磷酸铁锂电池在线监测系统设计-硬件

合集下载

磷酸铁锂电池均衡技术综述

磷酸铁锂电池均衡技术综述

磷酸铁锂电池均衡技术综述摘要:为了达到规模储能的电压和容量要求,磷酸铁锂电池需通过串并联达到设计要求,而生产、使用过程的差异性导致的电池单体不一致性,是影响储能电站寿命主要因素之一。

文章从规模储能技术基本概念出发,介绍了现有均衡方案的基本拓扑结构和控制策略,列举了两种实际应用方案,提出了各种方案的优劣与发展趋势,旨在对提高规模储能的经济性研究提供有益的启发。

引言规模储能电站一般设计容量较大,需要多个电池单体串并联以达到设计要求。

以磷酸铁锂电池为例,单节工作电压范围通常约为2.8~4V,若每个电池单体为200Ah,额定电压3.2V,需要达到2.4MWh的容量,可以将252节电池单体串联成电池组,再并联15个电池组,则:3.2V×252节x200AhX15组=2.42MWh;直流侧电压806.4V。

在电芯批量生产过程中,由于原料及生产工艺的波动,电芯的容量、内阻、电压及自放电率均会有一定的偏差,同时在电芯使用过程中随着充放电循环次数增加及存储时间、温度等影响,电芯容量衰减也会出现不一致,导致在同一电池组内的电芯出现不一致。

在规模储能中,电池组的不均衡性是影响电池组性能,降低电池组寿命的主要原因之一。

1规模储能常用概念电池容量是指在一定条件下(放电倍率、温度、放电截止电压等)电池放出的电量,用字母c表示,单位为安时(Ah)。

按照QB/T2502-2000《锂离子蓄电池总规范》,电池的额定容量为在环境温度为(20±5)℃时,以0.2C倍率放电至终止电压时的容量。

电池内阻分为欧姆内阻和极化内阻,欧姆内阻由电极材料、电解液、隔膜电阻及各部分零件的接触电阻组成,欧姆电阻不随激励信号频率变化,在同一充放电周期内,欧姆电阻除温升影响外几乎不变。

极化内阻是指电化学反应时由极化引起的电阻,包括电化学极化和浓差极化引起的电阻。

内阻是电池最为重要的特性参数之一,它是表征电池寿命以及电池运行状态的重要参数,是衡量电子和离子在电极内传输难易程度的主要标志。

30KWH电池系统设计说明

30KWH电池系统设计说明

30KWH电池系统设计说明Date: 03/03/2016Pages: 8Revision: 1.0Initials: Li ZhenBang1 产品设计概要本产品是为光伏储能应用设计。

产品首先由26650磷酸铁锂圆柱形电池芯组成12.8V 56AH的电池模组,通过42个模组串联成537.6V 56AH的电池系统。

产品自带过充、过放保护,SOC计算等管理保护功能,整体模块标称电压537.6V,标称容量56Ah(即30105.6Wh)。

2 电池系统原理537.6V 56AH系统通过42个12.8V 56AH 串联而成,配合电池管理系统BSU+BMU,实现自身的过充、过放、温度、过流等保护与策略管理功能,电池组内部通过基于485通讯总线和BMU进行实施数据交互,由BMU对电池组进行统一的策略管理分析,实现整个系统状态监视与参数配置功能。

3 主要参数指标4 详细规格参数5性能及测试5.1 测试条件除特殊声明,各项测试应在以下条件下进行:(1) 温度:15℃~25℃(建议 25℃±2℃);(2) 相对湿度:45%~85%;(3) 大气压力:86kPa~106kPa。

(4) 测试电池必须是本公司出厂时间不超过一个月的新电池,且未进行过五次以上充放电循环。

5.2 测试设备5.3 标准充电方式在环境温度 25℃±2℃的条件下,以 30A 充电,当电池组电压达到充电限制电压时,改为恒压充电,直到充电电流小于或等于 0.02C 4A 。

5.4 电气性能5.4.1 电池性能一致性电池模块内各单体电池应为同一厂家生产、结构相同、化学成分相同的产品,且符合下 列要求:5.4.2 温度测试5.4.3 容量保存率5.4.4 循环寿命5.5安全5.5.1 安全性能电池组安全性能试验应在有强制排风条件及防爆措施的装置内进行;所有电池组均应按标准充电方式充电,并静置 6h 后再进行以下试验。

