2020-2021中考数学圆的综合(大题培优 易错 难题)及详细答案

2020-2021中考数学圆的综合(大题培优 易错 难题)及详细答案
2020-2021中考数学圆的综合(大题培优 易错 难题)及详细答案

2020-2021中考数学圆的综合(大题培优易错难题)及详细答案

一、圆的综合

1.如图,⊙A过?OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).

(1)若∠BOH=30°,求点H的坐标;

(2)求证:直线PC是⊙A的切线;

(3)若OD=10,求⊙A的半径.

【答案】(1)(132)详见解析;(3)5 3 .

【解析】

【分析】

(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;

(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】

(1)解:如图,过点H作HM⊥y轴,垂足为M.

∵四边形OBCD是平行四边形,

∴∠B=∠ODC

∵四边形OHCD是圆内接四边形

∴∠OHB=∠ODC

∴∠OHB=∠B

∴OH=OB=2

∴在Rt△OMH中,

∵∠BOH=30°,

∴MH=1

2

OH=1,33

∴点H的坐标为(13

(2)连接AC.

∵OA=AD,

∴∠DOF=∠ADO

∴∠DAE=2∠DOF

∵∠PCD=2∠DOF,

∴∠PCD=∠DAE

∵OB与⊙O相切于点A

∴OB⊥OF

∵OB∥CD

∴CD⊥AF

∴∠DAE=∠CAE

∴∠PCD=∠CAE

∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;

(3)解:⊙O的半径为r.

在Rt△OED中,DE=1

2

CD=

1

2

OB=1,OD=10,

∴OE═3

∵OA=AD=r,AE=3﹣r.

在Rt△DEA中,根据勾股定理得,r2﹣(3﹣r)2=1

解得r=5

3

【点睛】

此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键.

2.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

(1)OC的长为;

(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;

(3)如图2,动点P 以每秒1个单位长度的速度,从点O 沿线段OA 向点A 运动;同时动点D 以相同的速度,从点B 沿折线B ﹣C ﹣O 向点O 运动.当点P 到达点A 时,两点同时停止运动.过点P 作直线PE ∥OC ,与折线O ﹣B ﹣A 交于点E .设点P 运动的时间为t (秒).求当以B 、D 、E 为顶点的三角形是直角三角形时点E 的坐标. 【答案】(1)4;(2)35;(3)点E 的坐标为(1,2)、(53,10

3

)、(4,2). 【解析】

分析:(1)过点B 作BH ⊥OA 于H ,如图1(1),易证四边形OCBH 是矩形,从而有OC =BH ,只需在△AHB 中运用三角函数求出BH 即可.

(2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图1(2),则有OH =2,BH =4,MN ⊥OC .设圆的半径为r ,则

MN =MB =MD =r .在Rt △BHD 中运用勾股定理可求出r =2,从而得到点D 与点H 重合.易证△AFG ∽△ADB ,从而可求出AF 、GF 、OF 、OG 、OB 、AB 、BG .设OR =x ,利用BR 2=OB 2﹣OR 2=BG 2﹣RG 2可求出x ,进而可求出BR .在Rt △ORB 中运用三角函数就可解决问题. (3)由于△BDE 的直角不确定,故需分情况讨论,可分三种情况(①∠BDE =90°,②∠BED =90°,③∠DBE =90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t 的方程就可解决问题.

详解:(1)过点B 作BH ⊥OA 于H ,如图1(1),则有∠BHA =90°=∠COA ,∴OC ∥BH . ∵BC ∥OA ,∴四边形OCBH 是矩形,∴OC =BH ,BC =OH . ∵OA =6,BC =2,∴AH =0A ﹣OH =OA ﹣BC =6﹣2=4. ∵∠BHA =90°,∠BAO =45°,

∴tan ∠BAH =

BH

HA

=1,∴BH =HA =4,∴OC =BH =4. 故答案为4.

(2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图1(2). 由(1)得:OH =2,BH =4. ∵OC 与⊙M 相切于N ,∴MN ⊥OC . 设圆的半径为r ,则MN =MB =MD =r . ∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA . ∵BM =DM ,∴CN =ON ,∴MN =1

2

(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.

在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2. 解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD . ∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG . ∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴

AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =1

2

BD =2,∴OF =4,

∴OG

同理可得:OB AB ,∴BG =1

2

AB .

设OR =x ,则RG x .

∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2, ∴

2﹣x 2=()2﹣(x )2.

解得:x ,∴BR 2=OB 2﹣OR 2=(2)2=365,∴BR

在Rt △ORB 中,sin ∠BOR =BR OB

3

5

故答案为

35

. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.

此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2. 解得:t =1.则OP =CD =DB =1. ∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =1

2

,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2). ②当∠BED =90°时,如图3.

∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,

BE

BC =2DB BE OB ∴,∴BE . ∵PE ∥OC ,∴∠OEP =∠BOC .

∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO , ∴

OE

OB

=OP

BC ,2t ,∴OE .

