武大2009年数学物理方法

合集下载

武汉大学2006—2009分专业录取分数线

武汉大学2006—2009分专业录取分数线

2006年
2007年
平均分 最高分 平均分 最高分
628
630
638
645
646
646
652
655
—— ——
659
660
—— —— —— ——
659
664
665
666
—— ——
—— ——
637 ——
638 ——
641
642
641
642
653
654
655
662
651
654
653
656
644
648
650
638
639
636 ——
645
640 ——
649
651
657
638
643
638
644
641
658
647
651
—— ——
—— ——
635
656
648
657
637
659
646
655
640
650
641
648
637
638
648
651
632
661
648
651
627
628
637
656
—— ——
625
633
629
652 —— ——
636 660
637 649 642 652
668 —— ——
659 667
645 666 669 656
639
644
654
663
658
660
655
658
634

南昌大学20092012历数学物理方法期末试卷A卷(附所有答案)

南昌大学20092012历数学物理方法期末试卷A卷(附所有答案)

南昌大学 2021~2021学年第二学期期末考试试卷试卷编号:6032(A)卷课程编号:Z5502B011课程名称:数学物理方法考试形式:闭卷适用班级:物理系 08各专业姓名:学号:班级:学院:专业:考试日期:题号一 二 三 四五六七八九十总分 累分人题分484012100签名得分考生考前须知: 1、本试卷共 5页,请查看试卷中是否有缺页或破损。

如有举手报告以便更换。

2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

一、填空题 (每题4分,共48分)得分评阅人1.设i 为虚数单位,复数1 2i/(2 i)__ ; ln(1 i3) 。

2.设i 为虚数单位,且x 和y 为实数,复变函数 f(z) xiy __ (填“是〞或“不是〞)可导的,理由是3. x 2 y 2是否有可能为某解析函数 f(z)的实部?答:__ (填“有可能〞或“不可能〞),理由是4. 1 [(x 2 1)tan(sinx)(x)]dx 。

20213e z20215. 根据柯西公式,积分z dz|z2021|3 20216. 函数f(z)z 2z 阶极点;在极点处的留数z 2有________个极点,为__________3z4为________________________。

第1页共28页7.当1|z| 2,试以原点为中心将1 做级数展开为z 2 3z21(0 t 1)8. f(t)1( 1 t0)的傅里叶变换为 。

(|t|1)9. 1t 2te t 的拉普拉斯变换为 。

数学物理方程如果没给定解条件,一般会有__________个解;数学物理方程定解问题的适定性是指解的____________,____________,__________。

一根两端(左端为坐标原点而右端xl 〕固定的弦,用手在离弦左端长为l/6处把弦朝横向拨开距离h ,然后放手任其振动。

横向位移u(x,t)的初始条件为。

12.偏微分方程u xx2u xy 4u yy 5u x 7u y 3xy 9 0的类型为 (备选答案:A.双曲型B.抛物型C. 椭圆型D. 混合型);为了得到标准形,可以采用的自变量函数变换为 。

