺序,教学并整理含两级运算的顺序及含有小括号的运算顺序、有关0的运算。
(三)学情分析四则运算的知识和技能是小学生学习数学需要掌握的基础知识和基本技能。
学生在一到三年级时已经学习了较多关于四则混合运算的知识,在解决现实问题的过程中,能初步理解混合运算的作用,体会运算顺序。
在第二学段本册的教学内容中,学生已经具备较丰富的感性经验基础,能够较好的理解比较抽象的运算顺序,符合学生的学习认知规律。
(四)教学目标:1、理解加减法的意义及各部分之间的关系;理解乘除法的意义及各部分之间的关系。
进一步掌握含有两级运算的运算顺序,正确计算三步式题。
熟练掌握四则混合运算顺序加带有括号的混合运算顺序。
2、经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。
3、学会解决租船问题类型的应用题,在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
(五)教学重、难点:1、熟练掌握四则混合运算顺序加带有括号的混合运算顺序。
学会解决租船问题类型的应用题,在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
2、四则混合运算顺序的学习。
解决问题-租船问题也是本单元的难点。
(六)教学建议:本单元中一个新的亮点就是整理混合运算的顺序是结合解决问题进行的。
目标中学生既要掌握运算顺序,又要理解解决问题的基本策略和步骤。
小学数学人教版四年级下册《四则运算括号解决问题》教育教学课件
你是怎么做的?
如果给96÷12+4×2添上小括号,运算 顺序会发生什么变化?
96÷ 12 + 4 ×2 96÷(12+4)×2 先动算手什算么 一呢 算? !
先算小括号里的。
96÷ 12 + 4 ×2
96÷(12+4)×2 =96÷16×2 =6×2 =12
如果在96÷(12+4)×2的基础上再加上中括号,运算
顺序会发生什么变化?
96÷(12+4)×2
96÷[(12+4)×2]
现在应该怎么算? 先算小括号里的, 再算中括号里的。
如果在96÷(12+4)×2的基础上再加上中括号,运算 顺序会发生什么变化?
96÷(12+4)×2 动手算一算!
96÷[(12+4)×2]
=96÷[16×2]
=96÷32 =3
先说一说下面各题的运算顺序,再计算。
1. 春游。 怎样租车最省钱?
总人数:326+14=340(人) 340÷40=8(辆)……20(人) 租8辆大车,1辆小车: 8×900+1×500=7700(元) 答:租8辆大车和1辆小车最省钱。
2.旅行社推出“××风景区一日游 ”的两种价格方案。
(1)成人6人,儿童4人,选哪种方案合算?
360÷(70-4×16)
= 360÷(70-64) = 360÷6 = 60
158-[(27+54)÷9]
= 158-[81÷9] = 158-9 = 149
你知道吗?
带括号的混合运算的顺序
(1)只有加、减法或只有乘、除法运算的算式,按从左往 右的顺序计算。
(2)既有加、减法又有乘、除法运算的算式,要先算乘除 法,再算加减法。
新人教版四年级数学下册四下数学第一单元-四则运算完整ppt课件
• 分类:
关于0的运算都有哪些。
•
关于0的运算你还有什么想问的或想说的吗?
关于0
• 一个数加上0,还得原数。 • 被减数等于减数,差是0。 • 一个数和0相乘,仍得0。 • 0除以一个非0的数,还得0。 • 0能否做除数?
总结
• 0不能做除数。 • 如5÷0不可能得到商,因为找不到一个数同0相乘得到5
手套,还剩多少钱?(冬衣:54元,手套6元) • 买两副手套呢?
作业2月27周三
• 作业本:P2 (课堂完成) • 同步:P2(校内完成) • 书本作业P8—9(5—9题)(家庭作业)
08-3 练习一P8-9
回顾四则运算顺序
复习
四则运算 运算顺序(一)
• 在没有括号的算式里,如果只有加、减法或者只有乘、 除法,都要从左往右按顺序计算。
观察主题图P6
成人票:24元 儿童票:半价
从图中你们都看到了什么?能提出什么数学问题?
例3 星期天,爸爸妈妈带着玲玲去“冰雪天地” 游玩,购买门票需要花多少钱?
例3
例3 星期天,爸爸妈妈带着玲玲去“冰雪天地” 游玩,购买门票需要花多少钱?
