扫描电镜的结构及使用

扫描电镜的结构及使用
扫描电镜的结构及使用

扫描电镜的结构及使用实验指导

史秋月

扫描电子显微镜是利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。通过本实验学习,了解扫描电镜基本机构,掌握扫描电镜的基本使用方法和使用过程中的注意事项。

一、实验目的

1、了解扫描电镜基本机构和工作原理;

2、掌握扫描电镜的基本使用方法和使用过程中的注意事项;

3、掌握扫描电镜图像衬度观察的原理。

二、实验所用设备及仪表

JSM-6510LV扫描电镜

三、实验内容

1、扫描电镜基本结构

扫描电镜的基本结构可分为电子光学系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。

光学系统是由电子枪、磁透镜、扫描线圈以及样品室组成(图3-1)。电子枪由灯丝阴极、栅极 (或称韦氏圆筒)和加速阳极组成,提供稳定的电子束,一般在1~30kV。磁透镜有第一、二聚光镜和物镜,其作用缩小电子束的直径,把来自电子枪的约30μm大小的电子束经过第一、二聚光镜和物镜的作用,缩小成直径约为几十埃的狭窄电子束。这是由于扫描电镜的分辨率主要取决于电子束的直径,所以要尽可能缩小它,为此,物镜还装备有物镜可动光栏和消散器。一个带有扫描电路的偏转线圈通以锯齿波的电流,产生的磁场作用于电子束使它在样品上扫描。样品室位于镜筒的底部。显示系统包括信号的收集、放大、处理、显示与记录部分。显示和记录部分包括两个显像管和照相机。一个显像管是长余辉的,用于观察;另一显像管是高分辨率的、短余辉的,用于照相。扫描电镜的真空系统由机械泵、扩散泵、检测系统、管道及阀门等组成。

图3-1

2、扫描电镜的使用

(1)样品处理

1)对于新鲜的金属断口样品不需要做任何处理,可以直接进行观察。

2) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。

3) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理(或用醋酸纤维素沾)。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。

4) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm为宜。

5)对于断口表面有脱落附物又必须要观察脱落物的样品,用醋酸纤维素做断口覆膜,然后观察醋酸纤维素覆膜即可。

(2)表面形貌衬度观察

1) 二次电子像形貌衬度观察

二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。如下图3-2。因此,二次电子像适合于显示表面形貌衬度。

图3-2

二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。

扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。

利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、裂纹扩展的途径以及断裂方式等信息,根据断口的微观形貌特征可以分析裂纹萌生的原因、裂纹的扩展途径以及断裂机制。图实3-3是比较常见的金属断口形貌二次电子像。较典型的解理断口形貌如图实3-3a所示,在解理断口上存在有许多台阶。在解理裂纹扩展过程中,台阶相互汇合形成河流花样,这是解理断裂的重要特征。准解理断口的形貌特征见图实3—3b,准解理断口与解理断口有所不同,其断口中有许多弯曲的撕裂棱,河流花样由点状裂纹源向四周放射。沿晶断口特征是晶粒表面形貌组成的冰糖状花样,见图实3—3c。图3—3d显示的是塑料断口经镀膜后观察的韧窝形貌,在断口上分布着许多微坑。图3—3e显示的是H13钢韧窝断口形貌,在部分微坑中嵌着夹杂物颗粒。图3—3f可以看出,疲劳裂纹扩展区断口存在一系列大致相互平行、略有弯曲的条纹,称为疲劳条纹,这是疲劳断口在扩展区的主要形貌特征。图3—3显示具有不同形貌特征的断口,若按裂纹扩展途径分类,其中解理、准解理和韧窝型属于穿晶断裂,沿晶断口的裂纹扩展是沿晶粒表面进行的。图3—4是显示钛合金显微组织的二次电子像,组织为a+B。与光学显微镜相比,利用扫描电镜表面形貌衬度显示材料的微观组织,具有分辨率高和放大倍数大的优点,适合于

观察光学显微镜无法分辨的显微组织。为了提高表面形貌衬度,在腐蚀试样时,腐蚀程度要比光学显微镜使用的金相试样适当地深一些。

表面形貌衬度还可用于显示表面外延生长层(如氧化膜、镀膜、磷化膜等)的结晶形态。这类样品一般不需进行任何处理,可直接观察。图实3-5是低碳钢板表面刷镀镀层的二次电子像,它清晰地显示了镀膜的结晶形态。

(a)(b)

(c)(d)

(e)(f)

图3-3

图3-4 图3-5 2) 背散射电子像衬度观察

原子序数衬度是利用对样品表层微区原子序数或化学成分变化敏感的物理信号,如背散射电子、吸收电子等作为调制信号而形成的一种能反映微区化学成分差别的像衬度。实验证明,在实验条件相同的情况下,背散射电子信号的强度随原子序数增大而增大。在样品表层平均原子序数较大的区域,产生的背散射信号强度较高,背散射电子像中相应的区域显示较亮的衬度;而样品表层平均原子序数较小的区域则显示较暗的衬度。由此可见,背散射电子像中不同区域衬度的差别,实际上反映了样品相应不同区域平均原子序数的差异,据此可定性分析样品微区的化学成分分布。吸收电子像显示的原子序数衬度与背散射电子像相反,平均原子序数较大的区域图像衬度较暗,平均原子序数较小的区域显示较亮的图像衬度。原子序数衬度适合于研究钢与合金的共晶组织,以及各种界面附近的元素扩散。