2009年湖北省高考数学试卷(理科)及答案

2009年湖北省高考数学试卷(理科)及答案

2009年湖北省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}2.(5分)设a为非零实数,函数y=(x∈R,且x≠﹣)的反函数是()A.y=(x∈R,且x≠﹣)B.y=(x∈R,且x≠)C.y=(x∈R,且x≠1)D.y=(x∈R,且x≠﹣1)3.(5分)投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n ﹣mi)为实数的概率为()A.B.C.D.4.(5分)函数y=cos(2x+)﹣2的图象F按向量平移到F′,F′的函数解析式为y=f(x),当y=f(x)为奇函数时,向量a可以等于()A.(,﹣2)B.(,2)C.(,﹣2) D.(,2)5.(5分)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,则不同分法的种数为()A.18 B.24 C.30 D.366.(5分)设+a2n x2n,则[(a 0+a2+a4+…+a2n)2﹣(a1+a3+a5+…+a2n﹣1)2]=()A.﹣1 B.0 C.1 D.7.(5分)已知双曲线的准线过椭圆的焦点,则直线y=kx+2与椭圆至多有一个交点的充要条件是()A.K∈[﹣,]B.K∈[﹣∞,﹣]∪[,+∞]C.K∈[﹣,]D.K∈[﹣∞,﹣]∪[,+∞]8.(5分)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元9.(5分)设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C10.(5分)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.1378二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知关于x的不等式的解集,则实数a=.12.(5分)如图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数落在[6,10]内的频数为,数据落在(2,10)内的概率约为.13.(5分)如图,卫星和地面之间的电视信号沿直线传播,电视信号能够传送到达的地面区域,称为这个卫星的覆盖区域.为了转播2008年北京奥运会,我国发射了“中星九号”广播电视直播卫星,它离地球表面的距离约为36000km.已知地球半径约为6400km,则“中星九号”覆盖区域内的任意两点的球面距离的最大值约为km.(结果中保留反余弦的符号).14.(5分)已知函数f(x)=f′()cosx+sinx,则f()的值为.15.(5分)已知数列{a n}满足:a1=m(m为正整数),a n+1=若a6=1,则m所有可能的取值为.三、解答题(共6小题,满分75分)16.(10分)一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6.现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量η=x+y,求η的分布列和数学期望.17.(12分)已知向量=(cosα,sinα),=(cosβ,sinβ),=(﹣1,0).(1)求向量的长度的最大值;(2)设α=,且⊥(),求cosβ的值.18.(12分)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=a,点E是SD上的点,且DE=λa(0<λ≤2)(Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE(Ⅱ)设二面角C﹣AE﹣D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθ•tanφ=1,求λ的值.19.(13分)已知数列{a n}的前n项和S n=﹣a n﹣()n﹣1+2(n∈N*).(1)令b n=2n a n,求证:数列{b n}是等差数列,并求数列{a n}的通项公式.(2)令c n=,试比较T n与的大小,并予以证明.20.(14分)过抛物线y2=2px(p>0)的对称轴上一点A(a,0)(a>0)的直线与抛物线相交于M、N两点,自M、N向直线l:x=﹣a作垂线,垂足分别为M1、N1.(Ⅰ)当a=时,求证:AM1⊥AN1;(Ⅱ)记△AMM1、△AM1N1、△ANN1的面积分别为S1、S2、S3,是否存在λ,使得对任意的a>0,都有S22=λS1S3成立?若存在,求出λ的值,否则说明理由.21.(14分)在R上定义运算:(b、c∈R是常数),已知f1(x)=x2﹣2c,f2(x)=x﹣2b,f(x)=f1(x)f2(x).①如果函数f(x)在x=1处有极值,试确定b、c的值;②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;③记g(x)=|f′(x)|(﹣1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3﹣3bx2+4b3=(x+b)(x﹣2b)2)2009年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•湖北)已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}【分析】先根据向量的线性运算化简集合P,Q,求集合的交集就是寻找这两个集合的公共元素,通过列方程组解得.【解答】解:由已知可求得P={(1,m)},Q={(1﹣n,1+n)},再由交集的含义,有⇒,所以选A.2.(5分)(2009•湖北)设a为非零实数,函数y=(x∈R,且x≠﹣)的反函数是()A.y=(x∈R,且x≠﹣)B.y=(x∈R,且x≠)C.y=(x∈R,且x≠1)D.y=(x∈R,且x≠﹣1)【分析】从条件中函数y=(x∈R,且x≠﹣)中反解出x,再将x,y互换即得原函数的反函数,再依据函数的定义域求得反函数的定义域即可.【解答】解:由函数y=(x∈R,且x≠﹣)得:x=,∴函数y=(x∈R,且x≠﹣)的反函数是:y=(x∈R,且x≠﹣1).故选D.3.(5分)(2009•湖北)投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n﹣mi)为实数的概率为()A.B.C.D.