磷酸铁锂电池使用指导201112

磷酸铁锂电池使用指导201112


通信电源磷酸铁锂电池的使用原则(3)

我司开关电源系统与无BMS模块

对无BMS的铁锂电池应用,我司持反对态度。如用户坚持,需要明确告知用户应 用风险

我司开关电源监控仅调整均浮充电压、电池组下电参数,参数推荐同前,但 需要得到电池厂家及BMS厂家及客户确认避免今后扯皮。 我司开关电源下电只是针对整组电池的下电,在电池一致性较差情况,无法 实现单体的过放保护,应用风险大 我司开关电源对单体过充情况无法了解,也无法针对单体过充有任何转浮充 或限流等措施,不能有效地避免单体过充,应用有风险



用户需要定期进行电池维护,对落后电池进行更换。由于做不到实时监控,
处理会有滞后,可能出现严重后果。

对温度的一点补充

磷酸铁锂电池在低温下(<-5degC)存在较大应用风险。因此对严寒地区要考虑 电池加热装置,否则需要告知用户应用风险 目前不建议在东三省使用磷酸铁锂电池

户外电源磷酸铁锂电池的使用原则
第一阶段:电压快速上升或下降,到一个相对稳定的平台。
第二阶段:在一次相对稳定的电压平台,充电或放电。
第三阶段:充电时,电压快速上升,此时充入电量已经很少,但却很容易造成电池过充电, 需要控制充电电压。放电时,电压快速下降,此时可放出的电量很少,但却很容易造成电 池过放电,需要控制EOD点。

铁锂电池高温性能、循环寿命与体积重量远优于铅酸电池,相对于通信电源,户外电 源应用铁锂电池好处更多,推广前景更好 相关原则(我司Bபைடு நூலகம்S/他司BMS/无BMS)同通信电源磷酸铁锂电池的使用原则,参 数推荐如下,电池下电点提高,充电限流点提高
电池节 数 磷酸 铁锂 电池 16 均充电 压 3.55* 16 = 56.8V 浮充电 压 3.4 * 16 = 54.4V 充电限流点 负载下 电 3.15 * 16 = 50.4V 电池下 电 2.8* 16 = 44.8V 母排欠 压 50.8V 母排过 压 57.6V

磷酸铁锂电池测试方法

磷酸铁锂电池测试方法

磷酸铁锂电池测试方法磷酸铁锂电池是一种新型的锂离子电池,具有较高的能量密度、循环寿命长和安全性好等优点,因此被广泛应用于电动汽车、储能系统等领域。

为了确保电池的质量和性能,需要进行一系列的测试。

下面将介绍磷酸铁锂电池的测试方法。

1.电池外观检查在测试之前,首先需要对电池的外观进行检查。

检查电池外壳是否完整,无破损或变形,并检查电池接口是否松动。

2.电池容量测试电池容量是指电池储存和释放能量的能力。

常用的测试方法有:恒流放电法、恒功率放电法和恒阻放电法。

其中,恒流放电法是最常用的方法。

具体步骤如下:(1)首先,将电池充电至满电状态;(2)将电池连接到恒流放电装置,并设置合适的放电电流;(3)记录电池的放电时间和放电电压,直至电池电压降至截止电压;(4)根据放电时间和放电电流计算电池的容量。

3.循环寿命测试循环寿命是指电池能够进行充放电循环的次数。

常用的测试方法是充放电循环测试。

具体步骤如下:(1)将电池充电至满电状态;(2)将电池连接到恒流放电装置,并设置合适的放电电流,将电池放空;(3)将电池再次充电至满电状态;(4)重复步骤(2)和步骤(3)直至达到预设的循环次数;(5)记录每个循环周期的放电容量和循环次数。

4.安全性测试安全性测试主要包括短路、过充、过放等测试。

具体步骤如下:(1)短路测试:将正、负极端子短接,并记录短路后的电池温度变化和电池外壳是否变形等情况;(2)过充测试:将电池连接到过充装置,并进行电池过充,观察并记录电池的温度和电压变化;(3)过放测试:将电池连接到过放装置,并进行电池过放,观察并记录电池的温度和电压变化。