图3—6是一种混合粉体的背散射电子像。由图可见, Mo 由于其原子序数较大,产生背散射电子信号强度较高,显示较亮的图像衬度。Al 因其原子序数小而显示较暗的衬度。Fe 则给予二者之间。

在此顺便指出,由于背散射电子是被样品原子反射回来的入射电子,其能量较高,离开样品表面后沿直线轨迹运动,因此信号探测器只能检测到直接射向探头的背散射电子,有效收集立体角小,信号强度较低。尤其是样品中背向探测器的那些区域产生的背散射电子,因无法到达探测器而不能被接收。所以利用闪烁体计数器接收背散射电子信号时,只适合于表面平整的样品,实验前样品表面必须抛光而不需腐蚀。

Mo

AL

Fe

图3-6

四、实验报告要求及思考题

1、简述此电镜结构及工作原理

2、断口形貌图、粉末背散射像

3.、样品表面微区几何形状对二次电子强度(及衬度)的影响

4、原子序数大小对背散射电子产额(及衬度)的影响

扫描电镜及其在储层研究中的应用分析

扫描电镜测试技术原理及其在储层研究中的应用 1、扫描电镜的结构和工作原理 扫描电镜的主要构成分为四部分:镜筒、电子信号的显示与记录系统、电子信号的收集与处理系统、真空系统及电源系统(图1)。以下是各部分的简介和工作原理。 1.1扫描电镜结构 1.1.1镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统,其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面进行扫描,同时激发出各种信号。 1.1.2电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm 至几十nm 的区域,其产生率主要取决于样品的形貌和成份。通常所说的扫描电镜图像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器的探头是一个闪烁体,当电子打到闪烁体上时,就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,将电流信号转变成电压信号,最后被送到显像管的栅极。 1.1.3电子信号的显示与记录系统 扫描电镜的图像显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。 1.1.4真空系统及电源系统 扫描电镜的真空系统由机械泵和油扩散泵组成,其作用是使镜筒内达到10 托的真空度。电源系统则供给各部件所需的特定电源。

图1 扫描电镜结构图 1.2扫描电镜的基本原理 扫描电镜的电子枪发射出电子束,电子在电场的作用下加速,经过两次电磁透镜的作用后在样品表而聚焦成极细的电子束。该细小的电子束在末透镜的上方的双偏转线圈作用下在样品表而进行扫描,被加速的电子与样品相互作用,激发出各种信号,如二次电子,背散射电子,吸收电子、X射线、俄歇电子、阴极发光等。这些信号被按顺序、成比例的交换成视频信号、检测放大处理成像,从而在荧光屏上观察到样品表而的各种特征图像。 2、扫描电镜在矿物岩石学领域的应用 2.1矿物研究 不同矿物在扫描电镜中会呈现出其特征的形貌,这是在扫描电镜中鉴定矿物的重要依据。如高岭石在扫描电镜中常呈假六方片状、假六方板状、假六方似板状;埃洛石常呈管状、长管状、圆球状;蒙脱石为卷曲的薄片状;绿泥石单晶呈六角板状,集合体呈叶片状堆积或定向排列等。王宗霞等在扫描电镜下观察了硅藻上的形貌,硅藻上多呈圆盘状、板状,根据这一特征即可将它鉴定出来。 矿物特征及残余结构可以推断其成岩环境和搬运演化历史,扫描电镜可对矿 物的结构和成分进行分析,为推断矿物的成岩环境和搬运演化历史提供基础资

稳定同位素质谱实验室规章制度扫描电镜操作规程【模板】

稳定同位素质谱实验室规章制度 1.实验人员上机前必须经过培训,认真执行本室相关安全制度和操作规程。 2.进入无菌室需更换拖鞋,非实验室人员不得进入实验室。 3.禁止携带有毒、有害、易燃、腐蚀的物品进入实验室。 4.实验室内要保持清洁卫生,桌柜等表面保持无尘,杜绝污染。 5.仪器运行最佳温度为28℃,禁止自行调节实验室空调温度。 6.禁止挪动微克电子天平。 7.实验人员需详细填写使用记录,仪器出现故障时应立即停止使用并报告管理 人员,不可擅自拆卸仪器。 8.禁止使用U盘和移动硬盘等在主控计算机上拷取数据。 9.本实验室物品不经批准不得擅自外借或转让,更不得私自拿出。 10.离开实验室前,认真检查并关闭电源以及气体阀门,关好门窗方可离去。