【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,虚部为0,求出m、n的关系,求出满足关系的基本事件的个数,求出概率即可.【解答】解:因为(m+ni)(n﹣mi)=2mn+(n2﹣m2)i为实数所以n2=m2故m=n则可以取1、2、3、4、5、6,共6种可能,所以,故选C.4.(5分)(2009•湖北)函数y=cos(2x+)﹣2的图象F按向量平移到F′,F′的函数解析式为y=f(x),当y=f(x)为奇函数时,向量a可以等于()A.(,﹣2)B.(,2)C.(,﹣2) D.(,2)【分析】由左加右减上加下减的原则可确定函数y=cos(2x+)﹣2到y=﹣sin2x 的路线,进而确定向量.【解答】解::∵y=cos(2x+)﹣2∴将函数y=cos(2x+)﹣2向左平移个单位,再向上平移2个单位可得到y=cos(2x+)=﹣sin2x∴=(,2)故选B.5.(5分)(2009•湖北)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,则不同分法的种数为()A.18 B.24 C.30 D.36【分析】由题意知本题可以先做出所有情况再减去不合题意的结果,用间接法解四名学生中有两名学生分在一个班的种数是C42,顺序有A33种,而甲乙被分在同一个班的有A33种,两个相减得到结果.【解答】解:∵每个班至少分到一名学生,且甲、乙两名学生不能分到一个班用间接法解四名学生中有两名学生分在一个班的种数是C42,元素还有一个排列,有A33种,而甲乙被分在同一个班的有A33种,∴满足条件的种数是C42A33﹣A33=30故选C.6.(5分)(2009•湖北)设+a2n x2n,则[(a 0+a2+a4+…+a2n)2﹣(a1+a3+a5+…+a2n﹣1)2]=()A.﹣1 B.0 C.1 D.【分析】本题因为求极限的数为二项式展开式的奇数项的系数和的平方与偶数项的系数和的平方的差,故可以把x赋值为1代入二项展开式中,求出A=a0+a1+a2+a3+…a2n﹣1+a2n=,再令x=﹣1,可得到B=a0﹣a1+a2﹣a3+a4﹣a5+…﹣a2n﹣1+a2n=,而求极限的数由平方差公式可以知道就是式子A与B的乘积,代入后由平方差公式即可化简为求得答案.【解答】解:令x=1和x=﹣1分别代入二项式+a2n x2n中得a0+a1+a2+a3+…a2n﹣1+a2n=,a0﹣a1+a2﹣a3+a4﹣a5+…﹣a2n﹣1+a2n=由平方差公式得(a0+a2+a4+…+a2n)2﹣(a1+a3+a5+…+a2n﹣1)2=(a0+a1+a2+a3+…a2n﹣1+a2n)(a0﹣a1+a2﹣a3+a4﹣a5+…﹣a2n﹣1+a2n)═==所以[(a 0+a2+a4+…+a2n)2﹣(a1+a3+a5+…+a2n﹣1)2]==0故选择B7.(5分)(2009•湖北)已知双曲线的准线过椭圆的焦点,则直线y=kx+2与椭圆至多有一个交点的充要条件是()A.K∈[﹣,]B.K∈[﹣∞,﹣]∪[,+∞]C.K∈[﹣,]D.K∈[﹣∞,﹣]∪[,+∞]【分析】先求得准线方程,可推知a和b的关系,进而根据c2=a2﹣b2求得b,椭圆的方程可得,与直线y=kx+2联立消去y,根据判别式小于等于0求得k的范围.【解答】解:根据题意,双曲线中,c2=2+2=4,则c=2,易得准线方程是x=±=±1所以c2=a2﹣b2=4﹣b2=1即b2=3所以方程是联立y=kx+2可得(3+4k2)x2+16kx+4=0由△≤0解得k∈[﹣,]故选A8.(5分)(2009•湖北)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元【分析】根据题中的叙述将实际问题转化为不等式中的线性规划问题,利用线性规划确定最值【解答】解:设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z=400x+300y的最小值.解得当时,z min=2200.故选B.9.(5分)(2009•湖北)设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C【分析】求出球的体积的表达式,然后球的导数,推出,利用面积的导数是体积,求出球的表面积的增长速度与球半径的比例关系.【解答】解:由题意可知球的体积为,则c=V′(t)=4πR2(t)R′(t),由此可得,而球的表面积为S(t)=4πR2(t),=S′(t)=4πR2(t)=8πR(t)R′(t),所以V表即V=8πR(t)R′(t)=2×4πR(t)R′(t)=表故选D10.(5分)(2009•湖北)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.1378【分析】根据图形观察归纳猜想出两个数列的通项公式,再根据通项公式的特点排除,即可求得结果.【解答】解:由图形可得三角形数构成的数列通项,同理可得正方形数构成的数列通项b n=n2,则由b n=n2(n∈N+)可排除D,又由,与无正整数解,故选C.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2009•湖北)已知关于x的不等式的解集,则实数a=﹣2.【分析】先利用解分式不等式的方法转化原不等式,再结合其解集,得到x=﹣是方程ax﹣1=0的一个根,最后利用方程的思想求解即得.【解答】解:∵不等式,∴(ax﹣1)(x+1)<0,又∵关于x的不等式的解集,∴x=﹣是方程ax﹣1=0的一个根,∴a×(﹣)﹣1=0,∴a=﹣2.故答案为:﹣2.12.(5分)(2009•湖北)如图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数落在[6,10]内的频数为64,数据落在(2,10)内的概率约为0.4.【分析】从直方图得出数落在[6,10]内的频率和数据落在(2,10)内的频率后,再由频率=,计算频数即得.【解答】解:观察直方图易得数落在[6,10]内的频率=0.08×4;数据落在(2,10)内的频率=(0.02+0.08)×4;∴样本数落在[6,10]内的频数为200×0.08×4=64,频率为0.1×4=0.4.故答案为64 0.4.13.(5分)(2009•湖北)如图,卫星和地面之间的电视信号沿直线传播,电视信号能够传送到达的地面区域,称为这个卫星的覆盖区域.