恒功率控制柱塞泵变量特性的设计及特点
柱 塞 泵

主体部分是由装在中间泵体16内的缸体10和配流盘13等组成, 缸体10与传动轴12通过花键连接,由传动轴带动旋转。在缸体的轴 向柱塞孔内各装有一个柱塞17。为了避免柱塞头部与斜盘直接接触 而产生的易磨损现象,在柱塞的头部装滑履1,用滑履的底平面与 斜盘4接触,而柱塞头部与滑履则用球面配合,外面加以铆合,使 柱塞和滑履既不会脱落,又使配合球面间能相对运动;柱塞中心和
2.斜盘式轴向柱塞泵的排量和流量
=0)。活塞的运动由于液压缸左腔内油液的体积增大而引起的。
当柱塞泵旋转一周时,柱塞移动的距离为L=Dtanδ,故柱塞泵
每转的排量为
流量为:
VP
4
d 2Lzຫໍສະໝຸດ 4d 2Dtanz
qP
4
d 2Dtan
znPPV
实际上,轴向柱塞泵的瞬时流量是脉动的。通过理论计算分 析可以知道,当柱塞数为奇数时,脉动较小,故轴向柱塞数一 般为7或9个。
3.斜盘式轴向柱塞泵的结构特点
=0)。活塞的运动由于液压缸左腔内油液的体积增大而引起的。
如图所示为常用的一种斜盘式轴向柱塞泵的结构,它由两部分 组成:右边的主体部分和左边的变量机构。同一规格不同变量形 式的变量泵,其主体部分是相同的,仅是变量机构不同而已。
(1)主体部分:
=0)。活塞的运动由于液压缸左腔内油液的体积增大而引起的。
2.径向柱塞泵的排量和流量
=0)。活塞的运动由于液压缸左腔内油液的体积增大而引起的。
柱塞的行程为两倍偏心距e,泵的排量为:
VP
4
d 2 2ez
2
d 2ez
泵的实际输出流量为:
qP
2
d 2eznPPV
径向柱塞泵的瞬时流量也是脉动的,与轴向柱塞泵相同,为了 减少脉动,柱塞数通常也取奇数。
基于AMESim的恒压变量柱塞泵的建模与仿真分析

合度 ,说 明所建立 的该型恒压变量柱塞泵仿 真模型是 比较准确 的。同时得 出了恒 压变量柱塞泵的超调量及恒压调整时 间。
关键 词 :恒压变量柱塞泵 ;A ME S i m;静动态特性 中图分 类号 :T H1 3 7 ;R 3 1 8 . 6 文献标 志码 :A 文章编 号 :1 0 0 1 - 3 8 8 1( 2 0 1 7 )0 5 — 1 0 0 — 4
基于 A M E S i m 的恒 压 变量 柱 塞 泵 的 建模 与仿 真分 析
罗威 ,邹 大鹏 ,肖体 兵 ,贾讲 开 ,吴百海
( 广 东工业 大学机 电工程 学 院 ,广 东广 州 5 1 0 0 0 6 )
摘要 :分析 了恒压变量柱塞泵 的工作原理 和机能 ,利用 A ME S i m的液压 机械信号 库建立该 型恒压变量柱 塞泵 的仿 真模 型 ,根据恒压 变量 柱塞泵实际 的结构 与尺寸设 置仿真模型 的各个 参数 ,对恒 压变量柱 塞泵静 动态特性进行 仿真 研究 ,得 出 了恒压变量柱塞泵 工作 时泵 口的压力 和流量特 性曲线 。将其与恒压变量柱塞 泵 的流量 压力样本 特性 曲线对 比,具有一定 吻
轴向柱塞泵设计说明书

XXXXX学校毕业设计说明书论文题目:轴向柱塞泵设计系部: XXX专业: XXX XXXXX班级: XXX学生姓名: XXXXXXX 学号:XXXXX指导教师: XXXX2015年05月1日摘要液压泵是向液压系统提供一定流量和压力的油液的动力元件,它是每个液压系统中不可缺少的核心元件,合理的选择液压泵对于液压系统的减少能耗﹑提高系统的效率﹑降低噪声﹑改善工作性能和保证系统的可靠工作都十分重要。
本设计对轴向柱塞泵进行了分析,主要分析了轴向柱塞泵的分类,对其中的结构,例如,柱塞的结构型式﹑滑靴结构型式﹑配油盘结构型式等进行了分析和设计,还包括它们的受力分析与计算以及对缸体的材料选用和校核;另外对变量机构分类型式也进行了详细的分析,比较了它们的优点和缺点。
最后该设计对轴向柱塞泵的优缺点进行了整体的分析,对今后的发展也进行了展望。
关键词:柱塞泵;液压系统;结构型式;设计。