扫描电镜操作规程 开机操作: 1.开变压器电源 2.开主电源 3.开真空(VAC SW I键点亮) 4.开水箱电源 5.开操作系统(右手OPE SW I键点亮) 6.开电脑(账户和密码均为SEMUser) 7.开软件(桌面PC_SEM)Guest账户,无密码 8.仪器进行自检,等待5分钟后,所有自检变绿通过,初始化样品台,主机上EXCHPOSN 灯亮起。 9.推入样品,EXCHPOSN以及HLDR灯亮起 10.开电子枪Maintance-Gun-Star up 电源会持续增加Filament Current 至 2.29 Extract Voltage 至3.0 11.半个小时后电子枪稳定,SIP-1<9E-8, SIP-2<2E-6 12.若真空读数稳定低于至5.0E-4后,则可进行实验 关机操作: 1.关闭主屏上观察OBSERATION OFF 2.关电子枪MAINTANENCE-GUN-SHUT DOWN 等待Filament Current 慢慢变为0 3.打开Camera,确认所有探头均退出样品舱,将样品取出或退到准备舱 4.关软件操作系统File-exit-exit 5.关闭电脑 6.关闭电镜操作系统(控制台右下方OPE SW 上O键点击变亮其中I键为开启) 7.关闭真空系统(控制台左下方VAC SW O键) 8.关水箱(控制台右后方的白色箱子MAIN 阀门拉下) 9.5分钟后,关闭主电源(控制台左下方MIAN SW O键点亮) 10.确定备用电源处于工作状态(控制台面上左上方,白色盒子,工作时绿灯亮起,电流 超过20uA) 11.关闭变压器(机器后,最左侧蓝色箱子,阀门拉下)

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理 扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备 扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可以直接进行观察。但在有些情况下需对样品进行必要的处理。 1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm 为宜。 2.表面形貌衬度观察 二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。 二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。 利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、裂纹扩展的途径以及断裂方式等信息,根据断口的微观形貌特征可以分析裂纹萌生的原因、裂纹的扩展途径以及断裂机制。图实5-1是比较常见的金属断口形貌二次电子像。较典型的

SEM扫描电镜结构与断口观察

扫描电镜结构与断口观察 一、实验目的: 1、了解扫描电镜的基本结构,成相原理; 2、掌握电子束与固体样品作用时产生的信号和各种信号在测试分析中的作用; 3、了解扫描电镜基本操作规程; 4、掌握扫描电镜样品制备技术; 5、掌握韧性断裂、脆性断裂的典型断口形貌。 二、实验原理: 1、扫描电子显微镜的构造和工作原理: 扫描电子显微镜(Scanning Electronic Microscopy, SEM)。扫描电镜是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,扫描电镜的优点是,①有较高的放大倍数,20-30万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它像透射电镜一样是当今十分有用的科学研究仪器。 扫描电子显微镜是由电子光学系统,信号收集处理、图象显示和记录系统,真空系统三个基本部分组成。 其中电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。扫描电子显微镜中的各个电磁透镜不做成相透镜用,而是起到将电子束逐级缩小的聚光作用。一般有三个聚光镜,前两个是强磁透镜,可把电子束缩小;第三个透镜是弱磁透镜,具有较长的焦距以便使样品和透镜之间留有一定的空间,装入各种信号接收器。扫描电子显微镜中射到样品上的电子束直径越小,就相当于成相单元的尺寸越小,相应的放大倍数就越高。 扫描线圈的作用是使电子束偏转,并在样品表面做有规则的扫动。电子束在样品上的扫描动作和显相管上的扫描动作保持严格同步,因为它们是由同一个扫描发生器控制的。电子束在样品表面有两种扫描方式,进行形貌分析时都采用光栅扫描方式,当电子束进入上偏转线圈时,方向发生转折,随后又有下偏转线圈使它的方向发生第二次转折。发生二次偏转的电子束通过末级透镜的光心射到样品表面。在电子束偏转的同时还带用逐行扫描的动作,电子束在上下偏转线圈的作用下,在样品表面扫描出方形区域,相应地在样品上也画出一帧比例图像。样品上各点受到电子束轰击时发出的信号可由信号探测器收集,并通过显示系统在

简述扫描电镜的构造及成像原理资料讲解

简述扫描电镜的构造及成像原理,试分析其与透射电镜在样品表征方面的异同 1、扫描电镜的构造 扫描电镜由电子光学系统、信号收集和图像显示系统、和真空系统三部分组成。 1.1 电子光学系统(镜筒) 电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。 1.1.1 电子枪扫描电子显微镜中的电子枪与透射电镜的电子枪相似,只是加速电压比透射电镜低。 1.1.2 电磁透镜扫描电子显微镜中各电磁透镜都不作成像透镜用,而是做聚光镜用,它们的功能只是把电子枪的束斑逐级聚焦缩小,使原来直径约为50um的束斑缩小成一个只有数个纳米的细小斑点,要达到这样的缩小倍数,必须用几个透镜来完成。扫描电子显微镜一般都有三个聚光镜,前两个聚光镜是强磁透镜,可把电子束光斑缩小,第三个聚光镜是弱磁透镜,具有较长的焦距。布置这个末级透镜(习惯上称之物镜)的目的在于使样品室和透镜之间留有一定空间,以便装入各种信号探测器。扫描电子显微镜中照射到样品上的电子束直径越小,就相当于成像单元的尺寸越小,相应的分辨率就越高。采用普通热阴极电子枪时,扫描电子束的束径可达到6nm左右。若采用六硼化镧阴极和场发射电子枪,电子束束径还可进一步缩小。