为了转播2008年北京奥运会,我国发射了“中星九号”广播电视直播卫星,它离地球表面的距离约为36000km.已知地球半径约为6400km,则“中星九号”覆盖区域内的任意两点的球面距离的最大值约为12800arccos km.(结果中保留反余弦的符号).【分析】先求出球的半径,然后求出∠AOB的余弦值,求出角,再求其外接球面上两点A,B间的球面距离.【解答】解:如图所示,可得AO=42400,则在Rt△ABO中可得:cos∠AOB=,所以l=cosθ×R=2∠AOB•R=12800arccos.球面距离的最大值约为:12800arccos.故答案为:12800arccos.14.(5分)(2009•湖北)已知函数f(x)=f′()cosx+sinx,则f()的值为1.【分析】利用求导法则:(sinx)′=cosx及(cosx)′=﹣sinx,求出f′(x),然后把x等于代入到f′(x)中,利用特殊角的三角函数值即可求出f′()的值,把f′()的值代入到f(x)后,把x=代入到f(x)中,利用特殊角的三角函数值即可求出f()的值.【解答】解:因为f′(x)=﹣f′()•sinx+cosx所以f′()=﹣f′()•sin+cos解得f′()=﹣1故f()=f′()cos+sin=(﹣1)+=1故答案为1.15.(5分)(2009•湖北)已知数列{a n}满足:a1=m(m为正整数),a n+1=若a6=1,则m所有可能的取值为4,5,32.【分析】由题设知a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.【解答】解:∵数列{a n}满足:a1=m(m为正整数),a n+1=,a6=1,∴a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.故答案为:4,5,32.三、解答题(共6小题,满分75分)16.(10分)(2009•湖北)一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6.现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量η=x+y,求η的分布列和数学期望.【分析】随机变量η=x+y,依题意η的可能取值是5,6,7,8,9,10,11,结合变量对应的事件,根据相互独立事件同时发生的概率做出概率的值,写出分布列和期望.【解答】解:随机变量η=x+y,依题意η的可能取值是5,6,7,8,9,10,11得到P(η=5)=;P(η=6)=P(η=7)=;P(η=8)=P(η=9)=;P(η=10)=P(η=11)=∴η的分布列为η56789101 1P∴Eη=5×+6×+7×+8×+9×+10×+11×=817.(12分)(2009•湖北)已知向量=(cosα,sinα),=(cosβ,sinβ),=(﹣1,0).(1)求向量的长度的最大值;(2)设α=,且⊥(),求cosβ的值.【分析】(1)利用向量的运算法则求出,利用向量模的平方等于向量的平方求出的平方,利用三角函数的平方关系将其化简,利用三角函数的有界性求出最值.(2)利用向量垂直的充要条件列出方程,利用两角差的余弦公式化简得到的等式,求出值.【解答】解:(1)=(cosβ﹣1,sinβ),则||2=(cosβ﹣1)2+sin2β=2(1﹣cosβ).∵﹣1≤cosβ≤1,∴0≤||2≤4,即0≤||≤2.当cosβ=﹣1时,有|b+c|=2,所以向量的长度的最大值为2.(2)由(1)可得=(cosβ﹣1,sinβ),•()=cosαcosβ+sinαsinβ﹣cosα=cos(α﹣β)﹣cosα.∵⊥(),∴•()=0,即cos(α﹣β)=cosα.由α=,得cos(﹣β)=cos,即β﹣=2kπ±(k∈Z),∴β=2kπ+或β=2kπ,k∈Z,于是cosβ=0或cosβ=1.18.(12分)(2009•湖北)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=a,点E是SD上的点,且DE=λa(0<λ≤2)(Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE(Ⅱ)设二面角C﹣AE﹣D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθ•tanφ=1,求λ的值.【分析】解法一:(几何法)(Ⅰ)因为SD⊥平面ABCD,BD是BE在平面ABCD 上的射影,由三垂线定理只要证AC⊥BD即可.(Ⅱ)先找出θ和φ,因为由SD⊥平面ABCD知,∠DBE=φ,二面角C﹣AE﹣D的平面角可由三垂线定理法作出.再用λ表示出tanθ和tanφ,代入tanθ•tanφ=1,解方程即可.解法二:(向量法)因为DA.DC.DS两两垂直,故可建立空间直角坐标系,由向量法求解.(Ⅰ)写出向量和的坐标,只要数量积为0即可.(Ⅱ)分别求出平面ACE的法向量、平面ABCD与平面ADE的一个法向量,由夹角公式求出cosθ和sinφ,再由tanθ•tanφ=1求解即可.【解答】解:(Ⅰ)证法1:如图1,连接BE、BD,由地面ABCD是正方形可得AC⊥BD.∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE(Ⅱ)解法1:如图1,由SD⊥平面ABCD知,∠DBE=φ,∵SD⊥平面ABCD,CD⊂平面ABCD,∴SD⊥CD.又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD.连接AE、CE,过点D在平面SAD内作DF⊥AE于F,连接CF,则CF⊥AE,故∠CFD是二面角C﹣AE﹣D的平面角,即∠CFD=θ.在Rt△BDE中,∵BD=2a,DE=λa∴tanφ=在Rt△ADE中,∵,DE=λa∴AE=a从而DF=在Rt△CDF中,tanθ=.由tanθ•tanφ=1,得即=2,所以λ2=2.由0<λ≤2,解得,即为所求.(Ⅰ)证法2:以D为原点,以DA.DC.DS的方向分别作为x,y,z轴的正方向建立如图2所示的空间直角坐标系,则D(0,0,0),A(,0,0),B(a,a,0),C(0,a,0),E(0,0,λa),∴,∴,即AC⊥BE.(Ⅱ)解法2:由(I)得,,.设平面ACE的法向量为n=(x,y,z),则由,得即取,得.易知平面ABCD与平面ADE的一个法向量分别为与.∴,.∵0<θ<,λ>0∴tanθ•tanφ=1⇔θ+φ=⇔sinφ=cosθ⇔⇔λ2=2.