∵OE +BE =OB +5

t

解得:t =

53,∴OP =53,OE ,∴PE =103, ∴点E 的坐标为(510

33

,). ③当∠DBE =90°时,如图4.

此时PE =PA =6﹣t ,OD =OC +BC ﹣t =6﹣t .

则有OD =PE ,EA (6﹣t ), ∴BE =BA ﹣EA

t )t ﹣.

∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.

在Rt△DBE中,cos∠BED=BE

DE

=

2

2

,∴DE=2BE,

∴t=22

(t﹣22)=2t﹣4.

解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).

综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、

(510

33

,)、(4,2).

点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.

3.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为?AB,P是半径OB上一动点,Q是?AB上的一动点,连接PQ.

发现:∠POQ=________时,PQ有最大值,最大值为________;

思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求?BQ的长;

(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;

探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.

【答案】发现: 90°,102; 思考:(1)10

3

π=;(2)25π?1002+100;(3)点O 到折痕PQ 的距离为30. 【解析】

分析:发现:先判断出当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,即可得出结论;

思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;

(2)先在Rt △B'OP 中,OP 2+(102?10)2=(10-OP )2,解得OP=102?10,最后用面积的和差即可得出结论.

探究:先找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,证明四边形OCO′B 是矩形,由勾股定理求O′B ,从而求出OO′的长,则OM=

1

2

OO′=30. 详解:发现:∵P 是半径OB 上一动点,Q 是?AB 上的一动点, ∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合, 此时,∠POQ=90°,PQ=22OA OB +=102; 思考:(1)如图,连接OQ ,

∵点P 是OB 的中点,

∴OP=

12OB=1

2OQ . ∵QP ⊥OB , ∴∠OPQ=90°

在Rt △OPQ 中,cos ∠QOP=

1

2

OP OQ =, ∴∠QOP=60°, ∴l BQ =

601010

1803

ππ?=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =2, 在Rt △B'OP 中,OP 22?10)2=(10-OP )2

解得OP=102?10,

S 阴影=S 扇形AOB -2S △AOP =290101

210(10210)3602

π?-???-

=25π?1002+100;

探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,

则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是?B Q '所在圆的圆心,

∴O′C=OB=10,

∵折叠后的弧QB′恰好与半径OA 相切于C 点, ∴O′C ⊥AO , ∴O′C ∥OB ,

∴四边形OCO′B 是矩形,

在Rt △O′BP 中,O′B=226425-=, 在Rt △OBO′K ,OO′=2210(25)=230-, ∴OM=

12OO′=1

2

×230=30, 即O 到折痕PQ 的距离为30.

点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=

180

n R

π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.

4.四边形 ABCD 的对角线交于点 E ,且 AE =EC ,BE =ED ,以 AD 为直径的半圆过点 E ,圆心 为 O .

(1)如图①,求证:四边形 ABCD 为菱形;

(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.

【答案】(1)见解析;(2)π2

【解析】

试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.

试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;

(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且1

32

OF AD =

=,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =

CG CD =1

2

,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴?

303180

2

AE ππ??==.

点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.

5.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE=∠DBC .

(1)判断直线BE 与⊙O 的位置关系,并证明你的结论; (2)若sin ∠ABE=

3

,CD=2,求⊙O 的半径.

【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 3 【解析】

分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切;

(2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:

连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC . ∵OD =OE ,∴∠OED =∠ODE . 又∵∠ABE =∠DBC ,∴∠ABE =∠OED , ∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,

∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;

(2)连接EF ,方法1:

∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33

sin ABE ∠= ∴23DC

BD sin CBD

∠=

=

在Rt △AEB 中,∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222

DC AE AE

AE BC AB ,,==∴=, 由勾股定理求得6BE =

在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.

设⊙O 的半径为r ,则222

623r r +=()()

,∴r 3

, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =3

sin ABE ∠=. 设3DC x BD x ==

,,则2BC x =.

∵CD =2,∴22BC =.

∵tan ∠CBD =tan ∠ABE ,∴

2222

DC AE AE

AE BC AB ,,==∴=, ∴E 为AD 中点.

∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD =

=∴⊙O 3

点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.

6.如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).

(1)当点P在线段DE上运动时,线段DP的长为_____cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.

(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P 开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.

【答案】(1)t﹣1;(2)S=﹣3

8

t2+3t+3(1<t<4);(3)t=

10

3

s.

【解析】

分析:(1)根据勾股定理求出AB,根据D为AB中点,求出AD,根据点P在AD上的速度,即可求出点P在AD段的运动时间,再求出点P在DP段的运动时间,最后根据DE段运动速度为1c m/s,即可求出DP;

(2)由正方形PQMN与△ABC重叠部分图形为五边形,可知点P在DE上,求出DP=t﹣1,PQ=3,根据MN∥BC,求出FN的长,从而得到FM的长,再根据S=S梯形FMHD+S矩形DHQP,列出S与t的函数关系式即可;

(3)当圆与边PQ相切时,可求得r=PE=5﹣t,然后由r以0.2c m/s的速度不断增大,

r=1+0.2t,然后列方程求解即可;当圆与MN相切时,r=CM=8﹣t=1+0.2t,从而可求得t的值.