1.1.3 扫描线圈扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。 1.1.4 样品室样品室内除放置样品外,还安置信号探测器。各种不同信号的收集和相应检测器的安放位置有很大关系,如果安置不当,则有可能收不到信号或收到的信号很弱,从而影响分析精度。样品台本身是一个复杂而精密的组件,它应能夹持一定尺寸的样品,并能使样品作平移、倾斜和转动等运动,以利于对样品上每一特定位置进行各种分析。新式扫描电子显微镜的样品室实际上是一个微型试验室,它带有许多附件,可使样品在样品台上加热、冷却和进行机械性能试验(如拉伸和疲劳)。 1.2 信号的收集和图像显示系统 二次电子、背散射电子和透射电子的信号都可采用闪烁计数器来检测。信号电子进入闪烁体后即引起电离,当离子和自由电子复合后就产生可见光。可见光信号通过光导管送入光电倍增器,光信号放大,即又转化成电流信号输出,电流信号经视频放大器放大后就成为调制信号。如前所述,由于镜筒中的电子束和显像管中电子束是同步扫描的,而荧光屏上每一点的亮度是根据样品上被激发出来的信号强度来调制的,因此样品上各点的状态各不相同,所以接收到的信号也不相同,于是就可以在显像管上看到一幅反映试样各点状态的扫描电子显微图像。 1.3 真空系统 为保证扫描电子显微镜电子光学系统的正常工作,对镜筒内的真空度有一定的要求。一般情况下,如果真空系统能提供1.33×10-2 -1.33×10-3 Pa的真空度时,就可防止样品的污染。如果真空度不足,除样品被严重污染外,还会出现灯丝寿命下降,极间放电等问题。 2、扫描电镜的成像原理 扫描电镜是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。 3、分析扫描电镜与透射电镜在样品表征方面的异同 3.1 结构差异 主要体现在样品在电子束光路中的位置不同,透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上;扫描电镜的样品在电子束末端,

Tescan-vega3扫描电镜操作规程

纳米纤维课题组Tescan vega3扫描电镜操作规程 见贤思齐 1.最小化放大倍数,调整电流,home/calibrate样品台,关闭电压,点击Vent 放气。等待右下方显示Venting Finish。 2.装载试样。需将试样用导电胶粘紧。(检查每一个螺丝是否拧紧。没有放样品的螺丝也应该拧紧。) 3.小心关上仓门,点击Pump抽真空。等待Chamber 真空度进度条变绿后,即可进行下一步。 4. 操作前参数检查: A,首先检查高压(HV)是否为所需值,若不是可先点击右边信息盘的HV 再在右上边输入所要求值。 B,其次检查Beam intensity值,正常扫描时为10. C,点样品操作盘,想要做的第一个样品所在位置(1-6标号)。样品台会移动到视野内。 5.调节Z轴逐次减小,使样品接近镜筒。(这个值为样品台到镜筒的距离。所以合适的值既是自己样品中最高的样的高度加10的余量)比如:自己样品中最高的为10,则最终可以调节z轴至20。 6. 找好试样位置(点击鼠标的滚珠可以调节位置),开始先选择MODE模式(宽视野、连续宽视野),再点击Mag(视野右手边一竖行快捷键中),再在右上边输入放大倍数(刚开始可先输入100倍),逐级放大。当视野中图像模糊,但有图像时,点击WD(视野右手边一竖行快捷键中),在再视野中双击左键可以出现一个小方框(右键调节方

框大小),再左右滚动左手边放置的轨迹球聚焦至图像清楚。再放大,再聚焦,直至达到需求即可。 如果图像无法调清楚则观察是否为以下两种情况: 1)低倍时,调节WD时图像有移动,选择右下方HV附近Adjustment中第三项弹出一个对话框点Next 视野中会弹出一个闪动图像,然后调节轨迹球(按住F11调节上下方向,F12调节左右方向)直至图像在中心跳动(而不是左右或上下移动)再聚焦。 2)高倍时图像有单一方向的拉长,则判断为有相散,点击Stg 右手边一竖行快捷键中。然后调节轨迹球。(按住F11调节上下方向,F12调节左右方向)直至图像不再变形,再聚焦。 (一般要求高倍调节,低倍出图。例如:需要1000倍,则应将2000倍调节清楚。) 7.拍照之前应检查亮度对比度是否合适,调节亮度。 8.选择扫描速度Speed6或7保存照片,(调节时Speed选择3或4,找样品时选择1或2)。 9.重复6-8完成拍照。 10.实验完成后归位操作:放大倍数调至最小(MAG可以直接输入0,则自动变为最小值)、SPEED扫描速度最低(speed调节为1);home/calibrate样品台,关闭高压(点击HV)。 11.点击Vent放气,venting finish后拉开仓门,取出试样后仍然应当将螺丝拧进去。 12.取样完成后关闭仓门抽上真空。

Tescan 扫描电镜操作规程

Tescan 钨灯丝扫描电镜操作规程 1.点击Vent (操作界面右下方)按钮,放气。等待右下方显示Venting Finish,即可进行下一步操作。 2.装载试样。需将试样用导电胶粘紧。(放样时注意操作界面Z轴距离,钨灯丝100以上。)检查每一个螺丝是否拧紧。不应有露在外的螺丝头。 3.小心关上仓门,点击Pump(位于Vent旁边)。抽真空。等待Chamber 真空度钨灯丝到达5*10-2以上即可进行下一步。 4. 操作前参数检查: A,首先检查高压(HV)是否为所需值,若不是可先点击右边信息盘的HV 再在右上边输入所要求值。 B,其次检查Beam intensity值,正常扫描时为10,打能谱时调节为12。 C,点样品操作盘,想要做的第一个样品所在位置(1-7标号)。样品台会移动到视野内。 5.调节Z轴逐次减小,使样品接近镜筒。(这个值为样品台到镜筒的距离。所以合适的值既是自己样品中最高的样的高度加10的余量)比如:自己样品中最高的为10,则最终可以调节z 轴至20。 6. 找好试样位置(点击鼠标的滚珠可以调节位置),开始先点击Mag(视野右手边一竖行快捷键中),再在右上边输入放大倍数(刚开始可先输入100倍),逐级放大。当视野中图像模糊,