由0<λ≤2,解得,即为所求.19.(13分)(2009•湖北)已知数列{a n}的前n项和S n=﹣a n﹣()n﹣1+2(n∈N*).(1)令b n=2n a n,求证:数列{b n}是等差数列,并求数列{a n}的通项公式.(2)令c n=,试比较T n与的大小,并予以证明.【分析】(1)由题意知S1=﹣a1﹣1+2=a1,,所以2n a n=2n﹣1a n﹣1+1,b n=b n﹣1+1,再由b1=2a1=1,知数列b n是首项和公差均为1的等差数列.于是b n=1+(n﹣1)•1=n=2n a n,所以(2),,利用错位相减求和法可知,于是确定T n与的大小关系等价于比较2n与2n+1的大小.猜想当n=1,2时,2n<2n+1,当n≥3时,2n>2n+1.然后用数学归纳法证明.【解答】解:(1)在中,令n=1,可得S1=﹣a1﹣1+2=a1,即当n≥2时,所以所以,即2n a n=2n﹣1a n﹣1+1因为b n=2n a n,所以b n=b n﹣1+1,即当n≥2时,b n﹣b n﹣1=1又b1=2a1=1,所以数列b n是首项和公差均为1的等差数列于是b n=1+(n﹣1)•1=n=2n a n,所以(2)由1)得所以①②由①﹣②得所以于是确定T n与的大小关系等价于比较2n与2n+1的大小.猜想当n=1,2时,2n<2n+1,当n≥3时,2n>2n+1下面用数学归纳法证明:当n=3时,显然成立假设当n=k(k≥3)时,2k>2k+1成立则当n=k+1时,2k+1=2•2k>2(2k+1)=4k+2=2(k+1)+1+(2k﹣1)>2(k+1)+1所以当n=k+1时,猜想也成立.于是,当n≥3,n∈N*时,2n>2n+1成立综上所述,当n=1,2时,,当n≥3时,20.(14分)(2009•湖北)过抛物线y2=2px(p>0)的对称轴上一点A(a,0)(a>0)的直线与抛物线相交于M、N两点,自M、N向直线l:x=﹣a作垂线,垂足分别为M1、N1.(Ⅰ)当a=时,求证:AM1⊥AN1;(Ⅱ)记△AMM1、△AM1N1、△ANN1的面积分别为S1、S2、S3,是否存在λ,使得对任意的a>0,都有S22=λS1S3成立?若存在,求出λ的值,否则说明理由.【分析】(Ⅰ)由题意,可设设直线MN的方程为x=my+a,M(x1,y1),N(x2,y2),则有M1(﹣a,y1),N1(﹣a,y2).将x=my+a代入y2=2px(p>0)消去x 可得y2﹣2mpy﹣2ap=0利用根与系数的关系及点A(a,0)得出即可证明出结论;(Ⅱ)假设存在λ=4,使得对任意的a>0,都有S22=4S1S3成立,分别表示出三个三角形的面积,代入验证即可证明出结论【解答】解:依题意,可设直线MN的方程为x=my+a,M(x1,y1),N(x2,y2),则有M1(﹣a,y1),N1(﹣a,y2).将x=my+a代入y2=2px(p>0)消去x可得y2﹣2mpy﹣2ap=0从而有y1+y2=2mp,y1y2=﹣2ap ①于是x1+x2=m(y1+y2)+2a=2(m2p+a)②又由y12=2px1,y22=2px2可得x1x2===a2③(Ⅰ)证:如图,当a=时,点A(,0)即为抛物线的焦点,l为其准线,其方程为x=﹣此时M1(﹣,y1),N1(﹣,y2).并由①可得y1y2=﹣p2∵,∴=0,故有AM1⊥AN1;(Ⅱ)存在λ=4,使得对任意的a>0,都有S22=4S1S3成立,证明如下:证:记直线l与x轴的交点为A1,则|OA|=|OA1|=a.于是有S1=|MM1||A1M1|=(x1+a)|y1|,S2=|M1N1||AA1|=a|y1﹣y2|,S3=|NN1||A1N1|=(x2+a)|y2|,∴S22=4S1S3⇔(a|y1﹣y2|))2=((x1+a)|y1|)2 ×((x2+a)|y2|)2 ⇔a2[(y1+y2)2﹣4y1y2]=[x1x2+a(x1+x2)+a2]|y1y2|将①、②、③代入上式化简可得a2(4m2p2+8ap)=4a2p(m2p+2a)上式恒成立,即对任意的a>0,S22=4S1S3成立21.(14分)(2009•湖北)在R上定义运算:(b、c ∈R是常数),已知f1(x)=x2﹣2c,f2(x)=x﹣2b,f(x)=f1(x)f2(x).①如果函数f(x)在x=1处有极值,试确定b、c的值;②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;③记g(x)=|f′(x)|(﹣1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3﹣3bx2+4b3=(x+b)(x﹣2b)2)【分析】①由题意得到f(x)的解析式,求出f′(x)因为在x=1处有极值得到f (1)=﹣,f′(1)=0求出b、c即可;(2)因为切线的斜率为c,则解出f′(t)=c时t的值得到切点坐标,写出切线方程与曲线解析式联立求出公共点可知公共点的个数;(3)根据题意得到g(x)的解析式,利用已知求出g(x)的最大值M,利用M≥k列出不等式求出k的取值范围即可.【解答】解:①依题意,解得或.若,,′(x)=﹣x2+2x﹣1=﹣(x﹣1)2≤0f(x)在R上单调递减,在x=1处无极值;若,,f′(x)=﹣x2﹣2x+3=﹣(x﹣1)(x+3),直接讨论知,f(x)在x=1处有极大值,所以为所求.②解f′(t)=c得t=0或t=2b,切点分别为(0,bc)、,相应的切线为y=cx+bc或.解得x=0或x=3b;解即x3﹣3bx2+4b3=0得x=﹣b或x=2b.综合可知,b=0时,斜率为c的切线只有一条,与曲线的公共点只有(0,0),b ≠0时,斜率为c的切线有两条,与曲线的公共点分别为(0,bc)、(3b,4bc)和、.③g(x)=|﹣(x﹣b)2+b2+c|.若|b|>1,则f′(x)在[﹣1,1]是单调函数,M=max{|f′(﹣1)|,|f′(1)|}={|﹣1+2b+c|,|﹣1﹣2b+c|},因为f′(1)与f′(﹣1)之差的绝对值|f′(1)﹣f′(﹣1)|=|4b|>4,所以M>2.若|b|≤1,f′(x)在x=b∈[﹣1,1]取极值,则M=max{|f′(﹣1)|,|f′(1)|,|f′(b)|},f′(b)﹣f′(±1)=(b∓1)2.若﹣1≤b<0,f′(1)≤f′(﹣1)≤f′(b;若0≤b≤1,f′(﹣1)≤f′(1)≤f′(b),M=max{|f′(﹣1)|,|f′(b)|}=.当b=0,时,在[﹣1,1]上的最大值.所以,k的取值范围是.。