(1)24+24+24÷2
=24+24+12 =48+12 =60(元)
作业评价
• C:错误很多 • C+:错误很多,但做到书写认真。 • B:错的不多,但也没有全对。 • B+:在B的要求上做到书写认真 • A:全对,书写不过关。 • A+:全对,并且书写认真。 • A++:连续两天以上得到A+。 • (不是字写得有多好,是看你到底有没有认真做、页面
清不清楚)
08-2 四则混合运算P6-7例3
1.4四则运算解决问题(学霸课堂笔记)-2023-2024学年数学四年级下册同步培优讲义(人教版)
1.4 四则运算解决问题第一部分知识清单灵活运用有余数除法的有关知识解决生活最省钱问题。
可以先假设,再调整,最后比较,从而找出最优方案;要把的几种方案都列出来,根据具体的计算得出结论。
在一个算式里,既有小括号,又有中括号,要先算小括号里的,再算中括号里的,最后算括号外面的。
只有当中括号里的算式都算完时,才能去掉中括号哦!解决租船问题的策略:根据船的租金及限乘人数,先计算哪种船的租金更便宜;假设所有人都乘坐租金便宜的船,如果正好坐满,无空座,那么这种租法最省钱;如果没坐满,就再调整,调整时要做到尽量让船坐满。
第二部分典型例题例1:李叔叔手机话费第一季度共花了341元,第二季度452元,第三季度431元,李叔叔平均每月的电话费是( )元。
答案:136分析:一个季度3个月,三个季度就是9个月,算出三个季度话费的总和,再除以9,就是平均每个月的电话费,据此解答。
详解:(341+452+431)÷(3×3)=1224÷9=136(元)例2:如下图:4个杯子叠起来高20厘米,6个杯子叠起来高26厘米。
那么,象这样的10个杯子叠起来高( )厘米。
答案:38分析:先用6个杯子叠起来的高度减去4个杯子叠起来的高度,算出相差的2个杯子高度是多少,10个杯子和6个杯子相差4个杯子,也就是相差两个2个这样叠起来杯子的高度,用6个杯子叠起来的高度加上两个相差2个杯子高度差,即可算出10个这样的杯子叠起来的高度是多少。
据此解答。
详解:(26-20)×2+26=6×2+26=12+26=38(厘米)4个杯子叠起来高20厘米,6个杯子叠起来高26厘米。
那么,象这样的10个杯子叠起来高38厘米。
例3:亚运会吉祥物钥匙扣每个39元,飞向未来徽章每个27元,明明一共买了8个,花了276元。
明明买了( )个钥匙扣,( )个飞向未来徽章。
答案: 5 3分析:已知吉祥物钥匙扣每个39元,飞向未来徽章每个27元,总共买8个,直接列出可能的个数,计算出价格看是否等于276元即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四则运算知识点一、加法与减法的意义以及各部分之间的关系以前我们学过了加、减、乘、除这四则运算,相信同学的计算都很棒!但是有一个问题,会计算不代表真的懂哦~你知道它们的含义吗?老师先从加法开始,提几个问题考考大家。
思考:以下问题是用加法计算的吗?如果是,请问你是根据什么来判断用加法的?(1)小明有5个苹果,小亮有6个苹果,问他们一共有多少个苹果?(2)四年(1)班原有45名同学,后来转校来了3名同学,问现在四年(1)班有多少名同学?(3)工程队修一条道路,第一天修了600米,剩下400米没修,问这条道路有多长?1、(),叫做加法。
相加的两个数叫做(),加得的数叫做()。
明白了加法的含义,我们来看减法的。
2、加法与减法互为()运算。
老师先举几道题,你们想想,这些题都是用减法吗?如果是,请问什么时候用减法呢?例1、小刚数学考试得了97分,小明数学考试得了89分,问小刚比小明多多少分?例2、王小明原有100元,买文具用去了20元,还剩多少钱?例3、王小明和李小锤一共有10个苹果,其中王小明有6个苹果,问李小锤有多少个苹果?3、(),叫做减法。
在减法中,已知的和叫做(),已知的加数叫做(),未知的加数叫做()。
例4、判断下面各题用的是加法还是减法?(1)仓库两天一共运进粮食1000千克,第一天运进了420千克,第二天运进了多少千克?用()法(2)一辆卡车已经行驶了18千米,后来又行驶了5千米,问卡车一共行驶了多少千米?用()法(3)爸爸今年50岁,王小明今年11岁,则爸爸比小明大多少岁?用()法(4)商场全天卖出575件商品,上午卖出了278件商品,问下午卖出了多少件商品?用()法4、加法各部分的关系:5、减法各部分的关系:①()①()②()②()③()例5、已知○+△=□,下列算式正确的是()A、○+□=△B、△+□=○C、□-△=○课堂练习1、已知两个数的和是793,其中一个加数是297,另一个加数是()2、已知两个数的差是628。