但有图像时,点击WD(视野右手边一竖行快捷键中),在再视野中双击左键可以出现一个小方框(右键调节方框大小),再左右滚动左手边放置的轨迹球聚焦至图像清楚。再放大,再聚焦,直至达到需求即可。 如果图像无法调清楚则观察是否为以下两种情况: 1)调节WD时图像有移动,选择右下方HV附近Adjustment 中第三项弹出一个对话框点Next 视野中会弹出一个闪动图像,然后调节轨迹球(按住F11调节上下方向,F12调节左右方向)直至图像在中心跳动(而不是左右或上下移动)再聚焦。 2)图像有单一方向的拉长,则判断为有相散,点击Stg右手边一竖行快捷键中。然后调节轨迹球。(按住F11调节上下方向,F12调节左右方向)直至图像不在变形,再聚焦。 (一般要求调节清楚地放大倍数大于需要拍照倍数。例如:需要1000倍,则应将2000倍调节清楚。) 7.拍照之前应检查亮度对比度是否合适,视野右手边一竖行快捷键中选择选项,然后轨迹球上下调节对比度,左右调节亮度。 8.右手边一竖行快捷键中选择Speed选项选择扫描速度6 或7,(调节时Speed选择4以下)。然后点击右手边一竖行快捷键中最后一项保存照片。 9.重复6-8完成拍照。 10.实验完成后归位操作: A. 将Z轴输入钨灯丝100,使样品台降回原位。

扫描电镜Zeiss Supra55简明操作指南

Zeiss-Supra55扫描电子显微镜简明操作指南 一、开机启动 1、按下绿键。 按下绿键后,电脑会自动启动,输入计算机密码:zeiss 2、启动SmartSEM软件。 用户名:system 密码:无 3、检查真空值。 二、换样品(换样或加高压观察样品) 1、装试样。 在备用样品座上装好样品,并记录样品形状、编号和位置。 注意:各样品观察点高度基本一致。确认样品不会脱落,并用洗耳球吹一下。 2、关高压。 3、检查插入式探测器状态 打开TV,将EBSD等插入式探测器拉出。 4、放气。 点Vent等待3-5 分钟。 注意:确认Z move on vent选上,这样,放气时样品台会自动下降。 5、拉开舱门。 注意:拉开舱门前,确认样品台已经降下来,周围探测器处于安全位置。 6、更换样品座 注意:抓样品座时戴手套,避免碰触样品。 7、关上舱门。 注意:舱门上O圈有时会脱落,关门时勿夹到异物。 8、抽真空。 点击Pump,等待真空就绪(留意Vacuum面板上真空状态),等待3-5分钟。 注意:当System Vacuum<2×10-5mBar时,会自动打开CIV阀门(column isolation valve),并启动离子泵。 当Gun Vacuum=<5×10-9mBar时,可启动灯丝(Gun On),左下角Ready。 等待过程中,可先移动样品台初步定位样品。 9、换样完成。 加高压,观察样品台TV 三、成像过程 1、定位样品。 打开TV,移动样品台。升至工作距离约在8~10mm处,平移对准样品。可打开stage navigation帮助定位。 2、开高压。 根据检测要求和样品特性,设定加速电压; 3、观察样品,定位观察区。 全屏快速扫描(点击工具栏上); 选择Inlens或SE2探头; 缩小放大倍数至最小; 聚焦并调整亮度和对比度(Tab键可设置粗调Coarse或细调Fine);

扫描电子显微镜基本原理和应用

扫描电子显微镜的基本原理和结构 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 扫描电镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 1 电子光学系统 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。 <1>电子枪: 其作用是利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。其优点是灯丝价格较便宜,对真空度要求不高,缺点是钨丝热电子发射效率低,发射源直径较大,即使经过二级或三级聚光镜,在样品表面上的电子束斑直径也在5-7nm,因此仪器分辨率受到限制。现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,使二次电子像的分辨率达到2nm。但这种电子枪要求很高的真空度。 扫描电子显微镜的原理和结构示意图

扫描电镜的综述及发展

扫描电镜的综述及发展 1 扫描电镜的原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。 扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1~5nm)的电子束(相应束流为10-11~10-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X射线等各种信息。这些信息的二维强度分布随着试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等),将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像[1]。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。 扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。机构组成 扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。 真空系统 真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。 真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。 成像系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的密封室,用于放置样品。