数学物理方法 教学大纲

数学物理方法 教学大纲

《数学物理方法》教学大纲Methods of Mathematical Physics课程编码:17A03090 学分:4.5 课程类别:专业基础课(必修课)计划学时:72 其中讲课: 72 实验或实践:0 上机:0适用专业:通信工程推荐教材:梁昆淼编,《数学物理方法》(第四版),高等教育出版社,2010。

参考书目:1. 吴崇试编著,《数学物理方法》(第二版),北京大学出版社,2003。

2. 管平,计国君,黄骏,《数学物理方法》,高等教育出版社,2006。

课程的教学目的与任务该课程分为复变函数论与数学物理方程两篇。

复变函数部分是介绍复变函数和积分变换的基础知识,数学物理方程部分是介绍物理学中常遇到的三种典型偏微分的基本求解方法和求解偏微分方程中遇到的常微分方程的求解方法。

通过该课程的学习,使得学生能够掌握复变函数的基本性质和复变函数的微分、积分方法,以及复变函数积分变换方法。

更重要是的掌握常见偏微分方程的基本解法,目的是为理论物理课程所遇到的偏微分方程的求解奠定数学基础,同时培养学生数学建模思维方式和解决数理问题的基本能力。

课程的基本要求1.定期完成教师布置的作业和积极参加讨论活动;2.熟练掌握复数的基本性质、定理和傅里叶变换规律;3.领会三类典型数理方程的推导方法,学写方程的初始条件、边界条件和衔接条件;4.掌握求解三种典型数学物理方程的基本方法;5.掌握特殊函数方程的级数求解方法。

各章节授课内容、教学方法及学时分配建议(含课内实验)第一章:解析函数建议学时:6 [教学目的与要求]1.熟练掌握复数的各种表示方法及六则运算;2.掌握复变函数及其极限、连续、可导的概念;3.掌握邻域等概念,理解复变函数的几何意义;4.正确理解解析性定义,掌握并熟练运用C-R条件;5.掌握由解析函数实部求虚部,或由虚部函数求实部的方法,以及关复势的概念。

[教学重点与难点] 重点:解析函数的概念与性质,以及C-R条件;难点:对C-R条件的理解和应用。

数学物理方法__武汉大学(5)--期中考试试卷

数学物理方法__武汉大学(5)--期中考试试卷

物理科学与技术学院2011级数学物理方法期中考试专业 ; 学号 ; 姓名;1、填空或选择填空(20分)1、长为l 温度为0T 的均匀杆,一端温度保持为零度,另一端有其热流密度为)(t f 的热量流入,则该杆的热传导的定解问题为[ ]2、函数)4(2-=z Ln w 的支点为[ ], 它有[ ]叶里曼面; 而函数32--z z 的支点为[ ], 它有[ ]叶里曼面;3、由Γ函数的相关知识,可得积分 dx e x x 206-∞⎰=[ ];[以下两题,分别请在A,B,C,D四答案中选择一个你认为正确的答案填入空内]4.设)(z f 在单连通区域σ内处处解析且不为零,l 为σ内的任何一条闭合围道,则积分 =+'+''⎰dz z f z f z f z f l )()()(2)([ ];A.i π2 B.i π2- C. 0 D.不能确定5.∞=z 为zz f sin 1)(=的:[ ]A.一阶极点 B.本性奇点 C.解析点 D.非孤立奇点二、(20分)验证xy y x y x u +-=22),(为调和函数,并求一满足条件0)0(=f 的解析函数ivu z f +=)(三、(20分)试分别用科希积分理论和留数理论计算下列函数和围道积分之值(要求写出主要步骤的依据)1、设 ⎰=--=23)(z d z e z f ζζπζζ,求)(i f ; 2、计算⎰=-+23)1)(1(1z dz z z z ;四、(20分)试将函数61)(2-+=z z z f 按以下要求展开为泰勒或罗朗级数,并指出所展开的级数的收敛域及类型(是泰勒还是罗朗)。