Liquid's pressing a pump is the motive component of oil liquid which presses system to provide certain discharge and pressure toward the liquid, it is each core component that the liquid presses the indispensability in the system, reasonable of choice liquid's pressing a pump can consume a exaltation the efficiency, of the system to lower the noise, an improvement work function and assurance system for liquid pressing system of dependable work all very importantThis design filled a pump to carry on toward the pillar to the stalk analytic, mainly analyzed stalk to fill the classification of pump toward the pillar,As to it's win of structure,For example, the pillar fill of the slippery structure pattern,Of the structure pattern went together with the oil dish structure pattern's etc. To carry on analysis and design, also include their is analyze by dint with calculation.The material,which still has a body to the urn chooses in order to and school pit very key; Finally measure an organization classification towards change, the pattern also carried on detailed analysis and compared their advantage and weakness.That design end filled the merit and shortcoming of pump to carry on whole analysis toward the pillar to the stalk and also carried on an outlook to after-time's development.Key Words:Plunger Pump; Hydraulic System; Structure Pattern; Design.摘要 (I)Abstract (II)绪论 (1)第1章直轴式轴向柱塞泵工作原理与性能参数 (3)1.1直轴式轴向柱塞泵工作原理 (3)1.2直轴式轴向柱塞泵主要性能参数 (3)第2章直轴式轴向柱塞泵运动学及流量品质分析 (7)2.1柱塞运动学分析 (7)2.2滑靴运动分析 (9)2.3瞬时流量及脉动品质分析 (10)第3章柱塞受力分析与设计 (14)3.1柱塞受力分析 (14)3.2柱塞设计 (17)第4章滑靴受力分析与设计 (22)4.1滑靴受力分析 (22)4.2滑靴设计 (25)4.3滑靴结构型式与结构尺寸设计 (25)第5章配油盘受力分析与设计 (31)5.1配油盘受力分析 (31)5.2配油盘设计 (34)第6章缸体受力分析与设计 (38)6.1缸体的稳定性 (38)6.2缸体主要结构尺寸的确定 (38)第7章柱塞回程机构设计 (41)第8章斜盘力矩分析 (43)M (43)8.1柱塞液压力矩18.2过渡区闭死液压力矩 (44)M (45)8.3回程盘中心预压弹簧力矩3M (46)8.4滑靴偏转时的摩擦力矩48.5柱塞惯性力矩M (46)58.6柱塞与柱塞腔的摩擦力矩M (47)68.7斜盘支承摩擦力矩M (47)78.8斜盘与回程盘回转的转动惯性力矩M (47)88.9斜盘自重力矩M (47)9第9章变量机构 (49)9.1手动变量机构 (49)9.2手动伺服变量机构 (50)9.3恒功率变量机构 (51)9.4恒流量变量机构 (52)结论 (54)致谢 (55)参考文献 (56)绪论随着工业技术的不断发展,液压传动也越来越广,而作为液压传动系统心脏的液压泵就显得更加重要了。