扫描电镜管理制度

扫描电镜管理制度 扫描电子显微镜为大型精密仪器设备,为保证设备安全及正常运行,|加强对大型精密设备的管理,充分发挥其使用率、完好率,更好地服务于检验工作,结合中心实际情况,特制定本管理制度。1.扫描电镜由专人负责管理及使用,其他人未经培训,未经管理人员同意,不能擅自上机操作. 2.定期进行保养与维护,热场发射灯丝由专人负责更换。电器系统每年除尘一次,设备由专人维修并做好维修记录。 3.保证设备工作温度为20℃+/ -5℃,相对湿度不高于60%,室内温度使用由空调来保证上述条件的实现。 4.实验室必须干净整齐,试验者必须换拖鞋,将衣物等存放到指定的柜子中,操作者需穿工作服进行试验,保证设备清洁。 5.设备说明书及有关资料分类存放,重要部分和经常使用部分要有复制件,常用的程序要有备份。 6.仪器在运行中出现故障,操作人员应立即停止使用,在记录本上写明情况,并报告管理人员。 7.禁止在主控计算机上安装其它软件。实验结果和数据可由专用移动硬盘和优盘(无病毒)。

8.更换样品时,一定要检查样品高度,样品高度不得超过30mm, 以防止样品碰到极靴 9禁止在扫描电镜下观察有腐蚀性的化学试剂,液态及强磁性样品。 10.定期检查水箱,电源、空气压缩机、氮气压力等是否正常,及 时加注液氮。 11.设备应做到精心维护,定人点检。做好防光、防震、防潮,定期检修和检测,防止障碍性事故发生。若发生故障,不能排除,应及时报告设备部门。 12 每天及时填写使用记录及维修记录,详细记载使用及维修情况,由操作人员妥善保存。 13..严格执行设备的操作规程,按操作规程使用仪器,如因违反上述规定而造成仪器损坏,根据设备管路制度考核。

实验五 扫描电子显微镜的结构原理及图像衬度观察

实验五扫描电子显微镜的结构原理及图像衬度观察 一、实验目的 1.了解扫描电镜的基本结构和工作原理。 2.通过实际样品观察与分析,明确扫描电镜的用途。 二、基本结构与工作原理简介 扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。图5-1是扫描电镜主机构造示意图。试验时将根据实际设备具体介绍。这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。但在有些情况下需对样品进行必要的处理。 (1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 (2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 (3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。 2.表面形貌衬度观察二次电子信号来自于样品表面层5~10nm,信号的强度对样品微区表面相对于入射束的取向非常敏感。随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。

扫描电镜技术原理及应用

扫描电镜技术原理及应用 摘要: 扫描电镜一种新型的多功能的,用途最为广泛的电子光学仪器。数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。 关键词:扫描电镜;应用 1938 年德国的阿登纳制成了第一台扫描电子显微镜,1965 年英国制造出第一台作为商品用的扫描电镜,使扫描电镜进入实用阶段。近 20 年来,扫描电镜发展迅速,多功能的分析扫描电镜(即扫描电镜带上能谱仪、波谱仪、荧光仪等)既能做超微结构研究,又能做超微结构分析,既能做定性、定量分析、又能做定位分析,具有景深大,图像富有立体感,分辨率高,图像放大倍数高,显像直观,样品制备过程相对简单,可连接EDAX(X-射线能谱分析仪)进行微区成分分析等特点,被广泛应用于生物学、医学、古生物学、地质学、化学、物理、电子学及林业等学科和领域[1-2]。 1扫描电镜的工作原理与技术特点 1.1 扫描电镜的工作原理 扫描电镜( SEM) 的工作原理是由电子枪发射出来直径为50μm(微米)的电子束,在加速电压的作用下经过磁透镜系统会聚,形成直径为5nm(纳米)的电子束,聚焦在样品表面上,在第二聚光镜和物镜之间偏转线圈的作用下,电子束在样品上做光栅状扫描,同时同步探测入射电子和研究对象相互作用后从样品表面散射出来的电子和光子,获得相应材料的表面形貌和成分分析[3]。从材料表面散射出来的二次电子的能量一般低于50 eV,其大多数的能量约在2 ~ 3 eV。因为二次电子的能量较低,只有样品表面产生的二次电子才能跑出表面,逃逸深度只有几个纳米,这些信号电子经探测器收集并转换为光子,再通过电信号放大器加以放大处理,最终成像在显示系统上。扫描电镜工作原理的特殊之处在于把来自二次电子的图像信号作为时像信号,将一点一点的画面“动态”地形成三维的图像。 1.2 扫描电镜的技术特点[4] 扫描电子显微镜测试技术特点主要有: ( 1) 聚焦景深大。扫描电子显微镜的聚焦景深是实体显微镜聚焦景深的50