1、以0=z 为中心展开;2、在2=z 的去心领域中展开五、(20分)利用留数定理计算下列实积分:1、θθπd ⎰+202cos 11 ; 2、dx x x x x ⎰∞∞-+++-91022242;。

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v vx y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

湖北省教育厅关于公布2009年度湖北省高等学校省级精品课程名单的通知

湖北省教育厅关于公布2009年度湖北省高等学校省级
精品课程名单的通知
文章属性
•【制定机关】湖北省教育厅
•【公布日期】2009.06.08
•【字号】鄂教高[2009]12号
•【施行日期】2009.06.08
•【效力等级】地方规范性文件
•【时效性】现行有效
•【主题分类】高等教育
正文
湖北省教育厅关于公布2009年度湖北省高等学校省级精品课
程名单的通知
(鄂教高[2009]12号)
各高等学校:
根据《省教育厅关于做好2009年度高等学校教学改革和质量提高工程建设项目申报工作的通知》(鄂教高函〔2009〕6号)的要求,经学校申报、专家评审、网上公示无异议,我厅审核同意武汉大学的《大学物理》等142门课程为2009年度湖北省高等学校省级精品课程,现予公布(名单见附件)。

省级精品课程有效期为4年。

从今年起,省级精品课程将集中在“湖北省高等学校教育教学平台”(http://)上运行,其网上教学资源向全省高等学校免费开放。

各高等学校要重视课程建设,深化课程改革,充分发挥国家和省级精品课程的示范作用,推进优质教学资源的共享,提高教学质量。

各高等学校和课程负责人要保证省级精品课程的网络运行、维护,及时了解掌握课程教学内容的辐射效果,收集分析用户的反馈意见,不断完善和更新课程教学资源。

在有效期内,我厅将组织
对省级精品课程进行年度检查。

检查不合格的课程将取消“省级精品课程”称号。

未经学校和著作人许可,任何人不得将省级精品课程内容用作以营利为目的的活动。

附件:2009年度湖北省高等学校省级精品课程名单
二OO九年六月八日附件:。

2009年湖北高考文科数学试题(完整版)

2009年湖北高考文科数学试题(完整版)2009年湖北高考文科数学试题(完整版)一、选择题1. 已知集合A={x|-2≤x≤2},B={y|0≤y≤9},则集合A×B=()。

A. {(x,y)|-2≤x≤2, 0≤y≤9}B. {(x,y)|-2≤x≤2, 0<y<9}C. {(x,y)|-2<x<2, 0<y<9}D. {(x,y)|-2<x<2,0≤y≤9}2. 若对于任意实数x有f(x+4)=f(x)-5,则对于任意实数y,f(y)的最大值为()。