详解:(1)由勾股定理可知:AB22

AC BC

∵D、E分别为AB和BC的中点,

∴DE =

12AC =4,AD =1

2

AB =5, ∴点P 在AD 上的运动时间=5

5

=1s ,当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s .

∵DE 段运动速度为1c m/s ,∴DP =(t ﹣1)cm . 故答案为t ﹣1.

(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.

当正方形的边长大于DP 时,重叠部分为五边形, ∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0, 解得:t >1,∴1<t <4.

∵△DFN ∽△ABC ,∴DN FN =AC BC =86=4

3

. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t ,

4t FN -=43,∴FN =344

t -()

, ∴FM =3﹣

344t -()=34

t

, S =S 梯形FMHD +S 矩形DHQP ,

∴S =

12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣3

8t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:

当圆与PQ 相切时,r =PE ,由(1)可知,PD =(t ﹣1)cm , ∴PE =DE ﹣DP =4﹣(t ﹣1)=(5﹣t )cm . ∵r 以0.2c m/s 的速度不断增大,∴r =1+0.2t ,

∴1+0.2t=5﹣t,解得:t=10

3

s.

②当圆与MN相切时,r=CM.

由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,

∴1+0.2t=8﹣t,解得:t=35

6

s.

∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=35

6

s(舍).

综上所述:当t=10

3

s时,⊙O与正方形PQMN的边所在直线相切.

点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.

7.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.

(1)求证:DA是⊙O切线;

(2)求证:△CED∽△ACD;

(3)若OA=1,sinD=1

3

,求AE的长.

【答案】(1)证明见解析;(22【解析】

分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;

(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE?AD,故此可求得DE的长,于是可求得AE的长.

详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.

∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.

∵OA是⊙O半径,∴DA为⊙O的切线;

(2)∵OB=OC,∴∠OCB=∠B.

∵∠DCE=∠OCB,∴∠DCE=∠B.

∵∠DAC=∠B,∴∠DAC=∠DCE.

∵∠D=∠D,∴△CED∽△ACD;

(3)在Rt△AOD中,OA=1,sin D=1

3

,∴OD=

OA

sinD

=3,∴CD=OD﹣OC=2.

∵AD=22

OD OA

-=22.

又∵△CED∽△ACD,∴AD CD

CD DE

=,∴DE=

2

CD

AD

=2,

∴AE=AD﹣DE=22﹣2=2.

点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.

8.如图,正三角形ABC内接于⊙O,P是BC上的一点,且PB<PC,PA交BC于E,点F 是PC延长线上的点,CF=PB,AB=13,PA=4.

(1)求证:△ABP≌△ACF;

(2)求证:AC2=PA?AE;

(3)求PB和PC的长.

【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.

【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC,再利用圆的内接四边形的性质得∠ACF=∠ABP,于是可根据“SAS”判断△ABP≌△ACF;

(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得

∠APC=∠ABB=60°,加上∠CAE=∠PAC,于是可判断△ACE∽△APC,然后利用相似比即可得到结论;

(3)先利用AC2=PA?AE计算出AE=13

4

,则PE=AP-AE=

3

4

,再证△APF为等边三角形,得

到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB?PC=PE?A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长. 试题解析:

(1)∵∠ACP+∠ABP=180°, 又∠ACP+∠ACF=180°, ∴∠ABP=∠ACF 在ABP ?和ACF ?中,

∵AB=AC ,∠ABP=∠ACF , CF PB = ∴ABP ?≌ACF ?. (2)在AEC ?和ACP ?中, ∵∠APC=∠ABC ,

而ABC ?是等边三角形,故∠ACB=∠ABC=60o, ∴∠ACE =∠APC . 又∠CAE =∠PAC , ∴AEC ?∽ACP ? ∴

AC AE

AP AC

=

,即2AC PA AE =?. 由(1)知ABP ?≌ACF ?, ∴∠BAP=∠CAF , CF PB = ∴∠BAP+∠PAC=∠CAF+∠PAC

∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°. ∴APF ?是等边三角形 ∴AP=PF

∴4PB PC PC CF PF PA +=+=== 在PAB ?与CEP ?中, ∵∠BAP=∠ECP , 又∠APB=∠EPC=60°, ∴PAB ?∽CEP ? ∴

PB PA

PE PC

=

,即PB PC PA PE ?=? 由(2)2

AC PA AE =?,

∴()22AC PB PC PA AE PA PE PA AE PE PA +?=?+?=+= ∴()2

2

AC PB PC PA AE PA PE PA AE PE PA +?=?+?=+=

∴2

2

2

2

2

2

43PB PC PA AC PA AB ?=-=-=-

=

因此PB 和PC 的长是方程2

430x x --=的解.