扫描电镜操作流程

SIRION场发射扫描电镜操作规程 一.开机 1.首先检查循环水系统,压力显示约4.5,温度显示约11-18度,为正常范围。 2.检查不间断电源的”LINE”,”INV.”指示灯亮,上部6只灯仅一只亮是为正常。 3.开电镜电脑(白色机箱)的电源,通过密码进入WINDOWS后,先启动”SCS”,然后启 动”Microscope Control”。 二.操作过程 1.有关样品的要求: 需用电镜观测的样品,必须干燥,无挥发性,有导电性,能与样品台牢固粘结(块状试样的下底部需平整,利于粘结)。粉末样品用导电胶带粘结后,需敲击检查,或用吹风机吹去粘结不牢固的粉末。含有机成份的样品(包括聚合物等),需经过干燥处理。 2.交换样品特别注意点: 该电镜的样品台是4轴马达驱动的精密机械,定位精度1微米,同时也可以手动旋钮驱动。样品室中暴露着镜头极靴,二次电子探头,低压背散射电子探头,能谱探头,红外相机,涡轮分子泵等电镜的核心部件,样品台驱动过程中存在着碰撞的可能性,交换样品和驱动样品台时要特别小心。比如样品室门应轻拉轻推;样品要固定牢固,防止掉到镜筒里去;样品高度要合适,Z轴移动样品或手动倾斜样品前,用CCD图象检查样品位置等等。 3.换样品过程:换样品前必须先检查加速电压是否已经关闭,条件符合,可按放气键(“VENT”)。交换样品台操作必须戴干净手套。固定好样品台后(固紧内六角螺丝),必须用专用卡尺测量样品高度,不允许超过规定高度。推进样品室,左手按住样品室门上手柄,右手点击抽真空软件键”PUMP”。整个换样品过程中,不要手动调节样品台位置(倾动除外)。 4.关高压过程:按下软件键“xx kV”,稍等待,听到V6阀的动作声音后,键颜色由黄色变灰色,表示高压已正式关闭。 5.开高压过程:样品室抽真空到达5e -5 mBar以上,可以开高压,观察图象。开高压:检查“Detector”菜单项中的“SE”或“TLD”被选中,按“HT”键,数秒后按软键“xx kV”,应听到V6阀开启的声音,等待键颜色变黄色。图象出来后,同时会弹出一个窗口,提示首先必须聚焦图象,然后按“OK”,使电脑能测出实际的样品高度,次序不可颠倒。在数千倍聚焦完成后(In Focus),按“OK”。 6.聚焦图象:按住鼠标右键,左或右向移动鼠标来聚焦图象。 7.消像散:按住左Shift键,按住鼠标右键移动,消除像散。 8.拍照:按“F2”键,电镜开始单次扫描。扫描结束,过数秒,冻结键(雪花图形)自动激活(变黄色)。这时可用“InOut”菜单中的Image保存图象。 9.拷贝图象:须用新光盘或未开封的新软盘拷贝。 三.关机 1.先关高压,放气后,取出样品后,重抽真空,然后关“Microscope Control”,再关WINDOWS。 电镜的电脑是控制整台电镜的,电脑的CMOS管理,显示卡及驱动程序等与普通电脑不同,请不要当作普通电脑来使用。禁止修改电脑的任何设置,禁止安装任何软件。禁止使用USB

扫描电镜成像原理

扫描电镜成像原理:用聚焦电子束在试样表面逐点扫描成像。成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,经过二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其他物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电信号,经视频放大后输入到显像管栅极,调制与入射电子同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。 四、色质联用技术 优点:结合了色谱分离和定量以及质谱定性分析的优点。近乎通用的响应,低检出限,化合物结构测定。 1、气相色谱质谱联用 气质联用仪是分析仪器中较早实现联用技术的仪器。在所有联用技术中气质联用GC-MS)发展最完善,应用最广泛。目前从事有机物分析的实验室几乎够把GCMS作为主要的定性确认手段之一。 气质联用与气相色谱的区别 ?GC-MS方法的定性参数增加,定性可靠。 ?GC-MS检测灵敏度远高于气相的其他检测器。 ?GC-MS可采用选择离子分离气相上不能分离的化合物,降低噪音提高信噪比。

?一般经验来说质谱仪器定量不如气相色谱。但是采用同位素稀释和内标等技术GC-MS可以达到较高精度的定量分析。 谱库检索技术 随着计算机的发展,人们将标准电离条件下(EI源,70eV)大量纯化合物的标准质谱图存在计算机内生成质谱谱库。实际工作中得到的未知物的质谱图可以和谱库中的质谱图按照一定的程序进行比较,将相似度高化合物检出。这大大优化和减少了人工的工作量。 2、液相色谱质谱联用 ?真空度匹配:现有商品化的液质联用仪器都设计增加了真空泵的抽速,并采用分段多级抽真空的方法来满足质谱的要求。 ?接口技术:HPLC的质量流量比常规质谱所能处理的流量高2-3个数量级如何在不分解的情况下蒸发非挥发性及热不稳定性的物质 3、色质联用技术的应用 气质联用(GC-MS)的应用领域:气质联用已经成为有机化合物常规检测中的必备工具。环保领域的有机污染物检测,特别是低浓度的有机污染物;药物研究生产质控的进出口环节;法庭科学中对燃烧爆炸现场调查,残留物检验;石油化工,食品安全领域;竞技体育中兴奋剂检测等领域。 质联用(LC-MS)的应用领域 液质联用技术已经在药物、化工、临床医学、分子生物学等许多领域得到了广泛的应用。对于有机合成中间体、药物代谢物、基因工程产品的大量分析结果为生产和科研提供了许多有价值的数据。液质联用