A. 4B. -5C. 0D. 53. 在坐标平面上,点P(a,b)关于原点的对称点记为P'(-a,-b),如果点A(5,8)关于点B(3,-4)对称,则点A'关于点B'对称,A'的坐标为()。

A. (-1,4)B. (-7,12)C. (-7,-1)D. (-1,-7)4. 若函数f(x)在区间[1,4]上连续,且f(x)>0,则函数g(x)=f(x)+f(5-x)在区间[1,4]上的零点个数为()。

A. 0B. 1C. 2D. 35. 已知二次函数f(x)的图像经过点(2,-3),且对称轴为直线x=1,则函数f(x)的解析式为()。

A. f(x)=-2(x-1)^2-5B. f(x)=-2(x+1)^2-5C. f(x)=2(x-1)^2-5D.f(x)=2(x+1)^2-5二、填空题1. 若已知sin(A-120°)=0.5,则三角函数cosA的值为()。

解:sin(A-120°)=0.5,根据三角函数的周期性,sin(A+240°)=0.5,因此sinA=0.5,cosA的值为0.866。

2. 若函数f(x)=(k+1)x^2-kx-2的图像在x轴上有两个不同的零点,则实数k的取值范围是()。

解:函数f(x)在x轴上有两个不同的零点,说明函数f(x)的图像与x轴有两个交点,即f(x)的图像经过x轴。

武汉大学2009年各省份专业录取分数线


动力与机械学院 城市设计学院 土木建筑工程学院 土木建筑工程学院 计算机学院 计算机学院 电子信息学院 电子信息学院 电子信息学院 电子信息学院 遥感信息工程学院 测绘学院 测绘学院 国际软件学院 印刷与包装系 医学部 医学部 医学部 文学院 历史学院 新闻与传播学院 经济与管理学院 经济与管理学院 法学院 社会学系 政治与公共管理学院 政治与公共管理学院 信息管理学院 经济与管理学院 经济与管理学院 数学与统计学院 物理科学与技术学院 化学与分子科学学院 化学与分子科学学院 资源与环境科学学院 水利水电学院 电气工程学院 动力与机械学院 动力与机械学院 动力与机械学院 土木建筑工程学院 土木建筑工程学院 计算机学院
地理信息系统 水利类 电气工程与自动化 机械设计制造及其自动化 能源动力系统及自动化 自动化 土木工程 工程力学 信息安全 计算机科学与技术 电子信息科学类(电子信息工程) 电子信息科学类(电子信息科学与技术) 电子信息科学类(通信工程) 遥感科学与技术 测绘工程 软件工程 空间信息与数字技术 预防医学 临床医学(五年) 药学 历史学基地班 英语 新闻传播学类 经济学类 工商管理类 法学 政治学类 信息管理与信息系统 经济学类 管理科学与工程类 工商管理类 数学类 物理学类 电子科学与技术 化学基地班 化学类 地理信息系统 环境工程 水利类 电气工程与自动化 材料类 机械设计制造及其自动化 能源动力系统及自动化
辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 辽宁省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省 吉林省

2009年高考湖北卷数学(理科)试题及参考答案

2009年湖北省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(2009•湖北)已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)} B.{(﹣1,1)} C.{(1,0)} D.{(0,1)}2.(2009•湖北)设a为非零实数,函数y=(x∈R,且x≠)的反函数是()A.y=(x∈R,且x≠﹣)B.y=(x∈R,且x≠)C.y=(x∈R,且x≠1)D.y=(x∈R,且x≠﹣)3.(2009•湖北)投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n﹣mi)为实数的概率为()A.B.C.D.4.(2009•湖北)函数y=cos(2x+)﹣2的图象F按向量a平移到F′,F′的函数解析式为y=f(x),当y=f(x)为奇函数时,向量a可以等于.A.(,﹣2)B.(,2)C.(,﹣2)D.(,2)5.(2009•湖北)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,则不同分法的种数为()A.18 B.24 C.30 D.366.(2009•湖北)设+a 2n x2n,则[(a0+a2+a4+…+a2n)2﹣(a1+a3+a5+…+a2n﹣1)2]=()A.﹣1 B.0 C.1 D.7.(2009•湖北)已知双曲线的准线过椭圆的焦点,则直线y=kx+2与椭圆至多有一个交点的充要条件是()A.K∈[﹣,] B.K∈[﹣∞,﹣]∪[,+∞] C.K∈[﹣,] D.K∈[﹣∞,﹣]∪[,+∞]8.(2009•湖北)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元9.(2009•湖北)设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径A.成正比,比例系数为C B.成正比,比例系数为2C C.成反比,比例系数为C D.成反比,比例系数为2C10.(2009•湖北)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.1378二、填空题(共5小题,每小题5分,满分25分)11.(2009•湖北)已知关于x的不等式的解集,则实数a=_________.12.(2009•湖北)如图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数落在[6,10]内的频数为_________,数据落在(2,10)内的概率约为_________.13.(2009•湖北)如图,卫星和地面之间的电视信号沿直线传播,电视信号能够传送到达的地面区域,称为这个卫星的覆盖区域.为了转播2008年北京奥运会,我国发射了“中星九号”广播电视直播卫星,它离地球表面的距离约为36000km.已知地球半径约为6400km,则“中星九号”覆盖区域内的任意两点的球面距离的最大值约为_________km.(结果中保留反余弦的符号).14.(2009•湖北)已知函数f(x)=f′()cosx+sinx,则f()的值为_________.15.(2009•湖北)已知数列{a n}满足:a1=m(m为正整数),a n+1=若a6=1,则m所有可能的取值为_________.三、解答题(共6小题,满分75分)16.(2009•湖北)一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6.现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量η=x+y,求η的分布列和数学期望.17.(2009•湖北)已知向量=(cosα,sinα),=(cosβ,sinβ),=(﹣1,0).(1)求向量的长度的最大值;(2)设α=,且⊥(),求cosβ的值.18.(2009•湖北)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,点E是SD上的点,且DE=λa(0<λ≤2)(Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE(Ⅱ)设二面角C﹣AE﹣D的大小为θ,直线BE与平面ABCD所成的角为ω,若tanθ•tanφ=1,求λ的值.19.(2009•湖北)已知数列a n的前n项和(1)令b n=2n a n,求证:数列b n是等差数列,并求数列a n的通项公式.(2)令,试比较T n与的大小,并予以证明.20.(2009•湖北)某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房_________套.21.(2009•湖北)在R上定义运算:(b、c∈R是常数),已知f1(x)=x2﹣2c,f2(x)=x﹣2b,f(x)=f1(x)f2(x).①如果函数f(x)在x=1处有极值,试确定b、c的值;②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;③记g(x)=|f′(x)|(﹣1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3﹣3bx2+4b3=(x+b)(x﹣2b)2)2009年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(2009•湖北)已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)} B.{(﹣1,1)} C.{(1,0)} D.{(0,1)}考点:交集及其运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档