柱塞泵

机构。
12
配油盘
13
恒功率变量机构
14
SCY14-1型轴向柱塞泵
变量机 构
斜盘
压盘 滑靴
缸体 配油盘
传动轴
15
10SCY14-1B型轴向柱塞泵
16
XB1型斜盘式轴向柱塞泵(通轴泵)
17
二、斜轴式轴向柱塞泵
1、斜轴式轴向柱塞泵的工作 原理 密封工作腔由缸体孔、柱塞底 部、配流盘组成,由于缸体轴 线与传动轴有倾斜角度,使得 柱塞随缸体转动时沿轴线作往 复运动,底部密封容积变化, 实现吸油、压油。 吸油过程:柱塞伸出 →ΔV↑→p↓→吸油; 压油过程:柱塞缩回 →ΔV↓→p↑→压油。
2、缺点: (1)结构复杂,制造工艺高,价格贵; (2)自吸能力差,维修困难。
3、应用:用于高压、高转速的场合。
24
四、柱塞泵与马达故障与排除
(一)轴向柱塞泵的安装、使用与维护 1、安装 ⑴ 泵的安装支架有足够刚度,管道过长要安装支架固定, 以防振动 ⑵ 泵与驱动机构联接采用弹性联轴节 ⑶ 泵体上的两个漏油口,有两种连接方法 ⑷ 作液压泵使用时,应用辅助泵低压供油 ⑸ 管道、元件必须保持清洁 ⑹ 压力油路设置滤油器 2、使用 ⑴ 检查轴的回转方向与排油管的连接是否正确可靠 ⑵ 从滤油口往泵体内满工作油
25
⑶ 溢流阀调整压力不应调至最低值
⑷ 调整变量机构,作泵排量最低,作马达则最大
⑸ 先启动辅助泵,再启动主泵
⑹ 初用或长时放置后,应低压跑合
⑺ 调工作压力(溢流阀压力)
⑻ 工作压力与转速必须按铭牌上的规定
⑼ 检查漏油
⑽ 油温范围与推荐用油
3、检查与维护
⑴ 定期检查液压油
HAWE技术介绍

-
主轴轴承 / Bearing of the shaft (球轴承 / ball bearing)
主轴轴承 / Bearing of the shaft (滑动轴承 / Slide bearing)
R型液压系统举例 Example circuit - hydraulic power pack type R
特点 / Features and benefits: 相对于 R 延长使用寿命/ Increased service life when compared with pumps type R 订货型号于与R-Pumpe同 如: RG 2,9 / Otherwise similar coding like pump type R, e.g. RG 2,9
柱塞副 / Pump elements
M60N型柱塞马达 Axial piston motor type M60N
- 该马达为行走机械设计 Fixed displacement motor in angled axes design - 八种规格可选,排量从 12 到 108 cm³/U Eight sizes available with displacement volumes between 12 and 108 cc/rev (1.55 and 6.59 cu.inch/rev) - Max. 工作压力 400 bar Max. working pressure 400 bar (5600 psi) - Max. 功率21..140 kW Max. power 21... 140 kW (29...192 hp) - Min. / max. 马达转速 300 / 5400..3800 U/min Min. / max. motor speed 300 / 5400..3800 rpm - 法兰和轴 SAE-B, -C oder -D Flansch and shaft acc. to SAE-B, -C, -D - 五或七柱塞 Five or seven piston