5.电池内阻测试电池内阻是指电池的内部电阻,影响电池的性能和输出功率。

常用的测试方法是交流内阻测试和直流内阻测试。

具体步骤如下:(1)交流内阻测试:将电池连接到交流内阻测试装置,进行频率为1kHz的交流内阻测试,并记录测试结果;(2)直流内阻测试:将电池连接到直流内阻测试装置,进行直流内阻测试,并记录测试结果。

(完整版)通信基站用磷酸铁锂电池

(完整版)通信基站用磷酸铁锂电池

中国移动通信企业标准QB-H-005-2012通信基站用磷酸铁锂电池L i F e P O4 b a t t e r y f o r C o m m u n i c a t i o nb a s e s t a t i o n版本号:1.0.02012-10-30发布2012-10-30实施中国移动通信集团公司发布目录1范围 (1)2规范性引用文件 (1)3术语、定义和缩略语 (2)3.1磷酸铁锂电池 LiFePO4 battery cell (2)3.2单体电池 Single battery (2)3.3磷酸铁锂电池模块 LiFePO4 battery block (2)3.4电池采集模块 battery acquisition module(BAM) (2)3.5电池管理系统 battery management system(BMS) (2)3.6磷酸铁锂电池组 LiFePO4 battery system (2)3.6.1IBS模式 (integrated battery system) (2)3.6.2LBMS模式 (large capacity battery +BMS) (2)3.6.3LBAM模式 (large capacity battery +BAM+FPA) (2)3.7标称容量nominal capacity (2)3.8标称电压nominal voltage (3)3.9终止电压 end of discharge voltage (3)3.10寿命 cycle life (3)3.11容量保存率 save rate of capacity (3)3.12内阻 internal resistance (3)3.13电导 conductance (3)4产品分类和系列 (3)4.1电池模块额定容量系列(Ah) (3)4.2电池组输出电压标称值系列 (3)4.3电池组应用系列 (3)4.4电池组管理系列 (3)5要求 (4)5.1使用环境条件 (4)5.2外观及尺寸 (4)5.3电池标示 (4)5.4性能指标 (5)5.4.1充放电要求 (5)5.4.2完全充满电 (5)5.4.3性能指标 (5)5.4.4电池组性能一致性 (7)5.4.5大电流放电性能 (8)5.4.6容量保存率 (8)5.4.7BMS工作状态电池静置耗能 (8)5.4.8充电效率 (8)5.4.9浮充电流 (8)5.5电池间连接电压降 (8)5.6寿命 (8)5.6.125℃ 100% DOD (8)5.7安全性能 (8)5.7.1过充电保护 (8)5.7.2恒定湿热 (8)5.7.3抗振动 (8)5.7.4阻燃性能 (8)5.7.5绝缘电阻 (8)5.7.6绝缘强度 (9)5.7.7深度放电 (9)5.7.8安全充电电压 (9)5.8电磁兼容性 (9)5.8.1静电放电抗扰性 (9)5.8.2传导骚扰限值 (9)5.8.3辐射骚扰限值 (9)5.8.4浪涌(冲击)抗扰性 (9)5.9BMS要求 (9)5.9.1采集模块(BAM)的要求 (9)5.9.2保护与告警(FPA)的要求 (9)5.10监控要求 (13)6检验方法 (13)6.1检验条件 (13)6.2检验仪表要求 (14)6.3外观及尺寸 (14)6.4电池标示 (14)6.5放电性能 (14)6.5.125℃放电 (14)6.5.20℃放电 (14)6.5.3-20℃放电 (14)6.5.440℃放电 (14)6.5.560℃放电 (14)6.6电池组性能一致性 (15)6.7大电流放电性能 (15)6.8容量保存率 (15)6.9BMS工作状态电池静置耗能 (15)6.10充电效率 (15)6.11浮充电流 (16)6.12电池间连接电压降 (16)6.13寿命 (16)6.13.125℃ 100% DOD (16)6.13.240℃ 100% DOD (16)6.14安全性能 (16)6.14.1基本要求 (16)6.14.2过充电保护 (16)6.14.3恒定湿热 (16)6.14.5阻燃性能 (16)6.14.6绝缘电阻 (17)6.14.7绝缘强度 (17)6.14.8深度放电 (17)6.14.9安全充电电压 (17)6.15电磁兼容性 (17)6.15.1静电放电抗扰性 (17)6.15.2传导骚扰限值 (17)6.15.3辐射骚扰限值 (17)6.15.4浪涌(冲击)抗扰性 (17)6.16BMS测试方法 (17)6.16.1采集模块(BAM)的测试方法 (17)6.16.2充电总电压高保护及恢复功能 (17)6.16.3放电总电压低告警功能 (17)6.16.4单体电池电压低保护及恢复功能 (17)6.16.5单体电池电压高保护及恢复功能 (18)6.16.6短路保护功能 (18)6.16.7充电过流保护功能 (18)6.16.8过温保护及恢复功能 (18)6.16.9低温保护及恢复功能 (18)6.16.10四遥内容 (18)6.16.11电压精度 (18)6.16.12电流精度 (18)6.16.13容量精度 (18)6.16.14温度精度 (18)6.16.15通信接口 (18)6.16.16存储功能 (18)6.16.17能耗要求 (19)6.17监控要求 (19)6.18电池管理系统环境试验 (19)6.18.1高温储存 (19)6.18.2低温储存 (19)6.18.3高温工作 (19)6.18.4低温工作 (19)6.18.5恒定湿热 (19)6.18.6振动 (19)7应用方法与要求 (19)7.1应用分类 (19)7.1.1IBS模式 (19)7.1.2LBMS模式 (19)7.1.3LBAM模式 (20)7.2BMS与开关电源系统的关系 (20)7.3工作方式 (20)8.1检验分类 (20)8.2出厂检验 (20)9标志、包装、运输、储存 (22)9.1标志 (22)9.2包装 (22)9.3运输 (22)9.4储存 (22)10编制历史 (22)附录 A (23)附录 B (21)前言本标准的目的是为加强中国移动的通信基站用磷酸铁锂电池的管理,使新建、改建、扩建工程中通信基站用磷酸铁锂电池的设计及设备选型有标准可依。