解这个方程,得11x =, 23x =.

∵PB

11

x=,PC=

23

x=,

∴PB和PC的长分别是1和3。

【点睛】本题考查了圆的综合题:熟练掌握圆周角定理、圆内接四边形的性质和等边三角形的判定与性质;会利用相似三角形证明等积式;会运用根与系数的关系构造一元二次方程。

9.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M 为⊙O上一点,并且∠BMC=60°.

(1)求证:AB是⊙O的切线;

(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.

【答案】(1)证明见试题解析;(2)BE+CF的值是定值,为等边△ABC边长的一半.【解析】

试题分析:(1)连结OB、OD,如图1,由于D为BC的中点,由垂径定理的推理得

OD⊥BC,∠BOD=∠COD,即可得到∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是得到AB是⊙O的切线;

(2)作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,由△ABC为正三角形,D为BC 的中点,得到AD平分∠BAC,∠BAC=60°,利用角平分线性质得DM=DN,得

∠MDN=120°,由∠EDF=120°,得到∠MDE=∠NDF,于是有△DME≌△DNF,得到ME=NF,

得到BE+CF=BM+CN,由BM=1

2

BD,CN=

1

2

OC,得到BE+CF=

1

2

BC,即可判断BE+CF的值是

定值,为等边△ABC边长的一半.

试题解析:(1)连结OB、OD,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,

∴∠ODB=90°,∵∠BMC=1

2

∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三

角形,∴∠ABC=60°,∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;

(2)BE+CF的值是为定值.

作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DM=DN,∠MDN=120°,∵∠EDF=120°,

∴∠MDE=∠NDF,在△DME和△DNF中,∵∠DME=∠DNF.DM=DN,∠MDE=∠NDF,∴△DME≌△DNF,∴ME=NF,∴BE+CF=BM﹣EM+CN+NF=BM+CN,在Rt△DMB中,

∵∠DBM=60°,∴BM=1

2

BD,同理可得CN=

1

2

OC,∴BE+CF=

1

2

OB+

1

2

OC=

1

2

BC,∴BE+CF

的值是定值,为等边△ABC边长的一半.

考点:1.切线的判定;2.等边三角形的性质;3.定值问题;4.探究型;5.综合题;6.压轴题.

10.问题发现.

(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为______.

(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.

(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.

【答案】(1) 125CD =;(2) CM MN +的最小值为9625.(3) 152

【解析】

试题分析:(1)根据两种不同方法求面积公式求解;(2)作C 关于BD 的对称点C ',过

C '作BC 的垂线,垂足为N ,求C N '的长即可;(3) 连接AC ,则

ADC ACG AGCD S S S =+V V 四,321GB EB AB AE ==-=-=,则点G 的轨迹为以E 为圆

心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M ,由

AEM ACB V V ∽求得GM 的值,再由ACD ACG AGCD S S S =+V V 四边形 求解即可.

试题解析:

(1)从C 到AB 距离最小即为过C 作AB 的垂线,垂足为D ,

22

ABC CD AB AC BC

S ??==V , ∴3412

55

AC BC CD AB ??=

==, (2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,且与BD 交于M ,

则CM MN +的最小值为C N '的长, 设CC '与BD 交于H ,则CH BD ⊥, ∴BMC BCD V V ∽,且12

5CH =, ∴C CB BDC ∠=∠',245

CC '=

∴C NC BCD 'V V ∽,

∴24

4

96

5525

CC BC C N BD ??==='', 即CM MN +的最小值为96

25

(3)连接AC ,则ADC ACG AGCD S S S =+V V 四,

321GB EB AB AE ==-=-=,

∴点G 的轨迹为以E 为圆心,1为半径的一段弧. 过E 作AC 的垂线,与⊙E 交于点G ,垂足为M , ∵AEM ACB V V ∽, ∴EM AE

BC AC

=, ∴248

55

AE BC EM AC ??=

==, ∴83

155

GM EM EG =-=-=,

∴ACD ACG AGCD S S S =+V V 四边形,

113

345225=??+??, 152

=. 【点睛】本题考查圆的综合题、最短问题、勾股定理、面积法、两点之间线段最短等知识,解题的关键是利用轴对称解决最值问题,灵活运用两点之间线段最短解决问题.

11.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上的动点,连接AE ,DE .

(1)当点E 是弧BC 的中点时,求△ADE 的面积; (2)若3

tan 2

AED ∠=

,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.

【答案】(1)62ADE S =;(2)16

55

AE =

;(3)23m = ,22m =,71m =-.