柱塞泵原理

400YCY14-1B自动变量柱塞泵的详细描述:YCY型轴向柱塞泵YCY型轴向柱塞泵(10YCY-250YCY)结构原理简述该种变量形式的轴向柱塞泵是靠泵本身压力自动控制,如上图高压油流通过通道(a)、(b)、(c),进入变量壳体(302)的下腔(d),由此经过通道(e) 分别进入通道(f)和(h),当弹簧的作用力大于由通道(f)进入伺服活塞(309)下端环形面积的液压推力时,则油液经(h)进入上腔(g),推动变量活塞(301)向下移动,使泵的流量增加。
反之,当泵的压力克服弹簧力使伺服活塞向上动时,堵塞通道(h),使(g)腔油通过(i)而卸压,此时变量活塞上移,泵的流量减小。
下图表示YCY14-1B泵的变量特性曲线,其阴影表示特性调节范围。
AB的斜率是由外弹簧(307)刚度决定的,BC的斜率是由外弹簧(307)和内弹簧(306)的合成刚度决定的,CD的长短取决于限位螺钉的位置(限制变量头的倾斜角)。
调节变量特性时,如需按A1B1C1D1规律变化,可先将限位螺钉拧至上端,然后调节弹簧套(305)使其流量刚发生变化时的压力与A1点的压力相符,再调节限位螺钉,使流量不再变化时的高压流量与D1点的流量相符,其中间压力与流量的变化关系是预先设计好的,不需要调整,只要A1和D1两点的流量、压力调好了,该泵就自动地按A1B1C1特性曲线变化。
这种变量型式的特性曲线是近似地按恒功率变化。
上述特性的转换点A1和D1的参数可按以下方法计算:例如:已知某一机器的工艺特性要求泵的最大压力为Pmax,在Pmax时D1点的流量为Q1,泵在低压时的流量为Qmax,则泵在A1点的压力为:其中:ηP1—泵在P1的总效率ηPmax—泵在Pmax的总效率在本系列泵中,可取ηP1/ηPmax≈1原动机的功率选择可以按下式:NH=Pmax·Q1/60η其中η可取0.8-0.9(当Q1较小时取较小值,较大时取较大值。
)结构图特性曲线10.25(32)40.63(80)YCY14-1B(括号内为YGY)160.250.(400)YCY14-1B。
(完整版)泵与发动机的功率匹配原理汇总

泵与发动机的功率匹配原理发动机的输出功率:ne=me·ne/9 549 (1)式中:ne——发动机输出功率(kw)me——发动机转矩(n·m)ne——发动机转速(r/min)泵的输出功率为:nb=pbqb/60=pbqbnb/60 000 (2)式中:nb——泵的输出功率(kw)pb——泵出口压力(mpa)qb——泵出口流量(l/min)qb——泵的排量(ml/r)nb——泵的转速(r/min)泵与发动机直接连接,有nb=ne。
由传动关系知,nb与ne又满足:nb=neη1η2(3)式中η 1——泵与发动机之间的传动效率,泵与发动机直接连接时取为1,泵与发动机通过分动箱相连时取为0.97η 2——泵自身的效率,由于泵一般为变量柱塞泵,当泵的排量、转速、压力变化时,效率也随之变化,因此,泵的效率值由供应商提供。
当发动机期望工作在某一最佳工作点时,其输出转矩为一常值,所以泵与发动机功率匹配,有关系式:mb=pbqb/2π=常值(4)式中:mb——泵的吸收转矩n·m因此,当负载pb变化时,通过调节泵的排量qb使得泵的输出转矩不变,就实现了泵与发动机之间的功率匹配,发动机的转速为设定的最佳工作点处的转速。
从而得出结论:当发动机在设定的最佳工作点运行时,欲实现泵与发动机匹配,则要求泵具有恒功率特性,图1所示。
此主题相关图片如下:[disablelbcode]恒功率泵可采用机械控制或微控器控制,机械控制的恒功率变量是靠不同的弹簧组合来近似实现恒功率的,在其恒功率区段能实现泵与发动机的匹配,但是有调节不方便、存在误差等不足。
而当采取微控器(如MC控制器)控制时,能实现泵与发动机的精确匹配,而且调节方便。
2柴油机最佳工作点的选取图2是发动机的外特性转矩曲线图,曲线ABCD是发动机的全负荷速度特性,斜线AH、BI、CJ、DK为不同油门位置时的调速特性。
点A、B、C、D分别是对应的最大功率输出点。
基于AMESim恒功率泵的动静态特性仿真分析