磷酸铁锂电池寿命模型设计与优化

磷酸铁锂电池寿命模型设计与优化

磷酸铁锂电池寿命模型设计与优化磷酸铁锂电池是一种新型的锂离子电池,具有高能量密度、长循环寿命、较高的安全性和环境友好性等优势,在电动汽车、储能领域得到广泛应用。

然而,随着使用时间的增加,磷酸铁锂电池的循环寿命逐渐下降,影响了其稳定性和可靠性。

因此,设计和优化磷酸铁锂电池寿命模型是非常重要的。

磷酸铁锂电池寿命模型的设计是为了预测电池的寿命,并提供优化策略。

寿命模型通常包括电池容量衰减模型和循环寿命模型两部分。

首先,电池容量衰减模型是用来描述电池容量随时间的变化。

这个模型通常基于实验数据或者物理化学基础,可以通过对电池进行循环充放电实验来获取数据。

然后通过拟合曲线或者使用数学模型来描述电池容量与循环次数之间的关系。

常用的模型有Arrehenius模型、经验模型、半经验模型等。

这些模型可以用于预测电池在给定循环次数下的容量衰减情况,为优化电池系统提供基础。

其次,循环寿命模型是用来描述电池在循环过程中的衰减情况。

循环寿命是指电池在特定的循环次数下的性能衰减程度,一般以电池容量衰减到初始容量的百分之几来度量。

循环寿命模型可以帮助我们预测电池在不同循环次数下的寿命,并找到影响电池寿命的关键因素。

这些因素包括电池设计、工作条件、充电-放电策略等。

通过建立循环寿命模型,我们可以分析这些影响因素的作用,从而优化电池的性能和寿命。

为了设计和优化磷酸铁锂电池寿命模型,我们需要收集大量的实验数据。

这些数据包括电池容量衰减、循环寿命、温度变化、电荷-放电策略等方面的数据。

通过对这些数据的处理和分析,可以建立电池寿命模型,并通过模型验证和优化来提高磷酸铁锂电池的循环寿命。

在优化磷酸铁锂电池寿命模型的过程中,我们可以采用多种策略。

首先,可以通过优化电池设计来提高电池的性能和寿命。

例如,采用导电性能更好的材料、改变电极结构、优化电解液等,都可以减小电池的内阻、提高电池的容量和循环寿命。

其次,可以通过优化充放电策略来延长电池的寿命。

2MWh储能系统方案设计

0.5MW/2MWh储能系统方案目录1.项目背景描述 (3)1.1项目名称 (3)1.2项目概况 (3)2.电气技术方案 (3)2.1方案概述 (3)2.2双向逆变器(PCS) (5)2.3电池管理系统 (7)2.3.1BMU功能及规格介绍 (10)2.3.2BCMS功能及规格介绍 (11)2.3.3BAMS功能及规格介绍 (13)2.4 监控与调度管理系统 (16)3.电池技术方案 (17)4.储能系统现阶段应用功能介绍 (22)5.系统配置清单 (25)6.系统运行及维护 (26)6.1系统投运 (26)6.2系统运行 (26)6.3系统维护 (26)6.4运行环境 (27)7.运输与储存 (27)7.1运输 (28)7.2储存 (28)1.项目背景描述1.1项目名称本项目为0.5MW/2MWh,系统设计为两个1MWh储能并联成2MWh,单个1MWh储能放置在40尺集装箱内。

0.5MWPCS置入其中一个集装箱内。

1.2项目概况2.电气技术方案2.1方案概述对应于1MWh的储能系统,需要配置一个由交流配电柜为核心,以后台管理系统为智能中心的交流配电调节系统。

储能系统原理图1MWh的储能系统由双向变流器、储能电池组、双向变流器控制系统、能量均衡控制系统、电池管理系统组成。

整个储能系统由一个监控与调度管理系统控制,通过网络协调各组成部分的工作。

2.2双向逆变器(PCS)双向逆变器的主要作用,是按照监控调度系统的指令实现电池堆与交流母线之间的能量交换。

一方面,在充放电过程中满足电网对储能系统电压、电流各方面的指标要求,实现储能系统与电网之间频率的匹配;另一方面,满足电池堆充放电过程中的电压、电流、功率等指标的要求,保证充放电过程的高效、可控、安全;同时,还要对自身的状态实施可靠的监控和保护。

双向逆变器主电路拓扑图双向逆变器外观图500KW双向并网逆变器主要参数表2.3电池管理系统整个电池管理系统主要有以下模块组成:1、BMU(Battery Management Unit):电池组管理单元,负责管理串联电池组单元。

48v50ah磷酸铁锂电池最大放电电流

标题:48v50ah磷酸铁锂电池最大放电电流分析一、磷酸铁锂电池介绍磷酸铁锂电池是一种新型的锂离子电池,采用了磷酸铁锂作为正极材料,具有高安全性、长循环寿命等优点,因此在电动车、储能系统等领域得到了广泛应用。