【解析】 【分析】

(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH?BH ,即可求出a 的值,即可求出S △ADE 的值;

(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF AD

EF BD

=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值. 【详解】

解:(1)如图,作EH ⊥AB ,连接OE ,EB , 设DH =a ,则HB =2﹣a ,OH =2+a , ∵点E 是弧BC 中点, ∴∠COE =∠EOH =45°, ∴EH =OH =2+a ,

在Rt △AEB 中,EH 2=AH?BH , (2+a )2=(6+a )(2﹣a ),

解得a =222±-, ∴a =222-, EH=22,

S △ADE =1622

AD EH =n n ;

(2)如图,作DF ⊥AE ,垂足为F ,连接BE

设EF =2x ,DF =3x ∵DF ∥BE

AF AD

EF BD = ∴

6

22AF x ==3 ∴AF =6x

在Rt △AFD 中,AF 2+DF 2=AD 2 (6x )2+(3x )2=(6)2 解得x =

255 AE =8x =

16

55

(3)当点D 为等腰直角三角形直角顶点时,如图

设DH =a

由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH , ∴∠DFO=∠EDH ∴△ODF ≌△HED ∴OD =EH =2

在Rt △ABE 中,EH 2=AH?BH (2)2=(6+a )?(2﹣a ) 解得a =±232- m =23

当点E 为等腰直角三角形直角顶点时,如图

同理得△EFG ≌△DEH

一次函数培优训练经典题型

第十讲一次函数(1) 一【一次函数解析式】 1.画图,并求出与x轴、y轴交点 (1)y=x+2 (2)y=-3x+4 2.求一次函数解析式: (1)直线l过(-1,2)和(3,4);(2)直线l与直线y=2x-1平行且过(0,4)(3)直线l与直线y=3x-6交于x轴上同一点,且过(-1,4) (4)y与x成正比,且当x=9时,y=16. 3.如图,一次函数y=kx+b的图像经过A、B两点,与x轴交于点C,求: (1)一次函数的解析式;(2)△AOC的面积. 二【一次函数图象及性质】 4.作函数y=2x-4的图象,根据图象填空:(1)当-2≤x≤4,则y的取值范围是_____________,(2)当x_________时,y<0;当x_________时,y>0;当x_________时,y=0. 5.已知直线y=(4m+1)x-(m+1),m________时,y随x的增大而减小;m________时,直线与y轴的交点在x轴下方;m________时,此一次函数也是正比例函数;若m=2时,图象与x 轴的交点坐标是_______,与y轴的交点坐标是________. 6.不画函数 1 4 3 y x =-+的图象,回答下列问题: (1)点 7 (3,3),(5,) 3 P Q-是否在这个图象上?(2)若点A(a,1),B(0,b)在这个函数 图象上,求a、b的值;(3)若函数y=x+m的图象与已知图象交于点(n,2)求m、n的值.

7.已知一次函数y=(2k+4)x+(3-b): (1)k、b是什么数时,y随x的增大而增大; (2)k、b是什么数时,函数图象与y轴的交点在x轴下方; (3)k、b是什么数时,函数图象过原点; (4)若k=-1,b=2时,求一次函数图象与两个坐标轴交点坐标,并画出图象; (5)若图象经过一、二、三象限,则k__________,b___________. 三【利用函数图象解决实际问题】 8.为了缓解用电紧张的矛盾,电力公司制订了新的用电收费标准,每月用电量x(千瓦时)与应付电费y(元)的关系如图 (1)根据图象求出y与x的函数关系式; (2)请回答该电力公司的收费标准是什么? 9.客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需购买行李票,行李费用y(元)是行李重量x(千克)的一次函数,其图象如图所示,则按规定旅客免费携带的行李为多少千克? 四【一次函数与几何结合】 10.如图,直线 1 1 3 y x =+与坐标轴交于A、B两点,直线24 y x =+与坐标轴交于C、 (1)求A、B、C、D的坐标;(2)求两直线交点M的坐标;(3)求S四OCMB的大小.

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

(完整版)一次函数培优经典.docx

一次函数培优 1、已知一个正比例函数与一个一次函数的图象交于点 A (3,4),且 OA=OB (1)求两个函数的解析式;(2)求△AOB 的面积; 4 A 3 2 1 01234 B 2、已知直线 m 经过两点( 1,6)、(-3, -2),它和 x 轴、 y 轴的交点式 B、 A ,直线 n 过点( 2, -2), 且与 y 轴交点的纵坐标是 -3,它和 x 轴、 y 轴的交点是 D、C; (1)分别写出两条直线解析式,并画草图; (2)计算四边形 ABCD 的面积; (3)若直线 AB 与 DC 交于点 E,求△BCE 的面积。 y 4 A B O D -26x C -3 E F 3、如图, A 、B 分别是 x 轴上位于原点左右两侧的点,点P(2,p) 在第一象限,直线 PA 交 y 轴于点 C( 0,2),直线 PB 交 y 轴于点D,△ AOP 的面积为 6; (1)求△COP 的面积; (2)求点 A 的坐标及 p 的值; (3)若△BOP 与△DOP 的面积相等,求直线 BD 的函数解析式。 y D E P (2,p) C A O F B x