如果被减数是731,则减数是();如果减数是137,则被减数是()。
3、计算下面各题,并运用加、减法各部分间的关系进行验算。
(1)450+270= (2)421-97= (3)375+587= (4)813-479=4、博物馆上午有320人参观,中午离去85人,下午又来了128人,现在有多少人?5、刘老师批改98篇作文,第二天批改了20篇,比第一天多批改了8篇,还有多少篇没有批改?6、王老师在新华书店买了一本故事书18元,一本教学用书22元,他给营业员50元,营业员应找给王老师多少钱?知识点二、乘法与除法的意义以及各部分之间的关系学完加法和减法,我们来看乘除。
思考:王小明陪妈妈去买哈密瓜,一个哈密瓜5元/斤,如果他买6斤,则一共要付多少钱?1、()叫做乘法。
相乘的两个数叫做(),乘得的数叫做()。
乘法还可以在以下两种情况下使用:①求一个数的几倍是多少。
②题目涉及到“速度×时间=路程”、“工作效率×工作时间=工作总量”、“单价×数量=总价”等公式。
最后我们来讲讲除法,这样就凑齐一家人啦~2、我们知道,乘法与除法互为()运算。
思考:小明有12个苹果,是小刚的3倍,问小刚有多少个苹果?3、()叫做除法。
乘法还可以在以下两种情况下使用:①把一个数平均分。
②题目涉及到“速度×时间=路程”、“工作效率×工作时间=工作总量”、“单价×数量=总价”等公式。
例1、运动会上315个同学参加体操表演。
他们平均分成5组,每组多少个同学?例2、5辆卡车6次运水泥150吨,平均一辆卡车一次运多少吨?例3、工厂有煤8000千克, 原计划烧25天, 由于改进炉灶, 实际烧了32天, 平均每天比原计划节约多少千克? 例4、一辆汽车6小时行了300千米,一列火车6小时行了600千米,火车比汽车每小时多行多少千米?4、乘法各部分的关系:5、除法各部分的关系:①()①()②()②()③()课堂练习1、甲数是乙数的52倍。
(1)如果乙数是364,那么甲数是()。
(2)如果甲数是364,那么乙数是()。
2、用竖式计算下面各题。
(1)569÷32= (2)240×36= (3)306×29= (4)3105÷14= (5)384÷32= (6)240×36= (7)306×35=3、某小学在荒山上植树,第一年共植树300棵,第二年植树4次,每次植树80棵,哪一年植的树多?多多少棵?4、红星小学有6个年级,每个年级有5个班。
平均每班的图书角有42本书,这个学校的图书角一共有多少本书?5、四年级同学去参观科技展览。
把160人平均分成4队,每队平均分成5组,每组有多少人?6、工地需要1280袋水泥, 用8辆大车4次才全部运来, 一辆大车一次可运多少袋化肥?(用两种方法计算)7、师、徒两人共同加工一批零件,两个星期完成了任务,师傅每天加工55个,徒弟每天加工50个,师傅比徒弟一共多加工零件多少个?8、服装加工部用120米布可做成人制服24套, 如果做儿童服装, 可做30套, 每套儿童服装比成人服装少用布多少米?9、一个养鸡场四月份卖出12300只鸡, 五月份卖出的比四月份的2倍还少200只, 两个月一共卖出多少只鸡?10、四年级植树80棵,比五年级少植20棵,六年级植树棵数是四年级的2倍,三个年级共植树多少棵?11、某商场去年上半年出售彩色电视机2050台,下半年出售彩色电视机的台数是上半年的2倍少1200台。
该商场去年共出售彩色电视机多少台?12、小明身高126厘米,是堂弟身高的2倍,而叔叔的身高比堂弟身高的3倍少13厘米。
叔叔身高多少厘米?13、甲、乙两个存粮仓库,甲仓库有大米40袋,乙仓库有大米170袋。
从乙仓库运多少袋给甲仓库,可使乙仓库的大米袋数正好是甲仓库的2倍?14、光明小学共27个班,每班各买一个脸盆和一条毛巾一共要用去189元,每条毛巾3元,每个脸盆多少元?15、5人4小时做了80朵纸花,平均每人4小时做多少朵纸花?平均每人每小时做多少朵纸花?知识点三、与0相关的运算性质1、我们知道,0表示“()”,理解了它的含义,我们就可以掌握与0相关的运算性质啦~2、一个数加上0,也就是加上“没有”,什么都没有加上。
所以:一个数加上0,得()。