二、48v50ah磷酸铁锂电池特点1. 高电压稳定性:磷酸铁锂电池的电压稳定性较好,能够在不同充放电状态下保持相对稳定的电压输出,适合于需要稳定电源供应的场合。

2. 高循环寿命:磷酸铁锂电池经过优化设计,在深度循环使用下仍能保持较长的循环寿命,减少更换电池的频率和成本。

3. 高安全性:磷酸铁锂电池在充放电过程中不会产生过多的热量,具有较低的燃烧和爆炸风险,安全性较高。

三、48v50ah磷酸铁锂电池最大放电电流意义最大放电电流是指在特定条件下,电池能够持续供应的最大电流。

了解最大放电电流能够帮助我们更好地规划电池的使用场景和配套设备,确保电池的安全运行。

四、影响48v50ah磷酸铁锂电池最大放电电流的因素1. 电池内部结构:电池内部的正负极材料,电解液浓度等因素会影响电池的最大放电电流。

2. 外部环境温度:电池的最大放电电流会随着环境温度的升高而减小,因此需要在设计和使用中考虑环境温度对电池性能的影响。

3. 充放电速率:电池的最大放电电流会受到充放电速率的影响,通过控制充放电速率可以调节电池的最大放电电流。

五、如何确定48v50ah磷酸铁锂电池的最大放电电流1. 制造商提供的数据:在购物电池时,可以向制造商索取电池的最大放电电流数据,以便合理规划电池的使用场景。

制造商通常会在电池的技术参数表中提供最大放电电流的数值。

2. 实验测量:在实际使用中,可以通过实验测量的方式来确定电池的最大放电电流,根据实际需求调整电池的使用参数。

六、最大放电电流对电池的影响1. 过大的放电电流会加速电池的寿命衰减,导致电池的循环寿命缩短。

在设计电池使用系统时需要合理规划放电电流,避免过大的放电电流对电池造成损害。

2. 合理控制电池的放电电流可以提高电池的安全性,减少因过大电流引发的安全隐患。

磷酸铁锂电池电化学阻抗谱实验研究

磷酸铁锂电池电化学阻抗谱实验研究
磷酸铁锂电池是当前最常用的动力电池之一,其电化学性能的研究对于电池的优化设计具有重要意义。

电化学阻抗谱是分析电化学系统动态特性的重要方法之一,该实验旨在通过测量磷酸铁锂电池电化学阻抗谱,了解其电化学行为和内部结构。

实验装置
1. 磷酸铁锂电池
2. 电池测试系统(例如AutoLab)
3. 电化学阻抗谱实验夹具
实验步骤
1. 将磷酸铁锂电池装置到电化学阻抗谱实验夹具中,并接入测试系统。

2. 设定测试电压范围和频率范围,并设置合适的扫描速度。

3. 进行电化学阻抗谱测试,记录实验数据。

4. 分析电化学阻抗谱数据,获取电池的电化学阻抗谱图像和相应等效电路模型。

实验结果分析
电化学阻抗谱图像可以反映磷酸铁锂电池的电化学行为和内部结构。

例如,若出现在低频区域的电容效应和在高频区域的电极反应特征,表明电池的内部结构较为复杂。

或者,高温下电池的电化学阻抗谱普遍比低温下更小,这可能意味着热量提高有利于提高电化学反应速率。

此外,通过等效电路模型的参数,可以了解电池内部的电化学过程和材料特性。

例如,电极和电解液的电化学界面阻抗、电极内部离子扩散特性等。

这些参数可以进一步优化电池设计和制造的过程。

总之,电化学阻抗谱实验是磷酸铁锂电池研究的重要工具,有助于电池的优化设计和性能的提高。

电动汽车用磷酸铁锂电池SOC估算方法

电动汽车用磷酸铁锂电池SOC估算方法作者:么居标来源:《汽车电器》 2015年第6期么居标收稿日期:2014-11-18:修回日期:2014-12-02基金项目:北京市教育委员会科技计划面上项目:基于DSP的电动汽车驱动控制系统研发(KM201110858005)作者简介:么居标(1960-),男,工学博士,教授,主要研究方向为混合动力汽车控制技术。

(北京电子科技职业学院,北京100176)摘要:针对纯电动汽车用磷酸铁锂动力电池管理系统,硬件采用集中分布式系统对锂离子电池管理,主控模块负责与测控模块和整车控制器通信,并负责电流采集;测控模块负责电池温度采集和电池电压采集。

设计软件采用“开路电压法一安时积分法”进行,此方法简单易行,只关注系统的外部特性和进入进出系统的电量,实现检测并计算出电池的剩余电量,且在线精度较高。

关键词:电动汽车:SOC估算:集中分布式系统中图分类号:U463.633 文献标识码:A 文章编号:1003-8639(2015)06-0027-02电池的SOC(荷电状态)反映了电池的实际可用电量,它是电动汽车运行过程中非常重要的一个指标。

准确合理的SOC估算有许多益处,比如:能延长电池的使用寿命,防止电池出现过充过放现象,提高电池的性能,减少电池的成本,但是电池的SOC不能通过传感原件准确度测量,它只能通过电池其他的一些因素间接地测量,比如电池的开路电压、电流或者温度。

1 磷酸铁锂电池SOC算法介绍1.1 电池SOC的定义及影响电池SOC的因素电池的SOC(state of charge)的一般定义如下:在一定的放电倍率下,剩余电量和相同条件下额定容量的比值,即当SOC=100%时,表示电池充满电,当SOC=o时,表示电池的电量已用完,剩余电量为0。

1.2 电池SOC基本算法电池SOC是电动汽车行驶过程中非常重要的一个因素,需要尽可能准确测量,但是电池SOC不像终端电压,或者输入输出电流那样可以直接进行测量,这就需要我们选择合适的测量方法,通过对可测量参数的运用间接地计算出电池SOC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档