4、已知: l 1:y=2x+m; 经过点( -3,-2),它与 x 轴,y 轴分别交于点 B、A ,直线 l 2=kx+b 经过点( 2,-2),且与 y 轴交于点 C(0,-3),它与 x 轴交于点 D (1)求直线 l1,l2的解析式; (2)若直线与 l2交于点 P,求 S ACP:S ACD的值 5、如图,已知点 A( 2, 4), B(-2, 2),C( 4, 0),求△ABC 的面积。 1 6、如图,在平面直角坐标系xOy 中,已知直线l 1:y= x 与直线 l 2: y=-x+6 相交于点 M ,直线 l2与 x 轴相交于点 N. (1)求 M ,N 的坐标.(2)矩形 ABCD 中,已知 AB=1 ,BC=2,边 AB 在 x 轴上,矩形自左向右以每秒 1 个单位长度的速度移动,设矩形ABCD 与△ OMN 的重叠部分的面积为间为 t(从点 B 与点 O 重合时开始计时,到点 A 与点 N 重合时计时开始结束).直接写出ABCD 沿 x 轴S,移动的时S 与自变量 t 之间的函数关系式. (3)在( 2)的条件下,当t 为何值时, S 的值最大?并求出最大值.

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

2018中考数学圆(大题培优)

(2018?福建A卷)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E. (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小. (12.00分)(2018?福建B卷)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB. (1)求证:BG∥CD; (2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.

25.(10.00分)(2018?河北)如图,点A在数轴上对应的数为26,以原点O为 圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP. (1)若优弧上一段的长为13π,求∠AOP的度数及x的值; (2)求x的最小值,并指出此时直线l与所在圆的位置关系; (3)若线段PQ的长为12.5,直接写出这时x的值. 23.(10.00分)(2018?恩施州)如图,AB为⊙O直径,P点为半径OA上异于O 点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点. (1)求证:DE为⊙O切线; (2)若⊙O的半径为3,sin∠ADP=,求AD; (3)请猜想PF与FD的数量关系,并加以证明.

一次函数压轴题经典培优

一次函数压轴题训练 典型例题 题型一、A卷压轴题 一、A卷中涉及到的面积问题 例1、如图,在平面直角坐标系xOy中,一次函数 12 2 3 y x =-+与x轴、y轴分别相交于点 A和点B,直线 2 (0) y kx b k =+≠经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分. (1)求△ABO的面积; (2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。

练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :1 2 1 +=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。 (1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。 2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运 动(0y 2 (2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积(10分) A B C O D x y 1 l 2 l

二、A 卷中涉及到的平移问题 例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。 ①直线y=43x-8 3经过点C ,且与x 轴交与点E ,求四边形AECD 的面积; ②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线1l 经过点F ?? ? ??- 0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位 交x 轴于点M ,交直线1l 于点N ,求NMF ?的面积.

中考数学圆的综合-经典压轴题及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数. 【答案】(1)证明见解析;(2)25°. 【解析】 试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论. (2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数. 试题解析:(1)∵∠AOC=∠BOD ∴∠AOC -∠COD=∠BOD-∠COD 即∠AOD=∠BOC ∵四边形ABCD 是矩形 ∴∠A=∠B=90°,AD=BC ∴AOD BOC ??? ∴AO=OB (2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB , ∴∠A=90°. 又∵∠OPA=40°, ∴∠AOP=50°, ∵OB=OC , ∴∠B=∠OCB. 又∵∠AOP=∠B+∠OCB , ∴1 252 B OCB AOP ∠=∠= ∠=?. 2.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形 (性质探究)如图1,试探究圆外切四边形的ABCD 两组对边AB ,CD 与BC ,AD 之间的数

一次函数培优完美版

一次函数培优讲解 1、已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(—2,0),则不等式ax大于b的解集为() A. x〉2。 B. x<2。C。x〉-2. D。x〈—2 2、若不等式2|x-1|+3|x—3|≤a有解,则实数a最小值是________ 3、已知实数a,b,c满足a+b+c不等于0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限? 4、已知一次函数y=ax+b的图象过(0,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为________ 5、(2010?上海)一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为________ 6、已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(—1,√3),C(c,2—c),求a—b+c的值. 7、已知一次函数y=ax+b的图像经过点A(√3,√3+2),B(-1,√3),C(c,2-c),求a2+b2+c2—ab-bc-ca的值。 8、在修建某条公路的过程中,需挖通一条隧道,甲、乙两个工程队从隧道两端同时开始挖掘.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直至隧道挖通.图是甲、乙两个工程队所挖隧道的长度y(米)与挖掘时(天)之间的函数图象.请根据图象所提供的信息解答下列问题: (1)求该隧道的长; (2)乙工程队工作多少天时,两队所挖隧道的长度相差18米?