Quanta 200扫描电镜实验室安全操作规程

Quanta 200扫描电镜实验室安全操作规程 1.开机前的检查 1.1室温:18℃~25℃; 1.2湿度:<80%; 1.3Quanta 200 真空泵PVP1和PVP2的油面指示应在规定位置,油要干 净,无色透明,无污染,每月检查一次; 2.试样制备 2.1微细和超细粉体(粒度<10μm)样品,取少量样品直接放在烧杯中,用无水乙醇做溶剂,超声分散,用干净滴管吸取少量液滴置于铜托上,并用红外灯照射干燥; 2.2粗颗粒样品,取少量粘在铜托上的导电胶带上,用无毛纸轻压,使样品颗粒牢牢粘住,并清楚粘在铜托侧面上的粉样; 2.3块状样品,高度应在15mm以下,要用无水乙醇浸泡,清洗干净,放在超声波水槽中处理,以除去油脂、灰尘、赃物和水分; 2.4试样一定要无水、无油,观察前要用红外灯照射干燥。 3.开机 严格按开机顺序操作,开机抽真空5分钟内,系统真空应达到要求(<1.0?10-4Torr),如果系统真空不能达到要求,应检查样品室门是否关好、样品室密封圈垫圈及密封平面是否干净或其它连接处是否有漏气现象。如果不能解决应及时报告,并与厂商联系。 4.试样观察 4.1按仪器说明步骤操作,选择合适工作参数; 4.2注意样品高度,样品的高度要小于卡尺的长度,千万不要使样品观察面碰触物镜下方的背散射电子探测器; 4.3更换样品时,一定要先切断灯丝高压,待灯丝冷却5分钟以后再放气。开关样品室门,手扶住门下侧的拉杆,轻轻地向外或向里推。勿抓X、Y、Z、R调节杆来开关门,门要拉到合适的位置,才能更换试样。要带手套取放样品架,手千万不要伸到样品室内,以防止碰伤各种探测器;

4.4更换样品时,开关门动作要轻,不使镜筒产生过大振动。更换样品后要及时关门,样品室放大气的时间不宜过长,一般不得超过20分钟; 4.5样品室内如果脏了,用无尘纸(布)擦拭,注意不要碰触探测器; 4.6仪器观察过程中,若暂时停止观察,应立即切断灯丝高压; 4.7仪器观察过程中,若突然发生断电事故,应立即切断计算机电源开关再切断服务器电源开关,最后切断总电源开关。 5.关机 关机顺序: 1)切断灯丝高压; 2)将SEM放大倍数调至最小 3)等待灯丝冷却5分钟后,放大气; 4)关SEM程序,退出XT server; 5)关闭计算机; 6)关闭服务器电源; 7)关闭房间内总电源。 6.维护 6.1粉体样品易污染样品室和镜筒,制样时使用量尽量少,样品托上样 品层厚度要非常薄,不要“起皮”; 6.2更换试样时,开关门动作要轻,防止造成粉末样的飞溅,污染样品 室; 6.3SEM系统从安装起就应一直保持真空,所以在长期不用或放假时, 要求每隔五天抽真空一次; 6.4更换样品过程中,要等软件控制面板上的VENT键变成黑色后才可 以打开样品室的门,SEM样品室通大气的时间不宜过长,一般不超过20分钟; 6.5样品室内的探头,千万不要用气球吹,尤其是二次电子的闪烁体; 6.6每季度检查一次涡轮分子泵油的颜色和液位,及时更换或补充专用 真空油; 6.7保持实验室的清洁,擦拭仪器时,要切断整个仪器的电源,用柔软

扫描电镜在材料表面形貌观察及成分分析中的应用

扫描电镜在材料表面形貌观察及成分分析中的应用 一、实验目的 1)了解扫描电镜的基本结构和工作原理,掌握扫描电镜的功能和用途; 2)了解能谱仪的基本结构、原理和用途; 3)了解扫描电镜对样品的要求以及如何制备样品。 二、实验原理 (一)扫描电镜的工作原理和结构 1. 扫描电镜的工作原理 扫描电镜是对样品表面形态进行测试的一种大型仪器。当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X射线等。扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。 图1 入射电子束轰击样品产生的信息示意图

从结构上看,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。 由图2我们可以看出,从灯丝发射出来的热电子,受2-30KV电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。 故视频放大器放大的二次电子信号是一个交流信号,用这个交流信号调制显像管栅极电,其结果在显像管荧光屏上呈现的是一幅亮暗程度不同的,并反映样品表面起伏程度(形貌)的二次电子像。应该特别指出的是:入射电子束在样品表面上扫描和在荧光屏上的扫描必须是“同步”,即必须用同一个扫描发生器来控制,这样就能保证样品上任一“物点”样品A点,在显像管荧光屏上的电子束恰好在A’点即“物点”A与“像点” A’在时间上和空间上一一对应。通常称“像点”A’为图像单元。显然,一幅图像是由很多图像单元构成的。 扫描电镜除能检测二次电子图像以外,还能检测背散射电子、透射电子、特征x射线、阴极发光等信号图像。其成像原理与二次电子像相同。 在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,样品干燥并且有良好导电性能。

扫描电镜的原理及其在材料科学领域的应用

一、扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。 扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。

图 1 扫描电子显微镜的工作原理图 2 电子束探针照射试样产生的各种信息 扫描电子显微镜(SEM)中的各种信号及其功能如表1所示 表1 扫描电镜中主要信号及其功能 二、扫描电镜的构成 图3给出了电镜的电子光学部分的剖面图。主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为有一定强度的电子束。由两级聚 光镜组合而成。

相关文档
最新文档