例如:5+0=5,9+0=9 。
3、一个数减去0,也就是减去“没有”,什么都没有损失。
所以:一个数减去0,得()。
例如:5-0=5,9-0=9 。
4、当被减数等于减数,它们的差等于()。
例如、5-5=(),9-9=()。
5、根据乘法的意义,5×6表示()个()相加,那么0×6表示()个()相加,所以结果是()。
所以:一个数和0相乘,得()。
思考:0除以任何数都得0吗?分析:(1)要求0÷5=□,根据“乘法与除法互为逆运算”就是要□×5=0,显然□代表的数只能是()。
所以:0除以任何不为0的数,都得()。
(2)要求0÷0=□,根据“乘法与除法互为逆运算”就是要□×0=0,□代表的数有无数个。
因此我们规定:0不能为()数。
知识点四、四则运算以及它的运算顺序1、()、()、()、()四种运算统称为四则运算。
2、我们知道四则运算的时候要从()往()运算,先算()法,再算加减法()。
王小明同学听了就不乐意了,他最近看电视剧,那些霸道总裁不总是人又帅,又不受世俗的约束嘛~我长大以后也想当霸道总裁啊。
在计算四则运算的时候我们可以使用括号,使用了它,我们就仿佛成为了霸道总裁一样,想先算哪儿就先算哪儿。
思考:对于式子56÷8+6×2。
(1)如果我们想先算8+6,那么应该怎么使用括号呢?(2)如果想先算8+6,然后再用这个结果来乘以2,又该怎么使用括号呢?3、括号有()括号、()括号、()括号,分别写作()、()、()。
4、四则混合运算的顺序:步骤①:有括号,要先算()里面的式子。
从()往()运算,先算()括号的,再算()括号的,最后算()括号的。
步骤②:没有括号,也要从()往()运算。
先算()法,后算()法。
例1、在计算(200-36×47)÷44时,先算(),再算(),最后算()法,结果是()。
例2、650-320÷80,如果要改变运算顺序,先算减法,那么必须使用括号,算式是()。
例3、根据500÷125=4,4+404=408,804-408=396组成一个综合算式是()。
例4、我来当裁判员!(1)437-37×2+8 (2)1500÷15-15×4=400×2+8 = 1500÷0×4=8008 = 0()()(3)720÷(15-3×2) (4)3889-(108-931)×5 (5)(800+200÷50)×3=720÷(12×2) =3889-149×5 =(100÷50)×3=720÷24 =3889-745 =20×3=30 =3144 =60()()()例5、根据下面的算式列出综合算式。
(1)221×3=663 (2)217+123=340208÷16=13 340÷17=20663+13=676 500-20=480综合算式综合算式例6、填空(1)甲数比乙数的2倍多15,乙数是30,甲、乙两数的和是()。
(2)把47扩大为原来的10倍得(),所得的数比原数增加()个47。
(3)甲数是乙数的一半,丙数是乙数的2倍,丙数是甲数的()倍。
例7、甲、乙两人装配自行车,甲每小时装8辆,乙每小时装6辆,两人各装配240辆。
乙比甲要多用多少小时? 例8、食堂有57袋大米,已经吃了12袋,剩下的如果每天吃9袋,还可以吃()天。
例9、水果店运来苹果和梨各6箱,苹果每箱25千克,梨每箱20千克,一共运来水果()千克。
例10、师、徒二人共做一批零件。
师傅每天做48个,徒弟两天做68个,6天完成任务,这批零件共有多少个? 例11、幼儿园买了1个足球和4个小皮球,一共花了26元,一个小足球10元。
一个小皮球多少钱?例12、某化肥厂一月份生产化肥310吨,二月份生产400吨,三月份生产490吨化肥,平均每月生产化肥多少吨?课堂练习1、750减去25的差,去乘20加上13的和,积是多少?正确列式是()A、(750-25)×(20+13)B、(20+13)×(750-25)C、750-25×20+132、与12÷4结果相等的式子是()A、(12×2)÷(4×4)B、(12÷2)÷(4÷2)C、(12+2)÷(4+2)3、32×5÷32×5=()A、1B、0C、254、50减去25的差乘20加上13的和,积是多少?正确列式是()A、50-25×20+13B、(50-25)×20+13C、(50-25)×(20+13)5、在一个没有括号的等式里,如果只有加减法,或者只有乘除法,要按()的顺序计算,如果既有加减,又有乘除法,要先算(),后算()。