9、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q5吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题: (1)加油飞机的加油油箱中装载了30吨油,将这些油全部加给运输飞机需10分钟. (2)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请说明理由. 10、一次函数y=(m2-4)x+(1—m)和y=(m+2)x+(m2—3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是 11、已知一次函数y=2x+m与y=(m—1)x+3的图像交点坐标的横坐标为2则m的值 12、一次函数y=kx+b的图像经过点(m,1)和(1,m)两点,且m>1,则k=_____, b的取值范围是____ 13、已知两直线y=4x-2,y=3m-x,的交点在第三象限,则m的取值范围________ 14、如果ab〉0,a/c<0,则直线y=—(a/b)x+c/b不通过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 15、已知关于X的一次函数Y=mx+2m-7在—1≤X≤5上的函数值总是正数,则m的取值范围是. 16、在同一平面直角坐标系中,直线y=kx+b与直线y=bx+k(k、b为常数,且kb≠0)的图象可能是() A B C D

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学压轴题专题圆与相似的经典综合题附答案解析

中考数学压轴题专题圆与相似的经典综合题附答案解析 一、相似 1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证: (1)∠OAE=∠OBE; (2)AE=BE+ OE. 【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点, ∴OB⊥AC, ∴∠AOB=90°, ∵∠AEB=90°, ∴A,B,E,O四点共圆, ∴∠OAE=∠OBE (2)证明:在AE上截取EF=BE, 则△EFB是等腰直角三角形, ∴,∠FBE=45°, ∵在等腰Rt△ABC中,O为斜边AC的中点, ∴∠ABO=45°, ∴∠ABF=∠OBE, ∵, ∴, ∴△ABF∽△BOE,

∴ = , ∴AF= OE, ∵AE=AF+EF, ∴AE=BE+ OE. 【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。 (2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由; (4)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:证明:∵四边形是矩形, 在中, 分别是的中点,

一次函数拔高练习题

培优练习十一 一次函数的性质 姓名: 家长签字: 1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( ) (A )y=8x (B )y=2x+6 (C )y=8x+6 (D )y=5x+3 2.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( ) (A )一象限 (B )二象限 (C )三象限 (D )四象限 3.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( ) (A )y 1>y 2 (B )y 1=y 2 (C )y 1a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,?则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( ) 5.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 6.要得到y=-32x-4的图像,可把直线y=-32 x ( ). (A )向左平移4个单位 (B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位 7.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( ) (A )m>-14 (B )m>5 (C )m=-14 (D )m=5 8.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ). (A )k<13 (B )131 (D )k>1或k<13 9.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) (A )4条 (B )3条 (C )2条 (D )1条 10.已知abc ≠0,而且a b b c c a c a b +++===p ,那么直线y=px+p 一定通过( ) (A )第一、二象限 (B )第二、三象限 (C )第三、四象限 (D )第一、四象限 11.当-1≤x ≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( ) (A )-4

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

经典一次函数培优题(含答案及讲解)

一次函数培优讲解
已知一次函数 y=ax+b 的图像经过一,二,三象限,且与 x 轴交易点(-2,0) ,则不等式 ax 大于 b 的解集为( ) A.x>2. B.x<2. Cx>-2. D.x<-2 此题正确选项为 A 解析:∵一次函数的图像过一、二、三象限 ∴有 a>0 将(-2,0)代入一次函数解析式则 b=2a ∴ax>b 可化为 ax>2a 又 a>0 ∴原不等式的解集为 x>2 在直角坐标系中,纵、横坐标都是整数的点,称为整点.设 k 为整数,当直线 y=x+2 与直 线 y=kx-4 的交点为整点时,k 的值可以取( )个. 因为直线 y=x+2 与直线 y=kx-4 的交点为整点,让这两条直线的解析式组成方程组,求得整 数解即可. 由题意得:{y=x+2y=kx-4, 解得:{x=6k-1y=6k-1+2, ∴k 可取的整数解有 0,2,-2,-1,3,7,4,-5 共 8 个. 若 不 等 式 2|x-1|+3|x-3|≤ a 有 解 , 则 实 数 a 最 小 值 是 ( 考点: 含绝对值的一元一次不等式. 专题: 计算题;分类讨论. 分 析 : 分 类 讨 论 :当 x< 1 或 1≤ x≤ 3 或 x> 3,分 别 去 绝 对 值 解 x 的 不 等 式 ,然 后 根 据 x 对 应 的 取 值 范 围 得 到 a 的 不 等 式 或 不 等 式 组 ,确 定 a 的 范 围 ,最 后 确 定 a 的最小值. )
解 答 : 解 : 当 x< 1, 原 不 等 式 变 为 : 2-2x+9-3x≤ a, 解 得 x≥
< 1, 解 得 a> 6 当 1≤ x≤ 3, 原 不 等 式 变 为 : 2x-2+9-3x≤ a, 解 得 x≥ 7-a, ∴ 1≤ 7-a≤ 3, 解 得 4≤ a≤ 6; 当 x> 3, 原 不 等 式 变 为 : 2x-2+3x-9≤ a, 解 得 x< > 3, 解 得 a> 4; 综 上 所 述 , 实 数 a 最 小 值 是 4. 已知实数 a,b,c 满足 a+b+c 不等于 0,并且 a/b+c=b/c+a=c/a+b=k,则直线 y=kx-3 一定 通过哪三个象限?