基于 A E i M Sm恒功率泵的动静态特性仿真分析
文 哲 ,徐 兵
( 浙江 大学流体传 动及控 制 国 家重 点 实验 室 ,浙江杭 州 3 0 2 ) 107
摘要 :以压力流量功率复合控制泵的功率控制部分 为研究对象 ,利用 A Sm搭建压力 流量 功率复合控 制泵的整体仿 ME i 真模 型 ,针对影响其功率控制部分动静态特性 的几个关 键因 素——流量 阀弹簧刚度 、功率 阀阀芯三角槽数进 行变参分 析。 仿真结果表明 :增大流量 阀弹簧刚度 ,可以改善功率控制范 围内斜盘摆角 的动 态特 性 ;增加功率 阀阀芯三角槽个数 ,可 以
恒功率控制泵是提高液压系统节能效率 的关键元 件 ,可 以在特定工况下减少原动机功率 的浪费 ,具有
1 恒 功率控 制原理
流
良好 的节能效果。因此研究恒功率控制泵 的控制性能 并改善其动静态特性 ,具有现实意义。
Байду номын сангаас蒿
压
静态 工作 曲线 最 大功 率 曲线
作者研究对象是一种压力流量功率 复合控制泵的 功率控制部分 。这种压力流量功率复合 控制泵 ,采用
线位 移与斜盘角位移之间的转换关系 。在此可将 变量 柱塞球 头球 心 、回位 柱塞球 头球心 、斜盘 转动中心近
量 阀 阀芯 的 作 用 力 与
流量 阀弹 簧 预 设 压 缩 一 阀芯 2 阀套 l 一 阀 芯 左 右 位 的 移 动 ,芯三角槽结构
似认 为在 同一条直线上且与主轴轴心线共面 。变量柱
l u l i y b i n AME i f rsmu ain Al rn - a a tr a ay i s p r r d frs v r lk y fco s t a n l e c h y a c a d t S m o i lt . o ti g p r mee n lsswa ef me e e a e a tr h tif n e t e d n mi n e o o u sai h r ce it s o e p we —o t l a to e p mp s c ss r g si n s f o r t v l e a d t e n mb ro e t a g l tt c aa tr i ft o rc n r r f h u , u h a p n t f e so w—ae av n h u e f h i n u a c sc h op t i f l f t r r g o v s o e p w rv le s o 1 T e smu ain r s l h w t a te d n mi n tt h r ce it s o h w s - l t n l n r o e ft o e av p o . h i l t e u t s o h t h y a c a d sai c a a tr i f te s a h pa e a ge i h o s c sc r n e o o rc n r l r mp o e y i c e i g te s r g s f e s o o ・ t av ; t e mi i m o e au s rd c d a d t e a g f we o t e i r v d b n r a n h p n t f s ff w・ae v le h n mu p w rv l e i e u e n h p ・ oa s i in l r r n e o o rc n r l sb o d n d t e a n e tn y i c e i g te n mb ro e t a g lrg o v s o e p w rv le s o 1 a g f we o t ra e e ac r i xe tb n r a n h u e ft r n a r o e t o e av p o . p oi o t s h i u f h Ke wo d : C n t n o e ; Axa i o u y rs o sa t w r p i p s n p mp;Dy a c c a a trsi ; Smi c r e l t n mi h r ceit c t c uv