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

一次函数培优试题含答案

一次函数高效培优 1. 在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;② 第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑 了20千米.其中正确的说法有( ) A. 1 个 B. 2 个 C.3 个 D. 4个 【答案】C 2. 一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能 是( ) 【答案】A 3. 如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是( ) A.-5 B.-2 C.3 D. 5 【答案】B 4. 图(三)的坐标平面上,有一条通过点(-3,-2)的直线L 。若四点(-2 , a)、(0 , b)、(c , 0)、(d ,-1)在L 上,则下列数值的判断,何者正确? A .a =3 B. b >-2 C. c <-3 D . d =2 【答案】C 5. 已知A 点坐标为(5,0),直线y=x +b (b>0)与y 轴交于点B ,连接AB ,∠α=75°,则b 的值为

A.3 B.335 C.4 D.4 3 5 【答案】B 6. 如图所示,函数 x y =1和 34 312+= x y 的图象相交于 (-1,1),(2,2)两点.当21y y >时,x 的取值范 围是( ) A .x <-1 B .—1<x <2 C .x >2 D . x <-1或x >2 【答案】D 7. 已知梯形ABCD 的四个顶点的坐标分别为A (-1,0),B (5,0),C (2,2),D (0,2),直线y=kx+2将梯形分成面积相等的两部分,则k 的值为 A. - 32 B. -92 C. -74 D. -7 2 【答案】A 8. 我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树 苗每株30元,相关资料表明:甲、乙两种树苗的成活率分别为85%,90%, (1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株? (2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株? (3)在(2)的条件下,应如何选购树苗,使购买的树苗的费用最低?并求出最低费用. 【答案】解:(1)设购买甲种树苗x 株,乙种树苗y 株,则列方程组? ????x+y=800 24x+30y=21000 解得:?????x=500y=300 ,答:购买甲种树苗 500株,乙种树苗300株. (2)设购买甲种树苗z 株,乙种树苗(800-z )株,则列不等式85%+90%(800 -z )≥88%×800 解得:z ≤ 320

一次函数培优练习题(含答案)

巩固练习 一、选择题: 1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3 2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过() (A)一象限(B)二象限(C)三象限(D)四象限 3.直线y=-2x+4与两坐标轴围成的三角形的面积是() (A)4 (B)6 (C)8 (D)16 4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg) 之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图, 所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长 为y2,则y1与y2的大小关系为() (A)y1>y2(B)y1=y2 (C)y1a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是() 6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四 7.一次函数y=kx+2经过点(1,1),那么这个一次函数() (A)y随x的增大而增大(B)y随x的增大而减小 (C)图像经过原点(D)图像不经过第二象限 8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在() (A)第一象限(B)第二象限(C)第三象限(D)第四象限

9.要得到y=-3 2 x-4的图像,可把直线y=- 3 2 x(). (A)向左平移4个单位(B)向右平移4个单位 (C)向上平移4个单位(D)向下平移4个单位 10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为() (A)m>-1 4 (B)m>5 (C)m=- 1 4 (D)m=5 11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是(). (A)k<1 3 (B) 1 3 1 (D)k>1或k< 1 3 12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,?这样的直线可以作() (A)4条(B)3条(C)2条(D)1条 13.已知abc≠0,而且a b b c c a c a b +++ ===p,那么直线y=px+p一定通过() (A)第一、二象限(B)第二、三象限 (C)第三、四象限(D)第一、四象限 14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4

八年级数学一次函数)培优测试题

八年级数学(一次函数)培优辅导题 1.下列关于x 的函数中,是一次函数的是( ) A.222-=x y B.11+=x y C.2x y = D.22 1+-=x y 2.一次函数y=kx+6.y 随x 的增大而减小,则此一次函数的图象不过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.下列函数,y 随x 增大而减小的是( ) A .y=x B .y=x –1 C .y=x+1 D .y=–x+1 4.下列各点在直线13-=x y 上的是( ) A.)0,1(- B. )0,1( C. )1,0(- D. )1,0( 5. 下列各点在函数y =3x +1的图象上的是( ). A .(3,5) B .(-2,3) C .(2,7) D .(4,10) 6.若点A(2 , 4)在直线y=kx –2上,则k=( ) A .2 B .3 C .4 D .0 7.在直角坐标系中,既是正比例函数kx y =,又是y 的值随x 值的增大而减小的图像是( ) A B C D 8.y =kx +b 图象如图则( ) A .k>0 , b>0 B .k>0 , b<0 C .k<0 , b<0 D .k<0 , b>0 9.y=kx +k 的大致图象是( ) A B C D 10.已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( ) A .k ≠2 B .k>2 C .0

相关文档
最新文档