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒功率控制柱塞泵变量特性的设计及特点
活应用技术研究恒功率控制柱塞泵变量特性的设计及特点太原润滑液压研究所常若薇“随输出压力的降低而增大,泵的输出功率基本恒定。
这使原动机能充分发挥其能力,减少功率消耗。
恒功率变量特性的设计计算是实现泵的变量性能的基本保证。
1A7VLV恒功率变量泵结构及控制原理A7VLV恒功率变量泵属斜轴式柱塞泵,主要结构如所示。
其主要由主轴1、柱塞副2、缸体3、配流盘4和变量机构等组成。
工作原理是:原动机带动主轴1转动,装在主轴盘上的柱塞副拨动缸体转动。
缸体上有7个等分的柱塞孔,柱塞副在缸体孔中作往复运动。
缸体轴线相对主轴线有一夹角时,随着主轴的转动,缸体孔中柱塞副的行程有所改变。
当柱塞孔容积由小变大时,通过配流盘的低压侧从泵的吸油口吸入液压油,当柱塞孔的容积由大变小时,通过配流盘的高压侧从泵的压油口排出压力油。
主轴旋转1周,7个柱塞副在缸体孔中各往复运动1次,连续进行吸油、排油,从而使原动机输入的机械能转变为液压能。
I一主轴;2―柱塞副;3 6―变量活塞;7―传动杆;8一弹簧顶杆;A―油缸A腔;B―油缸B腔恒功率柱塞泵结构图A7VLV轴向柱塞泵恒功率变量机构主要由变量壳体5、变量活塞6、传动杆7、小活塞8、阀套9、控制阀芯10、大弹簧11、小弹簧12、调节弹簧13、弹簧顶杆14等组成。
恒功率变量机理为:由变量壳体形成的变
量活塞油缸A腔常通压力油,使变量活塞带动传动杆使缸体、配流盘处于最大摆角位置,同时压力油经端盖通道作用在小活塞上,当作用在小活塞上的液压力大于弹簧11预压力和调节弹簧13的压力总和时,弹簧顶杆14顶着控制阀芯10向下运动,此时阀芯打开,高压油进入B腔,则变量活塞6在液压差动力的作用下推动着传动杆7带动缸体、配流盘绕O点转动,减少摆角Y从而压缩大弹簧11、小弹簧12使泵的输出流量减少,达到新的平衡。
同时弹簧11使控制阀芯复位,实现了行程反馈。
当泵的输出压力继续升高时,上述过程再次重复,流量进一步减少。
当缸体摆角减小到一定值时,小活塞的液压力必须克服大弹簧11、小弹簧12、调节弹簧13的合力,控制阀芯才能再一次开启,进一步减小缸体摆角,减少泵的流量。
2恒功率变量特性的设计计算2n巧常数。
P一一泵的输出压九MPa;Q泵的输出流量,L/min n――泵的总效率。
假设n为一定值,常数,则P、Q应呈双曲线关系。
但实际的恒功率变量采用了弹簧控制的变量机构,只能近似地保证泵的恒功率值。
在设计计算变量弹簧时应使其特性近似符合双曲线关系,特性曲线见。
分别是25%、50 %额定输入功率的恒功率曲线。
进修大学机电一体化专业毕业,工程师,030009太原市解放咿/则),则泵的恒功率值为50%额定功率时:50 =户2八61.2),满足该式的户、2―定在50%额定输入功率的斜轴泵的理论排量为:q Z――柱塞数;D主轴分布圆直径,cm;Y――缸体相对主轴的夹角。
变量泵的排量为q时,倾角Y与活塞行程S有以下关系:r――主轴中心至拨销中心的距离。
将(2)式、(3)式代入(1)式得:小活塞的面积为A0故控制活塞的推力将(5)式代入(4)式可得出变量活塞行程与小活塞的推力关将不同的压力值P代入⑶式、⑷式分别作出25 %额定输入功率的恒功率曲线Li、L2如所示。
0最大工作载荷调节弹簧13其刚度可根据结构尺寸确定调节弹簧不改变泵特性曲线斜率只改变恒功率值的大小。
3恒功率变量泵的特点该泵的特点是在转速一定的条件下,泵的流量随输出压力的升高而减小,随输出压力的降低而增大泵的输出功率基本保持恒定。
它的显著特点是可减小原动机的驱动功率,使液压设备体积小,重量轻原动机经常处于满负荷工作,故原动机效率高、功率因素高,从而降低了功率消耗。
恒功率泵随着液压系统外负荷的增大可自动降低其输出,使泵能很好地适应外负荷的变化,既节能又高效,还可实现压力安全保护,是一种高适应的变量柱塞泵。
(责任编辑薛培荣)(上接第52页)欢迎订阅2002年《太原科技》。